

CYRIX Cx486SLC'" MICROPROCESSOR
High-Performance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

• DESIGNED FOR IBM-COMPATIBLE
PERSONAL COMPUTERS
- 486SX instruction set compatible
- Runs DOS, Windows and Unix
- 32-bit internal! 16-bit external data path
- 386SX bus compatible
- 25 MHz maximum clock frequency

• LOW POWER CONSUMPTION FOR
BATTERY POWERED APPLICATIONS
- Software transparent suspend/resume
- Fully static design
- 0.10 rnA Icc at 0 MHz and 5 V

. The Cyrix Cx486SLC is a high-performance micro
processor for use in IBM-compatible computers. The
Cx486SLC executes the 486SX instruction set and all
operating systems designed for this instruction set
including DOS, Windows, and Unix.

The Cx486SLC includes a single cycle execution unit
and a 32-bit internal data path that couple tightly to
the on-chip 1 KByte cache. This enables the
Cx486SLC to effectively access the cache two clocks

Execution Pipeline

Cache and Memory
Management

• 486·CLASS PERFORMANCE
- Up to 2.4 times faster than 386SX or 386SL

at same clock frequency
- Landmark 2.0 = 78.3 MHz, Norton SI 6.0 = 39.4

at 25 MHz with no secondary cache
- On-chip instruction and data cache
- Single-cycle execution unit
- 16-bit hardware multiplier

• LOW VOLTAGE OPERATION
- 25 MHz operation from 2.7-5.5 Vee

Only 0.66 W at 3.0 V and 25 MHz

faster than a zero wait -state external bus access. As a
result, the Cx486SLC perfonns up to 2.4X faster than
a 386SX or 386SL at the same clock frequency.

The Cx486SLC bus interface is compatible with
existing 386SX hardware designs. Both hardware and
software controls are provided by Cyrix to support
both the Cx486SLC cache interface and power .
management features allowing design flexibility and
minimal changes to existing systems.

386SX Compatible
Bus Interface

Data
Buffers

Bus
Control

DiS-DO

16

Control

A23-Ai
L-___IL-._I--___ ~ Address BHE#. BLE#

L-__ ~-~~:::..:;;;.;;;;.:.:..;,;=.;;;;;..;;.;:;~----.j Buffers
Data Address Bus

©1991 Copyright Cyrix Corporation. All rights reserved.
Printed in the United States of America

TrademarkAcknowledgments:

Cyrix and Cx486SlC are trademarks of Cyrix Corporation,
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Order Number: 94073-00
Cyrix Corporation
2703 North Central Expressway
Richardson, Texas 75080
United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specification described herein without notice. Before design-in or
order placement customers are advised to venfy that the information on which orders or design activities are based is current. Cyrix warrants its
products to conform to current specifications in accordance \vith Cyrix standard warranty. Testing is performed to the extent necessary as determined
by Cyrix to support this warranty. Unless explicitly speCified by customer order requirements and agreed to in writing by Cyrix, not all device
characteristics are necessarily tested. Cyrix assumes no liability unless specifically agreed to in writing for customerls product design or infringement
of patents or copyrights ofthird parties arising from use of Cyrix devices. No license, either express or implied, to Cyrix patents, copyrights, or other
intellectual property rights pertaining to any machine or combination of Cyrix devices is hereby granted. Cyrix products are not intended for use in
any medical, life saving, or life sustaining systems. Infonnation in this document is subject to change without notice.

ii PRELIMINARY

CYRIX 486SLCTM MICROPROCESSOR
High-Perfonnance 486-0ass CPU with
Single-Cycle Execution and On-Chip Cache

I • Product Overview
1.1 Introduction.....
1.2 Execution Pipeline. .
1.3 On-chip Cache . . .
1.4 Power Management . ..
1.5 Signal Summary.

2. Programming Interface
2.1 Processor Initialization .
2.2 Instruction Set Overview .
2.3 Register Set
2.4 Address Spaces
2.5 Interrupts and Exceptiom; .
2.6 Shutdown and Halt
2.7 Segment Protection
2.8 Virtual 8086 Mode. " .

3. Bus Interface
3.1 Overview ...
3.2 Signal Descriptions.
3.3 FunctionalTiming.

4. Electrical Specifications
4.1 Electrical Connections . . .
4.2 Absolute Maximum Ratings.
4.3 Recommended Operating Conditions
4.4 DC Characteristics
4.5 AC Characteristics.

5. Mechanical Specifications .
5.1 Pin Assignments.
5.2 Package Dimensions . .
5.3 Thermal Characteristics.

6. Instruction Set
6.1 General Instruction Format.
6.2 Instruction Fields'. .
6.3 Flags
6.4 Clock Counts

Ordering Information

PRELIMINARY

'.'

1-1
1-1
1-2
1-2
1-3

2-1
2-3
2-4
2-30
2-38
2-44
2-44
2-47

3-1
3-3
3-12

4-1
4-2
4-3
4-4
4-5

5-1
5-4
5-5

6-1
6-1
6-10
6-10

Iii

List of Tables and Figures

LIST OF FIGURES

Figure NUMber Figure NaMe

iv

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-lO
2-llA
2-llB
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
4-1
4-2

Cx486SLC Input and Output Signals
Application Register Set . .
General Purpose Registers .
Segment Selector. . .
EFLAGS Register.
System Register Set.
Control Registers
Descriptor Table Registers . .
Application and System Segment Descriptors . .
Gate Descriptor.
Task Register.
32-Bit Task State Segment (TSS) Table
16-Bit Task State Segment (TSS) Table
Debug Registers
Test Registers.
Memory and I/O Address Space . . .
Offset Address Calculation.
Real Mode Address Calculation . . .
Protected Mode Address Calculation
Selector Mechanism
Paging Mechanism.
Directory and Page Table Entry (DTE and PTE) Format.
Error Code Format
Cx486SLC Functional Signal Groupings
Internal Processor Clock Synchronization.
Bus Activity from RESET until First Code Fetch. .
Fastest Non-Pipelined Read Cycles
Various Non-Pipelined Bus Cycles (no wait states)
Various Non-Pipelined Bus Cycles with Different Numbers ofWait.States .
Non-Pipelined Bus States .
Fastest Pipelined Read Cycles .
Various Pipelined Cycles (one wait state)
Fastest Transition to Pipelined Address Following Idle Bus State . .
Transitioning to Pipelined Address During Burst of Bus Cycles ..
Complete Bus States
Interrupt Acknowledge Cycles.
Non-pipelined Halt Cycle .
Pipelined Shutdown Cycle.
Non-Pipelined Cache Fills using KEN#.
Pipelined Cache Fills using KEN# .
Masking A20 using A20M# During Burst of Bus Cycles.
Requesting Hold from Idle Bus State.
Requesting Hold from Active Non-Pipelined Bus
Requesting Hold from Active Pipelined Bus .
SUSP# Initiated Suspend Mode
Halt Initiated Suspend Mode.
Stopping CLK2 During Suspend Mode
Entering and Exiting Float
Drive Level and Measurement Points for Switching Characteristics
CLK2 Timing Measurement Points

Page

1-3
2-5
2-6
2-7
2-9
2-12
2-13
2-15
2-16
2-18
2-19
2-20
2-21
2-24
2-26
2-30
2-32
2-33
2-34
2-34
2-36
2-36
2-40
3-1
3-12
3-13
3-15
3-16
3-17
3-19
3-20
3-22
3-23
3-24
3-25
3-27
3-28
3-29
3-30
3-31
3-32
3-34
3-35
3-36
3-38
3-39
3-39
3-40
4-6
4-7

List of Tables and Figures

LIST OF FIGURES (Continued)

Figure Number Figure Name

4-3
4-4
4-5A
4-5B
4-6
4-7
5-1
5-2
6-1

Table Number

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-8A
2-9
2-10
2-lOA
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
3-1-
3-2
3-3
3-4
3-5
3-6
4-1
4-2
4-3
4-4
4-5
4-6

Input Signal Setup and Hola Timing.
Output Signal Valid Delay Timing . .
Data Write Cycle Valid Delay Timing
Data Write Cycle Hold Timing
Output Signal Float Delay and HLDA Valid Delay Timing.
RESET Setup and Hold Timing.
Pin Assignments.
100-Pin Bumpered QFP Package Dimensions
General Instruction Format.

LIST OF TABLES

Table Name

Initialized Register Contents . . .
Segment Register Selection Rules .
EFLAGS Bit Definitions .
CRO Bit Definitions
Segment Descriptor Bit Definitions .
Gate DeSCriptor Bit Definitions . ..
Configuration Registers Index Assignments.
Configuration Registers Bit AsSignments .
Non-Cacheable Regions Block Size Field.
DR6 and DR7 Field Definitions.
TR6 and TR7 Bit Definitions
TR6 Attribute Bit Pairs .
TR3 - TR5 Bit Definitions. .
Memory Addressing Modes.
Directory and Page Table Entry (DTE and PTE) Bit Definitions
Interrupt Vector Assignments·
Exception Changes in Real Mode
Error Code Bit Definitions .
Interrupt and Exception Priorities. .
Descriptor Types Used for Control Transfer
Cx486SLC Signal Summary .
Signal States During Reset . .
Byte Enable Definitions
Bus Cycle Types . . .
Signal States During Hold Acknowledge
Signal States During Suspend Mode
Pins Connected to Internal Pull-Up and Pull-Down Resistors
Pins ReqUiring External Pull-Up Resistors
Absolute Maximum Ratings
Recommended Operating Conditions. .. .
DC Characteristics (at Recommended Operating Conditions) .
Measurement Points for Switching Characteristics . .

Page

4-10
4-11
4-11
4-12
4-12
4-13
5-1
5-4
6-1

Page

2-2
2-8
2-10
2-14
2-17
2-18
2-22
2-23
2-24
2-25
2-27
2-28
2-29
2-32
2-37
2-39
2-40
2-41
2-43
2-46
3-2
3-3
3-4
3-5
3-10
3-11
4-1
4-1
4-2
4-3
4-4
4-5

v

List of Tables and Figures

Table Number

vi

4-7
4-8
5-1
5-2
5-3
6-1
6-2
6-3
6-4
6-5
6-6
6-6A
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16

LIST OF TABLES (Continued)

Table Name

AC Characteristics for Cx486SLC-V20
AC Characteristics for Cx486SLC-25, Cx486SLC-V25
Signal Names Sorted by Pin Number . .
Pin Numbers Sorted by Signal Name . .
Package Thermal Resistance and Airflow
Instruction Fields
Instruction Prefix Summary
w Field Encoding
d Field Encoding.
reg Field Encoding.
mod rim Field Encoding. .
mod rim Field Encoding Dependent on w Field.
mod base Field Encoding
ss Field Encoding .
index Field Encoding.
sreg2 Field Encoding.
sreg3 Field Encoding.
eee Field Encoding.
FlagAbbreviations .
Action of Instruction on Flag.
Clock Count Abbreviations
Instruction Set Summary. . .

Page

4-8
4-9
5-2
5-3
5-5
6-2
6-3
6-4
6-4
6-5
6-6
6-7
6-8
6-8
6-8
6-9
6-9
6-9
6-10
6-10
6-11
6-12

CYRIX Cx486SLC'" MICROPROCESSOR
High-Performance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

1. PRODUCT OVERVIEW

1.1 Introduction

The Cyrix Cx486SLC microprocessor is an
advanced 32-bit X86 compatible processor
offering high performance and integrated power
management on a single chip. The 486SLC is
486SX instruction set compatible and is back
ward compatible with the 386SX pinout. The
Cx486SLC provides up to 2.4X the performance
of both the 386SL and 386SX at equal clock
frequencies. The Cx486SLC is an ideal solution
for battery-powered applications in that it typically
draws 0.10 rnA while the input clock is stopped in
suspend mode. The Cx486SLC-V version of the
Cx486SLC offers additional power savings as it
operates on a 3-volt as well as 5-volt power
supply.

The Cx486SLC supports 8, 16 and 32-bit data
types and operates in real, virtual 8086 and
protected modes. The Cx486SLC microproces
sor achieves high performance through use of a
highly optimized variable length pipeline com
bined with a RISC-like Single cycle execution unit,
an on-chip hardware multiplier and an integrated
instruction and data cache.

The Cx486SLC microprocessor is implemented
in 0.8 micron CMOS technology and is available
in 20 and 25 MHz versions. Both the +5V
Cx486SLC and +3V Cx486SLC-V versions are
available packaged in a 100-pin bumpered quad
flat pack (QFP).

1.2 Execution Pipeline

The Cx486SLC execution path consists of
fi ve pipelined stages optimized for minimal
instruction cycle times. These five stages are:
• Code Fetch
o Instruction Decode
• Microcode ROM Access
• Execution
• MemorylRegister File Write-Back

These stages have been designed with hardware

interlocks which permit successive instruction
execution overlap.

The 16-byte instruction prefetch queue fetches
code in advance and prepares it for decode,
helping to minimize overall execution time. The
instruction decoder then decodes four bytes of
instructions per clock eliminating the need for a
queue of decoded instructions. Sequential
instructions are decoded quickly and provided to
the microcode. Non-sequential operations do not
have to wait for a queue of decoded instructions
to be flushed and refilled before execution
continues. As a result, both sequential and non
sequential instruction execution times are mini
mized.

The execution stage takes advantage of a RISC
like single cycle execution unit and a 16-bit
hardware multiplier. The write-back stage
provides single cycle 32-bit access to the on-chip
cache and posts all writes to the cache and system
bus using a two-deep write buffer. Posted writes
allow the execution unit to proceed with program
execution while the bus interface unit actually
completes the write cycle.

PRELIMINARY '\1-'

On-Chip Cache

1.3 On-Chip Cache

The Cx486SLC on-chip cache maximizes overall
performance by quickly supplying instructions
and data to the internal execution pipeline. An
external memory access takes a minimum of two
clock cycles (zero wait states). For cache hits,
the Cx486SLC eliminates these two clock cycles
by overlapping cache accesses with normal
execution pipeline activity. Additional bus
bandwidth is gained by presenting instructions
and data to the execution pipeline up to 32 bits at
a time compared to 16 bits per cycle for an
external memory access.

The Cx486SLC cache is a 1 KByte write-through
unified instruction and data cache and lines are
allocated only during memory read cycles. The
cache can be configured as direct-mapped or as
two-way set associative. The direct-mapped
organization is a single set of 256 four-byte lines.
When configured as two-way set associative, the
cache organization consists of two sets of 128
four-byte lines and uses a Least Recently Used
(LRU) replacement algorithm.

1.4

1.4.1

Power Management

Suspend Mode and Static
Opemtion

The 486SLC power management features allow a
dramatic reduction in current consumption
when the 486SLC microprocessor is in suspend
mode (typically less than 2 percent of the operat
ing current). Suspend mode is entered either by
a hardware or software initiated action. Using
the hardware to initiate suspend mode involves a
two-pin handshake using the SUSP# and SUSPA#

signals. The software initiates suspend mode'
through execution of the HALT instruction.
Once in suspend mode, the Cx486SLC power
consumption is further reduced by stopping the
external clock input. The resulting current draw is
typically less than 0.25 rnA. Since the Cx486SLC is
a static device, no internal CPU data is lost when the
clock input is stopped.

1.4.2 3·Volt Operation

The Cx486SLC-V version of the Cx486SLC
operates from either a 3-volt or a 5-volt supply.
While operating with a 3-volt supply, the power
consumed by the 486SLC-V is typically only
30 percent of the power consumed while operat
ing at 5 volts. The 486SLC-V is available in both
20 and 25 MHz speeds.

1-2 PRELIMINARY

Signal Summary I

1.5 Signal Summary

The Cx486SLC includes two power management signals (SUSP# and SUSPA#), four cache interface
signals (FLUSH#, KEN#, RPLSET, and RPLVAL#), and an AlO mask input (A20M#) that are additions
to the 386SX signal set. The complete list of Cx486SLC signals is shown in Figure 1-1.

A20M# ***
BUSY#

CLK2

ERROR#

FLT#

FLUSH# *
INTR Cx486SLC

HOLD MICROPROCESSOR

KEN# *
NA#

NMI

PEREQ

SUSP# **
RDY#

RESET

* = Internal Cache Interface

* * := Power Management

. = A20 Mask

~ A23-A!

ADS#

BHE#

BLE#

IA ~ IV -v
D1S-DO

D/C#

HLDA

LOCK#

M1IO#

* RPLSET

* RPLVAL#

** SUSPA#

WIR#

170030:)

Figure 1 .1. Cx486SLC Input and Output Signals

PRELIMINARY '·3

CYRIX Cx486SLC'" MICROPROCESSOR
High-Performance 4S6-Class CPU with
Single-Cycle Execution and On-Chip Cache

2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the
Cx486SLC are described mainly from an applica

. tion programmer's point of view. Included in this
chapter are desCriptions of processor initializa
tion, the register set, memory addressing, various
types of interrupts and the shutdown and halt
process. Also included is an overview of real,
virtual 8086, and protected operating modes.

2.1 PTocessor
Initialization

The Cx486SLC is initialized when the RESET
signal is asserted. The processor is placed in real
mode and the registers listed in Table 2-1 are set
to their initialized values. RESET invalidates and
disables the Cx486SLC cache, and turns off

paging. When RESET is asserted, the Cx486SLC
terminates all local bus activity and all internal
execution. During the entire time.that RESET is
asserted, the internal pipeline is flushed and no
instruction execution or bus activity occurs .

Approximately 350 to 450 CLK2 clock cycles
(additional 220 + 60 if self-test is requested) after
deassertion of RESET, the processor begins
executing instructions at the top of physical
memory (address location FF FFFOh). When the
first inter segment JUMP or CALL is executed,
address lines A23-A20 are driven low for code
segment-relative memory access cycles. While
A23-A20 are low, the Cx486SLC will execute
instructions only in the lowest 1MByte of physical
address space until system-specific initialization
occurs via program execution.

PRELIMINARY 2·'

Processor Initialization

Table 2-1. Initialized Register Contents

register register name initialized contents comments

EAX Accumulator xxxxxxxxh 0000 OOaOh indicates self-test

passed.

EBX Base xxxxxxxxh

ECX Count xxxx xxxxh

EDX Data xxxx 0400 + Revision ID Revision ID = lOh.

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 00000002h

EIP Instruction Pointer 0000 FFFOh

ES Extra Segment OOOOh Base addtess set to 0000 OOOOh.

Limit set to FFFFh.

CS Code Segment FOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

SS Stack Segment OOOOh

OS Data Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

FS Extra Segment OOOOh

GS Extra Segment OOOOh

IDTR Interrupt Descriptor Table Base = 0, Limit = 3FFh

Register

CRO Machine Status Word 600000l0h

CCRO Configuration Control 0 OOh

CCRI Configuration Control 1 xxxx xxxO (binal)')

NCRI Non-Cacheable Region 1 OOOFh 4 GByte non-cacheable region.

NCR2 Non-Cacheable Region 2 OOOOh

NCRJ Non-Cacheable Region 3 OOOOh

NCR4 Non-Cacheable Region 4 OOOOh

DR7 Debug Register DR7 OOOOOOOOh

Note: X = Undefined value

2-2 PRELIMINART

2.2 Instruction 5e. Overview
The Cx486SLC instruction set can be divided into
eight types of operations:

Arithmetic
Bit Manipulation
Control Transfer
Data Transfer
High-Level Language Support
Operating System Support
ShiftIRotate
String Manipulation

All Cx486SLC instructions operate on as few as 0
operands and as many as 3 operands. A NOP
instruction (no operation) is an example of a 0
operand instruction. Two operand instructions
allow the specification of an explicit source and
destination pair as part of the instruction. These
two operand instructions can be divided into
eight groups according to operand types:

Register to Register
Register to Memory
Memory to Register
Memory to Memory
Register to VO
VO to Register
Immediate Data to Register
Immediate Data to Memory

An operand can be held in the instruction itself
(as in the case of an immediate operand), ina
register, or in an VO port or in memory. An
immediate operand is prefetched as part of the
opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup
ported. Operand lengths of 8 or 32 bits are
generally used when executing code written for

Instruction Set Overview 2

386- or 486-class (32-bit code) processors.
Operand lengths of 8 or 16 bits are generally
used when executing existing 8086 or 80286 code
(l6-bit code). The default length of an operand
can be overridden by placing one or more
instruction prefixes in front of the opcode. For
example, by using prefixes, a 32-bit operand can
be used with 16-bit code or a 16-bit operand can
be used with 32-bit code.

Chapter 6 of this manual lists each instruction in
the Cx486SLC instruction set along with the
associated opcades, execution clock counts and
effects on the FLAGS register.

2.2.1 Lock Prefix
The LOCK prefix may be placed before certain
instructions that read, modify, then write back to
memory. The prefix asserts the LOCK# signal to
indicate to the external hardware that the CPU is
in the process of running multiple indivisible
memory accesses. The LOCK prefix can be used
with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and Logical

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical

Instructions (ADC, ADD, AND, OR, SBB,
SUB,XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction,
or with the above instructions when no write
operation to memory occurs (i. e., the destination
is a register).

PRELIMINARY

,"

Cr.t~- Register Set

2.3 Register Set

There are 43 accessible registers in the Cx486SLC
and these registers are grouped into two sets.
The application register set contains the registers
frequently used by application programmers, and the
system register set contains the registers typically
reserved for use by operating systems programmers.

The application register set is made up of:

Eight 32-bit general purpose registers.
Six 16-bit segment registers.
One 32-bit flag register.
One 32-bit instruction pointer register.

The system register set is made up of the remain
ing registers which include:

Three 32-bit control registers.
Two 48-bit and two 16-bit system address

registers.
Six 32-bit debug registers.
Two 8-bit and four 16-bit configuration

registers.
Five 32-bit test registers.

Each of the registers is discussed in detail in the
following sections.

2.3. 'I Application Register Set

The application register set (Figure 2-1) consists
of the registers most often used by the applica
tions programmer. These registers are generally
accessible and are not protected from read or
write access.

The General Purpose Registers contents are
frequently modified by assembly language
instructions and typically contain arithmetic and
lOgical instruction operands.

The Segment Registers contain segment selec
tors, which index into tables located in memory.
These tables hold the base address for each
segment, as well as other information related to
memory addressing.

The Flag Register contains control bits used to

reflect the status of previously executed instruc
tions. This register also contains control bits that
effect the operation of some instructions.

The Instruction Pointer is a 32-bit register that
points to the next instruction that the processor will
execute. This register is automatically incremented
by the processor as execution progresses.

2.3.1.1 GeneraiPu~se
Registers

The general purpose registers are divided into
four data registers, two pointer registers, and two
index registers as shown in Figure 2-2.

Data Registers

The data registers are used by the applications
programmer to manipulate data structures and to
hold the results of logical and arithmetic opera
tions. Different portions of the general data
registers can be addressed by using different
names. An "E" prefix identifies the complete 32-
bit register. An "X" suffix without the "E" prefix
identifies the lower 16 bits of the register. The
lower two bytes of the register can be addressed
with an "H" suffix to identify the upper byte or an
"L" suffix to identify the lower byte. When a
source operand value specified by an instruction
is smaller than the specified destination register,
the upper bytes of the destination register are not
affected when the operand is written to the register.

2·4 PRELIMINARY

Register Set 2

31 1615 B7 o
f- - AIi- --'ix- -AL- EAX

I- - BH - --4X- -BL- EBX

I--m - ~X--CL--
I- - i5H - 4X- -DL - -

51
D!

ECX
EDX General

ESI
Purpose

ED!
Registers

BP EBP
SP ESP

15 0
CS

55
DS Segment
ES Registers

FS

GS

31 1615 0

I
ErP]

Instruction

EFLAGS
Pointer and
Registers

IP
FLAGS

1700400

Figure 2·1. Application Register Set

Pointer and Index Registers registers, however, some instructions use a fixed
assignment of these registers. For example, the
string operations always use ESI as the source
pointer, EDI as the destination pointer, and ECX
as a counter. The instructions using fixed regis
ters include double-precision multiply and
divide, I/O access, string operations, translate,
loop, variable shift and rotate, and stack opera
tions.

The pointer and index registers are listed below:

BP orEBP
SlorESI
DI orEDI
SP or ESP

Base Pointer
Source Index
Destination Index
Stack Pointer

These registers can be addressed as 16- or 32-bit
registers, with the "E" prefIx indicating 32 bits.
These registers can be used as general purpose

The Cx486SLC processor implements a stack
using the ESP register. This stack is accessed

PRELIMINARY 2·5

On-txrn 7kJva~ing the standards

Register Set

during the PUSH and POP instructions, proce
dure calls, procedure returns, interrupts, excep
~ions, and interrupt/exception returns. The
microprocessor automatically adjusts the value of
the ESP during operation of these instructions.

The EBPregister may be used to reference data
passed on the stack during procedure calls. local
data may also be placed on the stack and referenced
relative to BP. This register provides a mecha
nism to access stack data in high-level languages.

Data Registers

31 1615 87 0
1..-------.-------.1 -------,1-------.,1 A (Accumulator)

B (Base)

C (Count)

1 liD (Data)

L-~
_H L

L-----~v~----~

_X

L-----------~v~------------~

E_X

Pointer and Index Registers

BP (Base-Pointer)

SI (Source-Index)

DI (Destination-Index)

SP (Stack-Pointer)

L-----~v~-------'

L-----------~v------~----~

E __
1700600

Figure 2·2. General Purpose Registers

2·6 PRELIMINARY

2.3.1.2 Segment Registers and
Selectors

Segmentation provides a means of defIning data
structures inside the memory space of the micro
processor. There are three basic types of seg
ments: code, data, and stack. Segments are used
automatically by the processor to determine the
location in memory of code, data, and stack
references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment

In real and virtual 8086 operating modes, a
segment register holds a 16-bit segment base.
The 16-bit segment base is multiplied by 16 and a
16-bit or 32-bit offset is then added to it to create
a linear'address. The offset size is dependent on
the current address size. In real mode and in
virtual 8086 mode with paging disabled, the
linear address is also the physical address. In
virtual 8086 mode with paging enabled, the

. 15

INDEX

II = Table Indicator
RPL = Requested Privilege Level

Register Set 2

linear address is translated to the physical address
using the current page tables.

In protected mode, a segment register holds a
segment selector containing a 13-bit index, a table
indicator (TO bit, and a two-bit requested privi
lege level (RPL) fIeld as shown in Figure 2-3.

The Index points into a deSCriptor table in
memory and selects one of 8192 (213) segment
descriptors contained in the desCriptor table. A
segment desCriptor is an eight -byte value used to
describe a memory segment by defIning the
segment base, the segment limit, and access
control information. To address data within a
segment, a 16-bit or 32-bit offset is added to the
segment's base address. Once a segment selector
has been loaded into a segment register, an .
instruction needs to specify the offset only.

The Table Indicator (TO bit of the selector,
defInes which deSCriptor table the index points
into. If TI=O, the index references the Global

. Descriptor Table (GDT). IfTI=1, the index
references the Local Descriptor Table (LDT). The
GDT and LDT are described in more detail later .
in this chapter.

3 2 0

170=

Figure 2-3. Segment Selector

PRELIMINARY

On-txrn 7~ing the Standards

Register Set

The Requested Privilege Level (RPL) field
contains a 2-bit segment privilege level (OO=most
privileged, 11= least privileged). The RPL bits are
used when the segment register is loaded to
determine the effective privilege level (EPL). If
the RPL bits indicate less privilege than the
program, the RPL overrides the current privilege
level and the EPL is the lower privilege level. If
the RPL bits indicate more privilege than the
program, the current privilege level overrides the
RPL and again the EPL is the lower privilege level.

When a segment register is loaded with a seg
ment selector, the segment base, segment limit
and access rights are also loaded from the de
scriptor table into a user-invisible or hidden
portion of the segment register, i.e., cached on
chip. The CPU does not access the deSCriptor

table again until another segment register load
occurs. If the descriptor tables are modified in
memory, the segment registers must be reloaded
with the new selector values. .

The processor automatically selects a default
segment register for memory references. Table 2-2
describes the selection rules. In general, data
references use the selector contained in the DS
register, stack references use the SS register and
instruction fetches use the CS register. While
some of these selections may be overridden,
instruction fetches, stack operations, and the
destination write of string operations cannot be
overridden. Special segment override prefixes allow
the use of alternate segment registers including
the use of the ES, FS, and GS segment registers.

Table 2·2. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE IMPLIED (DEFAULT) SEGMENT OVERRIDE PREFIX
SEGMENT

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL, 55 None

PUSHA instructions

Source of POP, POPA, POPF, IRET, 55 None.

RET instuctions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS instructions

Other data references with effective

address using base regesters of:

EAX, EBX, ECX, DS CS, ES, FS, GS, 55

EDX, ESI, ED!

EBP,ESP 55 CS, DS, ES, FS, GS

2·8 PRELIMINARY

Register Set 2

2.3.1.3 Instruction Pointer 2.3.1.4 Flags Register
Register

The Instruction Pointer (EIP) register contains the
offset into the current code segment of the next
instruction to be executed. The register is nor
mally incremented with each instruction execu
tion unless implicidy modified through an inter
rupt, exception or an instruction that changes the
sequential execution flow (e.g., jump, call).

The Flags Register, EFlAGS, contains status
information and controls certain operations on
the Cx486SLC microprocessor. The lower 16 bits
of this register are referred to as the FlAGS
register that is used when executing 8086 or
80286 code. The flag bits are shown in

3
1

I 0 0 0 0

Figure 2-4 and defined in Table 2-3.

FLAGS

2 2
4 3

~ __________ ~A~ ____________ ~
1 1 1 1 /1 1 1 1 1 \
98765432 09876543210

0000000 0 01~1~1~101~1 f,~ 1i?IFI~I~I¥I~lol~lol~lll~1
ALIGNMENT CHECK - SI~

VIRTUAL 8086 MODE - S
RESUME FLAG - D

NESTED TASK FLAG - S
I/O PRIVILEGE LEVEL - S

OVERFLOW-A
DIRECTION FLAG - C

INTERRUPT ENABLE - S
TRAPFLAG-D
SIGN FLAG-A
ZERO FLAG-A

AUXILIARY CARRY - S
PARITY FLAG - A
CARRY FLAG - A

A = ARITHMETIC FLAG, D = DEBUG FLAG, S = SYSTEM FLAG, C = CONTROL FLAG
o OR 1 INDICATES RESERVED 1701101

Figure 2·4. EFLAGS Register

PRELIMINARY

Register Set

Table 2.3. EFLAGS Bit Definitions

BIT NAME FUNCTION
POSITION

0 CF Carry Flag: Set when a carry (additon) or borrow (subtraction) out of or into the most

significant bit of the result occurs; cleared otherwise

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;

cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry (addition) or borrow (subtraction) out of or into

bit position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction

completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowl-

edged and serviced by the CPU.

10 DF Direction Flag: When cleared, DF causes string instructions to auto-increment (default)

the appropriate index registers (ESI and/or EDl). Setting DF causes auto-decrement of the

index registers to occur.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the

result but did not result in a carry or borrow out of the high-order bit. Also set if the

operation resulted in a carry or borrow out of the high-order bit but did not result in a

carry or borrow into the sign bit of the result.

12,13 IOPL 110 Privilege Level: While executing in protected mode, IOPL indicates the maximum

current privilege level (CPL) permitted to execute 110 instructions without generating an

exception 13 fault or consulting the 110 permission bit map. IOPL also indicates the

maximum CPL allowing alteration of the IF bit when new values are popped into the

EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution of the

current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpOints. RF is checked at

instruction boundaries before breakpoint exception processing. If set, any debug fault is

ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to

virtual 8086 operation handling segment loads as the 8086 does, but generating excep-

tion 13 faults on privileged opcodes. The VM bit can be set by the IRET instruction (if

current privilege level=O) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CRO, the AC flag deter-

mines whether or not misaligned accesses to memory cause a fault. If AC is set, align-

ment faults are enabled.

2.10 ' PRELIMINARY

2.3.2 System Register Set
The system register set (Figure 2-5) consists of
registers not generally used by application pro
grammers. These registers are typically employed
by system level programmers who generate
operating systems and memory management
programs.

The Control Registers control certain aspects of
the Cx486SLC microprocessor such as paging,
coprocessor functions, and segment protection.
When a paging exception occurs while paging is
enabled, the control registers retain the linear
address of the access that caused the exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system address
or memory management registers. These regis
ters consist of two 48-bit and two 16-bit registers.
These registers specify the location of the data
structures that control the segmentation used by
the Cx486SLC microprocessor. Segmentation is
one available method of memory management.

Register Set 2

The Configuration Registers are used to control
the Cx486SLC on-chip cache operation and
power management features. The cache and
power management features can be enabled or
disabled by writing to these registers. Non
cacheable areas of physical memory are also
defined through the use of these registers.

The Debug Registers provide debUgging facili
ties for the Cx486SLC microprocessor and enable
the use of data access breakpoints and code
execution breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 1 KByte cache
and the translation lookaside buffer (TLB). The
TLB is used as a cache for translating linear
addresses to physical addresses when paging is
enabled. In the following sections, the system
register set is described in greater detail.

PRELIMINARY 2·11

Register Set

31 1615 a

I I
Page Fault Linear Address Register I

Page Directory Base Register I

47 1615 a

I Base Limit

I Base Limit
Selector
Selector

31 a
Linear Breakpoint Address a
Linear Breakpoint Address 1
Linear' Breakpoint Address 2
Linear Breakpoint Address 3

Breakpoint Status
Breakpoint Control

7 o
I CCRa

15 I CCRI
Non-Cacheable Region 1
Non-Cacheable Region 2
N on-Cacheable Region 3
Non-Cacheable Region 4

31 a
Cache Test
Cache Test
Cache Test

Test Control
Test Status

CCRa = Configuration Control a
CCRI = Configuration Control L

Figure 2·5. System Register Set

2·12 PRELIMINARY

CRa

CRl
CR3

GDTR
IDTR
LDTR

TR

DRa
DRI
DR2
DR3
DR6
DR7

CCRa
CCRI

]
]

I

Control
Registers

Descripter
Table
Registers

Task Register

Debug
Registers

NCR 1 Configuration
NCR2 Registers
NCR3
NCR4

~
TR3

TR4 Test
TR5 Registers
TR6
TR7

1700501

2.3.2.1 Control Registers
The control registers, CRG through CR3, are
shown in Figure 2-6. The CRG register contains
system control flags which control operating
modes and indicate the general state of the CPU.
The lower 16 bits of CRG are referred to as the
machine status word (MSW). The CRG bit
definitions are described in Table 2-4. The
reserved bits in the CRG should not be modified.

When paging is enabled and a page fault is
generated, the CR2 register retains the 32-bit

31

Register Set 2

linear address of the address that caused the fault.
CR3 contains the 2G-bit base address of the page
directory. The page directory must always be
aligned to a 4 KByte page boundary, therefore,
the lower 12 bits of CR3 should always be equal
to zero.

When operating in protected mode, any program
can read the control registers. However, only
privilege level G (most privileged) programs can
modifY the contents of these registers.

12 11 °
PAGE DIRECTORY BASE REGISTER (PDBR) CR3

PAGE FAULT LINEAR ADDRESS CR2

P P
CRO

G E

3 2 1 ~ \ 5 4 2 0/
1 9 8 V

t,;I= RESERVED MSW 1700701

Figure 2·6. Control Registers

PRELIMINARY 2·13

Register Set

Table 2·4. eRO Bit Definitions

BIT NAME FUNCTION
POSITION

0 PE Protected Mode Enable: Enables the segment based protection mechanism. If PE=I,

protected mode is enabled. If PE=O, the CPU operates in real mode, with segment based

protection disabled, and addresses are formed as in an 8086-class CPU.

1 MP Monitor Processor Extension: If MP= 1 and TS= 1, aWAIT instruction causes fault 7. The

TS bit is set to 1 on task switches by the cpu. Floating point instructions are not affected

by the state of the MP bit. The MP bit should be set to one during normal operations.

2 EM Emulate Processor Extension: If EM= 1, all floating point instructions cause a fault 7.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a

floating point instruction with TS=1 causes a device not available (DNA) fault. If MP=1

and TS=I, a WAIT instruction also causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 0 Reserved: Do not attempt to modify.

16 WP Write Protect: Protects read-only pages from supervisor write access. The 386-type CPU

allows a read-only page to be written from privilege level 0-2. The Cx486SLC CPU is

compatible with the 386-type CPU when wp=o. WP=1 forces a faulton a write to a

read-only page from any privilege level.

18 AM Alignment Check Mask: If AM=I, the AC bit in the EFLAGS register is unmasked and.

allowed to enable alignment check faults. Setting AM=O prevents AC faults from occur-

ring.

29 0 Reserved: Do not attempt to modify.

30 CD Cache Disable: If CD=I, no further cache fills occur. However, data already present in

the cache continues to be used if the requested address hits in the cache. The cache must

also be invalidated to completely disable any cache activity.

31 PG Paging Enable Bit: If PG=1 and protected mode is enabled (PE=I), paging is enabled.

2·14 PRELIMINARY

2.3.2.2 Descriptor Table
Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt and Local Descriptor Table
Registers (GDTR, IDTR and LDTR), shown in
Figure 2-7, are used to specify the location of the
data structures that control segmented memory

48

BASE ADDRESS

BASE ADDRESS

170=

Register Set 2

management. The GDTR, IDTR and LDTR are
loaded using the LGDT, LlDT and LLDT instruc
tions, respectively. The values of these registers
are stored using the corresponding storeinstruc
tions. The GDTR and IDTR load instructions are
privileged instructions when operating in pro
tected mode. The LDTR can only be accessed in
protected mode.

16 15 o

LIMIT GDTR

LIMIT IDTR

SELECTOR LDTR

Figure 2-7. Descriptor Table RegisterS

The Global Descriptor Table Register (GDTR)
holds a 32-bit base address and 16-bit limit for
the Global Descriptor Table (GDT). The GDT is
an array of up to 8192 8-byte descriptors. When
a segment register is loaded from memory, the TI
bit in the segment selector chooses either the
GDT or the local descriptor table (LDT) to locate
a desCriptor. The index portion of the selector is
used to locate a given desCriptor within the
descriptor table. The contents of the GDTR are
completely visible to the programmer. The first
descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the "null descrip
tor". If the GDTR is loaded while operating in 16-
bit operand mode, the Cx486SLC accesses a 32-
bit base value but the upper 8 bits are ignored
result~ng in a 24-bit base address.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit base address and 16-bit
limit for the Interrupt Descriptor Table (IDT).
The IDT is an array of 256 8-byte interrupt
descriptors, each of which is used to point to an
interrupt service routine. Every interrupt that
may occur in the system must have an associated
entry in the IDT. The contents of the IDTR are
completely visible to the programmer.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte descriptors. When the LDTR is loaded,
the LDTR selector field indexes an LDT descrip
tor that must reside in the global descriptor table
(GDT). The contents of the selected descriptor

PRELIMINARY 2-15

CVlltx~
"'/!d.o~ing the Standards

Register Set

are cached on-chip in the hidden portion of the
LDTR. The CPU does not access the GDT again
until fue LDTR is reloaded. If the LDT descrip
tion is modified in memory in the GDT, the
LDTR must be reloaded to update the hidden
portion of the LDTR.

When a segment register is loaded from memory,
the II bit in the segment selector chooses either
the GDT or the LDT to locate a segment descrip
tor. If TI = 1, the index portion of the selector is
used to locate a given desCriptor within the LDT.
Each task in the system may be given its own

. LDT, managed by the operating system. The
LDTs provide a method of isolating a given task's
segments from other tasks in the system.

Descriptors

Descriptors are divided into three types. Appli
cation Segment Descriptors are used to define
code, data and stack segments. System Segment
Descriptors define an LDT segment or a TSS.
Gate Descriptors defme task gates, interrupt
gates, trap gates and call gates.

Application Segment Descriptors can be located
in either the LDT or GDT. System Segment
Descriptors can only be located in the GDT.
Dependent on the gate type, gate descriptors may
be located in either the GDT, LDT or IDT. Figure
2-8 illustrates the descriptor format for both
Application Segment Descriptors and System
Segment Descriptors and Table 2-5 lists the
corresponding bit definitions.

31 24 23 22 21 20 19 16 15 14 13 12 11 87 o
BASE 31-24 I G I D I 0 I r I LIMIT 19-16 P I DPL I ~ I TYPE I BASE 23-16 +4

BASE 15-0 LIMIT 15-0 +0

1707800

Figure 2-8. Application and System Segment Descriptors

2·16 PRELIMINARY

Register Set 2

Table 2-5. Segment Descriptor Bit Definitions

BIT MEMORY NAME DESCRIPTION
POSITION OFFSET

31-24 +4 BASE Segment base address.

7-0 +4 32-bit linear address that points to the beginning of the segment.

31-16 +0

19-16 +4 LIMIT Segment limit. In real mode, segment limit is always 64 KBytes

15-0 +0 (OFFFFh).

23 +4 G Limit granularity bit:

o = byte granulairty, 1 = 4 KBytes (page) granularity.

22 +4 D Default length for operands and effective addresses.

Valid for code and stack segments only: 0= 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

12 +4 DT Descriptor type:

o = system, 1 = application.

ll-8 +4 TYPE Segment type.

System descriptor (DT = 0):
0010 = LDT deSCriptor.
1001 = TSS descriptor, task not busy.
lOll = TSS deSCriptor, task busy.

Application descriptor (DT = 1):
II E o = data, 1 = executable.

10 CJD If E = 0:
o = expand up, limit is upper bound of segment.
1 = expand down, limit is lower bound of segment.

If E = 1:
o = non-conforming.
1 = conforming (runs at privilege level of calling procedure).

9 R!W If E = 0:
o = non-readable.
1 = readable.

If E = 1:
o = non-writable.
1 = writable.

8 A o = not accessed, 1 ,,; accessed.

PRELIMINARY 2-17

CVlltx~ 7~ing the standards

Register Set

Gate Descriptors provide protection for execut
able segments operating at different privilege
levels. Figure 2-9 illustrates the format for Gate
Descriptors and Table 2-6 lists the corresponding
bit definitions.

Interrupt Gate descriptors are used to enter a
hardware interrupt service routine. Trap Gate
desCriptors are used to enter exceptions or
software interrupt service routines. Trap Gate
and Interrupt Gate descriptors can only be
located in the !DT.

Task Gate descriptors are used to switch the
CPU's context during a task switch. The selector
portion of the Task Gate desCriptor locates a Task
State Segment. Task Gate descriptors can be
located in the GDT, LDT or !DT.

Call Gate descriptors are used to enter a proce
dure (subroutine) that executes at the same or a
more privileged level. A Call Gate descriptor
primarily defines the procedure entry point and
the procedure's privilege level.

31 16 15 14 13 12 11 8 7 o

OFFSET 31-16 PIDPLlol TYPE I 0 I 0 I 0 I PARAMETERS +4

SELECTOR 15-0 OFFSET 15-0

1707900

Figure 2·9. Gate Descriptor

Table 2·6. Gate Descriptor Bit Definitions

BIT MEMORY NAME DESCRIPTION
POSITION OFFSET

31-16 +4 OFFSET Offset used during a call gate to calculate the branch target.

15-0 +0

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

11-8 +4 TYPE Segment type:

0100 = 16-bit call gate

0101 = tack gate

0110 = 16-bit interrupt gate

01ll = 16-bit trap gate

1100 = 32-bit call gate

1110 = 32-bit interrupt gate

llll = 32-bit trap gate

4-0 +4 Parameters Number of 32-bit parameters to copy from the caller's stack to the called

procedure's stack.

PRELIMINARY

2.3.2.3 Task Register

The Task Register (TR) holds a 16-bit selector
for the current Task State Segment (TSS) table
as shown in Figure 2-10. The TR is loaded and

15

Register Set 2

stored via the LTR and STR instructions, respec
tively. The TR can only be accessed during
protected mode and can only be loaded when the
privilege level is 0 (most privileged).

o

SELECTOR

1708100

Figure 2·' O. Task Register

PRELIMINARY 2·19

Register Set

When the TR is loaded, the TR selector field
indexes a TSS descriptor that must reside in the
global descriptor table (GDT). The contents of
the selected descriptor are cached on-chip in the
hidden portion of the TR.

new task. The TR points to the current TSS. The
TSS can be either a 286-type 16-bit TSS or a 386/
486-type 32-bit TSS as shown in Figures 2-11A
and 2-1 lB. An 110 permission bit map is referenced
in the 32-bit TSS by the 110 Map Base Address.

During task Switching, the processor saves the
current CPU state in the TSS before starting a

31 16 15
I/O MAP BASE ADDRESS 0000000000000001 T

000 0 0 0 0 0 0 0 0 0 0 0 0 0 SELECTOR FOR TASK'S LDT
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GS
000 0 0 0 0 0 0 0 0 0 0 0 0 0 FS
o 0 0 0 0 0 0 0 0 0 0 000 0 0 DS
000 0 0 0 0 0 0 0 0 0 0 0 0 0 55
000 0 0 0 0 0 0 0 0 0 0 0 0 0 CS
000 0 0 0 0 0 0 0 0 0 0 0 0 0 ES

ED!
ESI
EBP
ESP
EBX
EDX
ECX
EAX

EFLAG5
EIP
CRJ

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o-r SS for CPL= 2
ESP for CPL = 2

o 0 0 0 0 0 0 000 0 0 0 0 0 0 1 55 for CPL=l
ESP for CPL = 1

00000000000000001 S5 for CPL= 0
ESP for CPL = 0

00000000000000001 BACK LINK (OLD T5S SELECTOR)

o = RESERVED.

Figure 2· 1 1 A. 32·Bit Task Slate Segment (TSS) Table

2·20 PRELIMINARY

o
+64h
+60h
+SCh
+S8h
+S4h
+sOh
+4Ch
+48h
+44h
+40h
+3Ch
+38h
+34h
+30h
+2Ch
+28h
+24h
+20h
+ICh
+18h
+14h
+10h
+Ch
+8h
+4h
+Oh

1708200

Register Set 2

SELECTOR FOR TASK'S LDT +2Ah

I DS +28h

I SS +26h

,CS +24h

ES +22h

DI +20h .
SI +lEh

BP +16h

SP +IAh

BX +18h

DX +16h

ex +14h

AX +12h

FLAGS +10h

IP +Eh

i SP FOR PRIVILEGE LEVEL 2 +Ch

SS FOR PRIVILEGE LEVEL 2 +Ah

SP FOR PRIVILEGE LEVEL 1 +8h

SS FOR PRIVILEGE LEVEL 1 +6h

SP FOR PRIVILEGE LEVEL 0 +4h

55 FOR PRIVILEGE LEVEL 0 +2h

BACK LINK (OLD TSS SELECTOR) +Oh
1708800

Figure 2-11 B. 1 6-Bit Task State Segment (TSS) Table

PRELIMINARY 2·21

Register Set

2.3.2.4 Configuration Registers

The Cx486SLC provides six internal registers
used to configure the internal cache and to
enable or disable cache control and power
management pins. These registers do not exist
on any 80X86 microprocessors. Four of the
registers are dedicated to defining non-cacheable
areas of memory and the remaining two registers
are used for Cx486SLC cache control and power
management control as shown in Table 2-7.

Access to the Configuration Registers is achieved
by writing the address (referred to as the index)

of the register to I/O port 22h. I/O port 23h is
then accessed to read or write data from or to the
configuration register. Accesses to the on-chip
configuration registers do not generate external I/O
bus cycles. However, each I/O port 23h opera
tion must be preceded by an I/O port 22h opera
tion, otherwise the second and later I/O port 23h
operations are directed off-chip and produce
external I/O bus cycles. Accesses to I/O port 22h
with an index outside of the CO-CFh range also
result in external I/O cycles and do not effect the
on-chip configuration registers.

Table 2·7. Configuration Registers Index Assignments

REGISTER NAME REGISTER INDEX NUMBER OF BITS IN REGISTER

CCRa cah 8

Configuration Control a

CCR1 C1h 8

Configuration Control 1

Reserved C2h - C4h 24

NCR1 C5h- C6h 16

Non-Cacheable Region 1

Reserved Clh 8

NCR2 C8h - C9h 16

Non-Cacheable Region 2

Reserved CAh 8

NCRJ CBh - CCh 16

Non-Cacheable Region 3

Reserved CDh 8

NCR4 CEh- CFh 16

Non-Cacheable Region 4

2·22 PRELIMINARY

Register Set 2

Bit assignments for the configuration registers are
listed in Table 2-8. The non-cacheable regions
are defined by a starting address and a block size.
The non-cacheable region block size ranges from
4 KByte to 4 GByte as shown in Table 2-8A. The
starting address of the non-cacheable region is
restricted to block size boundary alignment. For

example, a 128 KByte non-cacheable block is
allowed to have a starting address of a KB, 128
KB, 256 KB, etc. This relationship between block
size and starting address is true for all block sizes
except 4 GBytes. When the block size is set to 4
GBytes, all physical memory is non-cacheable
regardless of the setting of the starting address.

Table 2·8. Configuration Registers Bi. Assignments

REGISTER REGISTER BITS DESCRIPTION
NAME INDEX

Configuration Control COh 0 NCO: If = 1, sets the first 64 KBytes at each 1 MByte boundary as

(CCRO) non-cacheable, when operating in real or virtual SOS6 mode.

1 NCl: If = 1, sets 640 KBytes to 1 MByte region as non-cacheable.

2 A20M: If = 1, enables A20M# input pin.

3 KEN: If = 1, enables KEN# input pin.

4 FLUSH: If = 1, enables FLUSH# input pin.

S BARB: If = 1, enables flushing of internal cache when hold state is
entered.

6 co: Selects cache organization:
o = 2-way set associative
1 = direct-mapped

7 SUSPEND: If = 1, enables SUSP# input and SUSPA# output pins.

If = 0, output SUSPA# floats.

Configuration Control Clh 0 RPL: If = 1, enables output pins RPLSET and RPLVAL#.
(CCRU If = 0 outputs RPLSET and RPL VAL# float.

7-1 Reserved.
Non-Cacheable CSh 7-0 Address bits An - A16 of Region 1 starting address.
Region 1

C6h 7-4 Address bits AIS - A12 of Region 1 starting address.

3-0 Region 1 Block Size (Table 2 -SA).
Non-Cacheable CSh 7-0 Address bits A23 - A16 of Region 2 starting address.
Region 2

C9h 7-4 Address bits AIS - A12 of Region 2 startinK address.

3-0 Region 2 Block Size (Table 2-SA).
Non-Cacheable CBh 7-0 Address bits A23 - A16 of Region 3 starting address.
Region 3

CCh 7-4 Address bits A15 - A12 of Region 3 starting address.

3-0 Region 3 Block Size (Table 2-SA).
Non-Cacheable CEh 7-0 Address bits A23 - A16 of Region 4 starting address.
Region 4

CFh 7-4 Address bits AIS - A12 of Region 4 starting address.

3-0 Region 4 Block Size (Table 2-SAl.

Note: All bits are cleared to 0 at reset, except C6h. C6h defaults to OFh to set the first nan-cacheable region size = 4 GBytes.

PRELIMINARY 2·23

Register Set

Table 2-8A. Non·Cacheable Regions Block Size Field

BITS 3-0 BLOCK SIZE BITS 3-0 BLOCK SIZE

Oh Disabled 8h 512 KBytes

1h 4 KBytes 9h 1 MBytes

2h 8 KBytes Ah 2 MBytes

3h 16 KBytes Bh 4 MBytes

4h 32 KBytes Ch 8 MBytes

5h 64 KBytes Dh 16 MBytes

6h 128 KBytes Eh 32 MBytes

7h 256 KBytes Fh 4 GBytes

2.3.2.5 Debug Registers memory access such as a read or a write. Code
and data breakpoints can also be set allowing
debug exceptions to occur whenever a given data
access (read or write) or code access (execute)
occurs. The size of the debug target can be set to
I-byte, 2-bytes, or 4-bytes. The debug registers are
accessed via MOY instructions which can be
executed only at privilege level O.

Six debug registers (DRO-DRJ, DR6 and DR7),
shown in Figure' 2-12, support debugging on the
Cx486SLC. Memory addresses loaded in the
debug registers, referred to as "breakpoints",
generate a debug exception when a memory access
of the specified type occurs to the specified address.
A breakpoint can be specified for a particular kind of

2 2 2 2 3 3
) 0 6 5 4 3

1 1 1 1 1 1 1
8765432 9876543210

LEN I MV I LEN I MV I LEN I MV I LEN I MV G oooIGI~I~ILIGIL G L G L
33221100

o 0
D EE3322)) 0 0

o 0 0 0 0 o 0 o 0 0 0 o 0 o 0 0 BIB T 5
) o 1 1 1)))))

B B B B
3 2) 0

RESERVED

RESERVED

BREAKPOINT 3 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

I
BREAKPOINT 1 LINEAR ADDRESS

I BREAKPOINT 0 LINEAR ADDRESS

ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED.

Figure 2-1 2. Debug Registers

2-24 PRELIMINARY

DR7

DR6

DRS

DR4

DR3

DRl

DR)

DRO

, Register Set 2

The debug address registers DRO - DR3 each
contain the linear address for one of four possible
breakpoints. Each breakpoint is further specified
by bits in the debug control register (DR?). For
each breakpoint address in DRO-DR3, there are
corresponding fields L, RIW, and LEN in DR?
that specify the type of memory access associated
with the breakpoint. The RIW field can be used
to specify execution as well as data access
breakpoints. Instruction execution and data access

breakpoints are always taken before execution of
the instruction that matches the breakpoint.

The debug status register (DR6) reflects condi
tions that were in effect a~ the time the debug
exception occurred. The contents of [he DR6
register are not automatically cleared by the .
processor after a debug exception occurs and,
therefore, should be cleared by software at the
appropriate time. Table 2-8 lists the bit defini
tions for the DR6 and DR? registers.

Table 2·9. DR6 CIIneil DIU' Fielell Definitions

REGISTER FIELD NUMBER OF BITS DESCRIPTION

DR? RlWi 2 Applies to the DRi breakpoint address register:

00 - Break on instruction execution only.

01 - Break on data writes only.

10 - Not used.

11 - Break on data reads or writes.

LENi 2 Applies to the DRi breakpoint address register:

00 - One byte length.

01 - Two byte length.

10 - Not used.

II - Four byte length.

Gi 1 If set to aI, breakpoint in DRi is globally enabled for all tasks

and is not cleared by the processor as the result of a task switch.

Li 1 If set to aI, breakpoint in DRi is locally enabled for the current

task and is cleared by the processor as the result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared

whenever a debug exception occurs.

DR6 Bi 1 Bi is set by the processor if the conditions described by DRi,

RlWi, and LENi occurred when the debug exception occurred,

even if the breakpoint is not enabled via the Gi or Li bits.

BT 1 BT is set by the processor before entering the debug handler if a

task switch has occurred to a task with the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered

by the single-step execution mode (TF flag in EFLAGS set).

PRELIMINARY 2·25

Register Set

Code execution breakpoints may also be gener
ated by placing the breakpoint instruction (INT
3) at the location where control is to be regained.
The single-step feature may be enabled by setting
the TF flag in the EFLAGS register. This causes
the processor to perform a debug exception after
the execution of every instruction.

2.3.2.6 Test Registers
The five test registers, shown in Figure 2-13, are
used in testing the CPU's translation look-aside
buffer (TLB) and on-chip cache. TR6 and TR7
are used for TLB testing, and TR3-TRS and used
for cache testing.

TLB Test Registers

The Cx486SLC TLB is a four-way set associative
memory with eight entries per set. Each TLB entry
consists of a 24-bit tag and 20-bit data. The 24-bit tag
represents the high-order 20 bits of the linear address,

TLB PHYSICAL ADDRESS

31

a valid bit, and three attribute bits. The 20-bit data
portion represents the upper 20 bits of the physical
address that corresponds to the linear address.

TR6 is the TLB Test Command Register. TR6
contains a command bit, the upper 20 bits of a linear
address, a valid bit and the attribute bits used in the
test operation. The contents ofTR6 are used to create
the 24-bit TLB tag during both write and read (TLB
lookup) test operations. The command bit defines
whether the test operation is a read or a write.

TR7 is the TLB Test Data Register. TR7 contains
the upper 20 bits of the physical address (TLB data
field), two LRU bits and a control bit. During TLB
write operations, the physical address in TR7 is
written into the TLB entry selected by the contents of
TR6. During TLB lookup operations, the TLB data
selected by the contents ofTR6 is loaded into TR7.

Tables 2-10 and 2-lOA list the bit definitions for
the TR6 and TR7 registers.

I TLB LINLEAR ADDRESS I v I D I D# I U I u# I W I W# I o 0 0 0 I C iTR6

31 12 11 10 9 8 7 6 5 4 3 2 I 0

~~ LINE SELECTION ~SETi C~TR5
31 11 10 9 8 7 6 5 4 3 2 1 0

CACHE TAG ADDRESS TR4

31

CACHE DATA 1TR3
~3~1--~O

IS3=Reserved 1701001

Figure 2· 1 3. Test Registers

2·26 PRELIMINARY

Register Set 2

Table 2·1 O. TR6 and TR7 Bit Definitions

REGISTER BIT DESCRIPTION
NAME POSITION

TR6 31-12 Linear address.

TLB lookup: The TLB is interrogated per this address. If one and only one match

occurs in the TLB, the rest of the fields in TR6 and TR7 are updated per the matching

TLB entry.

TLB write: A llB entry is allocated to this linear address.

11 Valid bit (V).

TLB lookup: Always set to l.

TLB write: If set, indicates that the TLB entry contains valid data. If clear, target

entry is invalidated.

10-9 Dirty attribute bit and its complement (0, 0#). (Refer to Table 2-10A).

8-7 User/supervisor attribute bit and its complement (U, U#). (Refer to Table 2-1OA).

6-5 Read/write attribute bit and its complement (R, R#). (Refer to Table 2-lOA).

0 Command bit (C).

If = 0: TLB write.

If = 1: TLB lookup.

TR7 31-12 Physical address.

TLB lookup: data field from the TLB.

TLB write: data field written into the TLB.

11 Page-level cache disable bit (PCD).

Corresponds to the PCD bit of a page table entry.

10 Page-level cache write-through bit (PWT).

Corresponds to the PWT bit of a page table entry.

9-7 LRU bits.

TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup.

TLB write: ignored.

4 PL bit.

TLB lookup: If = 1, read hit occurred. If = 0, read miss occurred.

TLB write: If = 1, REP field is used to select the set. If = 0, the pseudo-LRU

replacement algOrithm is used to select the set.

3-2 Set selection (REP).

TLB lookup: If PL = 1, set in which the tag was found. If PL = 0, undefined data.

TLB write: If PL = 1, selects one of the four sets for replacement. If PL=O, ignored.

PRELIMINARY 2·27

On-txm 7Adva~ing the Standards

Register Set

Table 2·' OA. TR6 AHribute Bit Pairs

BIT BIT COMPLEMENT EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE
(B) (B#)

0 0 Do not match. Undefined.

0 1 Match if the bit is O. Clear the bit.

1 0 Match if the bit is l. Set the bit.

1 1 Match is the bit is 1 or O. Undefined.

Cache Test Registers

The Cx486SLC on-chip cache is a two-way set
associative memory with 128 entries per set.
Each TLB entry consists of a 23-bit tag, 32-bit
data, and four valid bits. The 23-bit tag repre
sents the high-order 23 bits of the physical
address. The 32-bit data represents the four bytes
of data currently in memory at the physical
address represented by the tag. The four valid
bits indicate which of the four data bytes actually
contain valid data.

The Cx486SLC contains three test registers that
allow testing of its internal cache. Using these
registers, cache test writes and reads may be
performed. Cache test reads allow inspection of
the data, valid bits and the LRU bit for the cache
entry. Cache test writes cause the data in TR3 to

be written to the selected set and line in the
cache. For a line allocation to occur, the valid
bits for the line must be set prior to the write of
the data. Bit definitions for the cache test regis
ters are shown in Table 2-1l.

2·28 PRELIMINARY

Regi,ster Set 2

Table 2·11. TR3·TR5 Bit Definitions

REGISTER BIT DESCRIPTION
NAME POSITION

TR3 31-10 Cache data.

Cache read: data accessed from the cache.

Cache write: to be written into the cache.

TR4 31-9 Tag address.

Cache read: tag address from which data is read.

Cache write: data written into the tag address of the selected line.

7 lRU.

Cache read: the LRU bit associated with the cache line.

Cache write: ignored.

6-3 Valid bits.

Cache reads: four valid bits for the accessed line, (one bit per byte).

Cache writes: valid bits written into the line.

TRS 10-4 line Selection. Selects one of 128 lines.

2 Set selection.

If = 0: set 0 is selected.

If=1: set 1 is selected.

1-0 Control bits. These bits control reading or writing the cache.

If = 00: Ignored.

If = 01: Cache write.

If = 10: Cache read.

If=Il: Cache flush (marks all entries as invalid).

PRELIMINARY 2·29

Cv.tx~ 7Mva'!;ing the Standards

Address Spaces

2.4 Address Spaces

The Cx486SLC can directly address either
memory or I/O space. Figure 2-14 illustrates
the range of addresses available for memory
address space and I/O address space. For the
Cx486SLC, the addresses for physical memory
range between 00 OOOOh and FF FFFFh (16

FF FFFFh

Physical
Memory Space

Physical Memory
16 MBytes

OOOOOOhL-_____ --.J

MBytes). The accessible I/O addresses space
ranges between 00 OOOOh and 00 FFFFh (64
KBytes). The coprocessor communication space
exists in upper I/O space between 80 00F8h and
80 OOFFh. These coprocessor I/O ports are
automatically accessed by the CPU whenever an
ESC opcode is executed. The I/O locations 22h
and 23h are used for Cx486SLC configuration
register access.

Accessible
Programmed

1/0 Space
FF FFFFh ,-----~~----o

00 FFFFh

Coprocessor
i---------c--1.--- Space

64 KBytes

486SLC
Configuration
Register 1/0
Space

00 OOOOh ~~~~~~~.--- 00 0023h
OOOOnh

1706401

Figure 2·14. Memory and I/O Address Spaces

2·30 PRELIMINARY

2.4.1 I/O Address Space

The Cx486SLC 110 address space is accessed
using IN and OUT instructions to addresses
referred to as "ports". The accessible 110 address
space is 64 KBytes and can be accessed as 8-bit,
16-bit or 32-bit ports. The execution of any IN or
OUT instruction causes the M/lO# pin to be
driven low, thereby selecting the 110 space
instead of memory space for loading or storing
data. The upper 8 address bits are always driven
low during IN and OUT instruction port accesses.

The Cx486SLC configuration registers reside
within the 110 address space at port addresses
22h and 23h and are accessed using the standard
IN and OUT instructions. The configuration
registers are modified by writing the index of the
configuration register to port 22h and then
transferring the data through port 23h. Accesses
to the on-chip configuration registers do not
generate external 110 cycles. However, each port
23h operation must be preceded by a port 22h
write with a valid index value, otherwise the
second and later port 23h operations are directed
off-chip and generate external 110 cycles without
modifying the on-chip confiuration registers. Also,
writes to port 22h outside of the Cx486SLC index
range (COh to CFh) result in external 110 cycles
and do not effect the on-chip configuration registers.
Reads of port 22h are always directed off-chip.

2.4.2 Memory Address Space

The Cx486SLC directly addresses up to 16
MBytes of physical memory. Memory address
space is accessed as bytes, words (16-bits) or
doublewords (32-bits). Words and doublewords
are stored in consecutive memory bytes with the
low-order byte located in the lowest address. The
phYSical address of a word or doubleword is the
byte address of the low-order byte.

Address Spaces 2

With the Cx486SLC, memory can be addressed
using nine different addressing modes. These
addressing modes are used to calculate an offset
address often referred to as an effective address.
Depending on the operating mode of the CPU,
the offset is then combined using memory
management mechanisms to create a physical
address that actually addresses the physical
memory devices.

Memory management mechanisms on the
Cx486SLC consist of segmentation and paging.
Segmentation allows each program to use several
independent, protected address spaces. Paging
supports a memory subsystem that simulates a
large address space using a small amount of RAM
and disk storage for physical memory. Either or both
of these mechanisms can be used for manage
ment of the Cx486SLC memory address space.

2.4.2.1 OHsel Mechanism
The offset mechanism computes an offset (effec
tive) address by adding together up to three
values: a base, an index and a displacement. The
base, if present, is the value in one of eight 32-bit
general registers at the time of the execution of
the instruction. The index, like the base, is a
value that is determined from one of the 32-bit
general registers (except the ESP register) when
the instruction is executed. The index differs

. from the base in that the index is first multiplied
by a scale factor of 1, 2, 4 or 8 before the summa
tion is made. The third component added to
the memory address calculation is the displace
ment which is a value of up to 32-bits in length
supplied as part of the instruction. Figure 2-15
illustrates the calculation of the offset address.

PRELIMINARY 2·31

Address Spaces .

Nine valid combinations of the base, index, scale
factor and displacement can be used with the
Cx486SLC instruction set. These combinations
are listed in Table 2-12. The base and index both
refer to contents of a register as indicated by
[Basel and [Index].

1=

L-__ -.{ + ~ ___ --1

Offset Address
(Effective Address)

Figure 2·1 5. OHset Address Calculation

Table 2·12. Memory Addressing Modes

ADDRESSING BASE INDEX SCALE DISPLACEMENT OFFSET ADDRESS (OA)
MODE FACTOR (Dp) CALCULATION

(SF)

Direct x OA;DP

Register Indirect x OA; [BASE]

Based x x OA; [BASE] + DP

Index x x OA ; [INDEX] + DP

Scaled Index x x x OA ; ([INDEX] * SF) + DP

Based Index x x OA ; [BASE] + [INDEX]

Based Scaled x x x OA; [BASE] + ([INDEX] * SF)

Index

Based Index with x x x OA ; [BASE] + [INDEX] + DP

Displacement

Based Scaled x x x x OA ; [BASE] + ([INDEX] * SF) + DP

Index with

Displacement

2·32 PRELIMINARY

2.4.2.2 Real Mode Memory
Addressing

In real mode operation, the Cx486SLC only
addresses the lowest 1 MByte (220) of memory.
To calculate a physical memory address, the 16-
bit segment base address located in the selected
segment register is shifted left by four bits and
then the 16-bit offset address is added. The
resulting 20-bit address is then extended with
four zeros in the upper address bits to create the

Offset Addresss

Address Spaces 2

24-bit physical address. Figure 2-16 illustrates
the real mode address calculation. Physical
addresses beyond 1 MByte cause a segment limit
overrun exception.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
Significant address bits that address memory in
the first 64 KBytes above 1 MByte.

Offset Mechanism

-~ Linear Address = Physical Address

I

Selected Segment
X 16

Register -

1708JOO

Figure 2·16. Real Mode Address Calculation

2.4.2.3 Protected Mode Memory
Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2 -17).

• Offset Mechanism that produces the offset
or effective address as in real mode.

• Selector Mechanism that produces the base
address.

• Optional Paging Mechanism that translates a
linear address to the physical memory address.

The offset and base address are added together to
produce the linear address. If paging is not used,
the linear address is used as the phYSical memory
address. If paging is enabled, the paging mecha
nism is used to translate the linear address into
the physical address. The offset mechanism is
described earlier in this section and applies to
both real and protected mode. The selector and
paging mechanisms are described in the follow
ing paragraphs.

PRELIMINARY 2·33

Address Spaces

Offset Mechanism
Offset Addresss

+
Linear Address .I Optional Physical

"I Paging Mechanism Memory
Address

Selector Mechansim Base Address

17OfBJ)

Figure 2·1 7. Protected Mode Address Calculation

Selector Mechanism

Memory is divided into an arbitrary number of
segments, each containing usually much less than
the 232 byte (4 GByte) maximum.

The six segment registers (C5, D5, 55, E5, F5 and
G5) each contain a 16-bit selector that is used
when the register is loaded to locate a segment
descriptor in either the global descriptor table
(GDT) or the local descriptor table (LDT). The
segment deSCriptor defines the base address, limit

15

ELECTOR I INDEX

L OAD

1
I

I n=o -------. SEGMENT
DESCRIPTOR

I

GLOBAL DESCRIPTOR TABLE

and attributes of the selected segment and is cached
on the Cx4865LC as a result ofloading the selector.
The cached descriptor contents are not visible to

the programmer. When a memory reference
occurs in protected mode, the linear address is
generated by adding the segment base address in
the hidden portion of the segment register to the
offset address. If paging is not enabled, this linear
address is used as the physical memory address.
Figure 2-18 illustrates the operation of the
selector mechanism.

(ACCESSED

InlRPLI SELECTOR SEGMENT
REGISTER)

.. ~
SEGMENT

~ DESCRIPTOR

LOCAL DESCRIPTOR TABLE

------------1-----------

MEMORY DESCRIPTOR I
• BASE ADD

REFERENCE "I CACHE I
REss 17=

Figure 2·1 8. Selector Mechanism

2·34 PRELIMINARY

Paging Mechanism

The paging mechanism supports a memory
subsystem that simulates a large address space
with a small amount of RAM and disk storage.
The paging mechanism either translates a linear
address to its corresponding physical address or
generates an exception if the reqUired page is not
currently present in RAM. When the operating
system services the exception, the required page
is loaded into memory and the instruction is then
restarted. Pages are always 4 KBytes in size and
are aligned to 4 KByte boundaries.

A page is addressed by using two levels of tables
as illustrated in Figure 2-19. The upper 10 bits
of the 32-bit linear address are used to locate an
entry in the page directory table. The page direc
tory table acts as a 32-bit master index to up to
1K individual second-level page tables. The
selected entry in the page directory table, referred
to as the directory table entry, identifies the
starting address of the second-level page table.
The page directory table itself is a page and is,

Address Spaces 2

therefore, aligned to a 4 KByte boundary. The
physical address of the current page directory is
stored in the CRJ control register, also referred to
as the Page Directory Base Register (PDBR).

Bits 12-21 of the 32-bit linear address, referred to
as the Page Table Index, locate a 32-bit entry in
the second-level page table. This Page Table
Entry (PTE) contains the base address of the
desired page frame. The second-level page table
addresses up to 1K individual page frames. A
second-level page table is 4 KBytes in size and is
itself a page. The lower 12 bits of the 32-bit
linear address, referred to as the Page Frame
Offset, locate the desired data within the page
frame.

Since the page directory table can point to 1K
page tables, and each page table can point to 1 K
of page frames, a total of 1M of page frames can
be implemented. Since each page contains 4
KBytes, up to 4 GBytes of virtual memory can be
addressed by the Cx486SLC with a single page
directory table.

PRELIMINARY 2·35

Address Spaces

Linear Address

31 ~ 2221 ~ 12 11 J 0

I Directory Table Index I Page Table Index

I
Page Frame Offset

I (DT!) (PTI) (PFO)

Directory Table Page Table Page Frame
4Kb 4Kb 4Kb

~ Physical Data

4 PTE t----

4- DTE

[l~ ~ --. o o o

170;700

Figure 2· 1 9. Paging Mechanism

In addition to the base address of the page table or the page frame, each Directory Table Entry or Page
Table Entry contains attribute bits and a present bit as illustrated in Figure 2-20 and listed in Table 2-13.

31 12 11 10 9 2 0

U W
BASE ADDRESS AVAIlABLE / / P

S R

~ =RESERVED 170850)

Figure 2·20. Directory and Page Table Entry (DTE and PTE) Format

2·36 PRELIMINARY

Address Spaces 2

Table 2·' 3. Directory and Page Table Entry (DTE and PTE) Bit Definillions

BIT POSITION FIELD NAME DESCRIPTION

31 - 12 BASE Specifies the base address of the page or page table.

ADDRESS

11 - 9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the

page (PIE only, undefined in DIE).

5 A Accessed Flag. If set, indicates that a read access or write access has

occurred to the page.

4 PCD Page Caching Disable flag. If set, indicates that the page is not

cacheable in the on-chip cache.

3 -- Reserved and not available to the programmer.

2 U/S User/Supervisor Attribute. If set (user), page is accessible at all

privilege levels. If clear (supervisor), page is accesible only when

CPL~ =2.

1 WIR Write!Read Attribute. If set (write), page is writable. If clear (read),

page is read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory,

and validates the remaining DIEIPIE bits. If clear, indicates that the

page is not present in memory and the remaining DTEIPTE bits can be

used by the programmer.

If the present bit (P) is set in the DTE, the page
table is present and the appropriate page table
entry is read. If P = 1 in the corresponding PTE
(indicating that the page is in memory), the
accessed and dirty bits are updated and the
operand is fetched. Both accessed 'bits are set
(DTE and PTE), if necessary, to indicate that the
table and the page have been used to translate a
linear address. The dirty bit (D) is set before the
first write is made to a page.

The present bits must be set to validate the
remaining bits in the DTE and PTE. If either of
the present bits are not set, a page fault is gener
ated when the DTE or PTE is accessed. If P=O,
the remaining DTEJPTE bits are available for use
by the operating system. For example, the
operating system can use these bits to record
where on the hard disk the pages are located. A
page fault is also generated if the memory refer
ence violates the page protection attributes.

PRELIMINARY 2·37

Interrupts and Exceptions

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is a cache
for the paging mechanism and replaces the two-level
page table lookup procedure for cache hits. The
TLB is a four-way set associative 32-entry page table
cache that automatically keeps the most commonly
used page table entries in the processor. The
32-entry TLB, coupled with a 4K page size, results in
coverage of 128 KBytes of memory addresses.

The TLB must be flushed when entries in the
page tables are changed. The TLB is flushed
whenever the CR3 register is loaded. An indi
vidual entry in the TLB can be flushed using the
INVLPG instruction.

2.5 Interrupts and Exceptions

An interrupt or exception changes the sequential
flow of a program by transferring program
control to a service routine. Both software and
hardware interrupts can occur. Software inter
rupts occur as the result of execution of an INT
instruction. Hardware interrupts occur in re
sponse to an external interrupt request on the
non-maskable interrupt (NMI) or maskable interrupt
(INTR) input pins. Exceptions occur as the result of
the execution of an instruction that provokes an
exception condition. For example, an illegal opcade
or a stack fault generates an exception.

When the Cx486SLC services an interrupt or
exception, the current program's address and
flags are pushed onto the stack to allow resump
tion of execution of the interrupted program. In
protected mode, the processor also saves an error
code for some exceptions. Program control is
then transferred to the interrupt handler (also
called the interrupt service routine). Upon
execution of an lRET at the end of the service
routine, program execution resumes at the
interrupted instruction.

The Cx486SLC accepts up to 256 different
interrupts. Each interrupt has a corresponding
vector. The vector number is used by the
Cx486SLC to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry is a four-byte far pointer to the entry point
of the corresponding interrupt service routine. In
protected mode, each IDT entry is an eight-byte
descriptor. The IDTR register specifies the
beginning address and limit of the IDT. Follow
ing reset, the IDTR contains a base address of Oh
with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register. The
IDT may contain different types of deSCriptors:
interrupt gates, trap gates and task gates. Inter
rupt gates are used mostly to enter a hardware
interrupt handler. Trap gates are generally used
to enter an exception interrupt handler or soft
ware interrupt handler. If an interrupt gate is
used, the Interrupt Enable Flag (IF) in the
EFLAGS register is cleared before the interrupt
handler is entered. Task gates are used to make
the transition to a new task.

Exceptions and the hardware NMI have assigned
vectors in the range from 0-31, as shown in Table
2-14. Not all of these first 32 vectors are used by
the Cx486SLC, however, unaSSigned vectors are
reserved i .ld should not be used. The vectors for
the hardware INTR interrupts are generated by
external hardware. In response to an unmasked
INTR, the Cx486SLC issues interrupt acknowl
edge bus cycles used to read the value of the
vector from external hardware. Any vector in the
range from 32 to 255 may be used. Software INT
instructions include the vector as part of the
instruction opcode.

2·38 PRELIMINARY

Interrupts and Exceptions 2

Table 2-14. Interrupt Vector Assignments

INTERRUPT VECTOR 'UNcrlON EXCEPTION TYPE

0 Divide error. FAULT

1 Debug exception. TRAP'

2 NMI interrupt

3 Breakpoint. TRAP

4 Interrupt on overflow. TRAP

5 BOUND range exceeded. FAULT

6 Invalid opcode. FAULT

7 Device not available. FAULT

8 Double fault. ABORT

9 Coprocessor segment overrun. ABORT

10 Invalid TSS. FAULT

11 Segment not present. FAULT

12 Stack fault. FAULT

13 General protection fault. FAULT

14 Page fault. FAULTrrRAP

15 Reserved.

16 Coprocessor error. FAULT

17 Alignment check exception. FAULT

18-31 Reserved.

32-255 Maskable hardware interrupts. TRAP

0-255 Programmed interrupt. TRAP

'Note: Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.

2.5.1 Exceptions

Exceptions can be classified in three different
categories depending on the way they are re
ported and if the instruction which first caused
the exception can be restarted. Table 2-14 lists
the exception type for each of the Cx486SLC
exceptions.

Trap exceptions are reported immediately after
the execution of the instruction that caused the
exception. The instruction pointer restored after
execution of the service routine points to the
instruction follOwing the instruction that caused
the trap. Software interrupt instructions also
operate like trap exceptions.

Abort exceptions are caused by a very severe
system error. The catastrophic nature of the
error does not always allow sufficient"information
to determine the precise location of the instruc
tion causing the problem and does not allow
restart of the program.

Fault exceptions are reported for the current
instruction. The instruction is nullified and the
fault is reported with the CPU in a state which
permits the faulting instruction to be restarted.

PRELIMINARY 2-39

Interrupts and Exceptions

2.5.1.1 Exceptions in Real Mode

Many of the exceptions described in Table 2-14
are not applicable in real mode. Exceptions 10,
11, and 14 do not occur in real mode. Other
exceptions have slightly different meanings in real
mode as listed in Table 2-15.

Table 2-15. Exception Changes in Real Mode

VECTOR NUMBER PROTECTED MODE FUNCIION REAL MODE FUNCTION

8 Double fault.

10 Invalid ISS.

11 Segment not present.

12 Stack fault.

13 General protection fault.

14 Page fault.

Note: -- = does not occur

2.5~1.2 Error Codes
When operating in protected mode, the following
exceptions generate a 16-bit error code:

Double Fault
Alignment Check
Invalid TSS
Segment Not Present
Stack Fault
General Protection Fault
Page Fault

15

Selector Index

Interrupt table limit overrun.

--
--

SS segment limit overrun.

CS, DS, ES, FS, GS segment limit overrun.

--

The error code format is shown in Figure 2-21
and the error code bit definitions are listed in
Table 2-16. Bits 15-3 (selector index) are not
meaningful if tlie error code was generated as the
result of a page fault. The error code is always
zero for double faults and alignment check
exceptions.

3 2 1 0

1707CXXJ

Figure 2-21. Error Code Format

2·40 PRELIMINARY

Interrupts and Exceptions 2

Table 2·16. Error Code Bit Definitions

FAULT SELECTOR 52 51 SO
TYPE INDEX (BIT 21 (BIT 11 (BIT 01

(BITS 15.31

Page Fault Reserved Fault caused by: Fault occurred Fault occurred during:

o ~ not present page, during: o ~ supervisor access,

1 ~ page-level o ~ read access, 1 ~ user access.

protection vioation. 1 ~ write access.

IDT Fault Index of faulty Reserved. 1 If, set exception

IDT selector. occurred while trying

to invoke exception or

hardware interrupt

handler.

Segment Index of faulty TI bit of faulty 0 If, set exception

Fault selector. selector. occurred while trying

to invoke exception or

hardware interrupt

handler.

PRELIMINARY 2·4'11

Interrupts and Exceptions

2.5.2 Hardware Interrupts

Hardware interrupts are classified as either
maskable or non-maskable. In most cases,
hardware interrupts are serviced after the current
instruction is completed. After the interrupt
handler is finished, execution continues in the
original program with the instruction immedi
ately following the interrupted instruction.

Non-maskable interrupts provide a method of
servicing very high priority interrupts. When the
NMI input is asserted, the CPU automatically
transfers program control to the interrupt service
routine corresponding to vector 2. Since the
interrupt vector is fixed and is supplied internally,
no interrupt acknowledge bus cycles are performed.

While executing the NMI service routine, the
Cx486SLC microprocessor does not service any
further NMI requests until an interrupt retum (IREf)
instruction is executed or the processor is reset.
If another NMI occurs while currendy servicing an
NMI, its presence is saved for servicing after execu
tion of the next IREf instruction. It is recommended
that an interrupt gate be used for the NMI in order to
disable nested niaskable interrupts. Execution of
an IRET instruction in the maskable interrupt
handler allows the NMI to be re-enabled.

Hardware maskable interrupts occur when
the INTR pin is asserted and the Interrupt Enable
Flag (IF) bit is set to 1 in the EFUGS register.
The processor only responds to maskable inter
rupts between instructions (string instructions
have an interrupt window between memory
moves that allows interrupts during long string
moves). When an interrupt occurs, the processor
reads an 8-bit vector supplied by external system
hardware. This vector selects which of the 256
possible interrupt handlers is executed in re
sponse to the interrupt.

2.5.3 Software Interrupts

The third type of interrupt/exception for the
Cx486SLC microprocessor is the software inter
rupt. An INT n instruction causes the processor
to execute the interrupt service routine pointed to
by the nth vector in the interrupt table. Execu
tion of the interrupt service routine occurs regardless
of the state of the IF flag in the EFUGS register.

The one byte INT 3, or breakpoint interrupt, is a
particular case of the two-byte INT n interrupt.
By inserting this one byte instruction in a pro
gram, the user can set' breakpoints in his program
that can be used during debug.

The last type of software interrupt is the single
step trap. The single-step feature is enabled by
setting the TF flag in the EFLAGS register. This
causes the processor to generate a debug excep
tion after the execution of every instruction.

2.5.4 Intenvpt and Exception
Priorities

Hardware interrupts are generated external to the
CPU. Maskable interrupts produced on the INTR
pin and non-maskable interrupts produced on the
NMI input are recognized between instructions.
When NMI and maskable INTR illterrupts are
both detected at the same instruction boundary,
the Cx486SLC microprocessor services the NMI
interrupt first.

Exceptions are generated internal to the cpu.
The Cx486SLC checks for exceptions in parallel
with instruction decoding and execution. Several
exceptions can result from a Single instruction.
However, only one exception is generated upon
each attempt to execute the instruction. Each
exception service routine should make the appro
priate corrections to the instruction and then

2.42 PRELIMINARY

restart the instruction. In this way, exceptions
can be serviced until the instruction executes
properly.

The Cx486SLC supports instruction restart after
all faults, except when an instruction causes a
task switch to a task whose task state segment
(TSS) is partially not present. A TSS can be

Interrupts and Exceptions 2

partially not present if the TSS is not page aligned
and one of the pages where the TSS resides is not
currently in memory.

As the Cx486SLC executes instructions, it follows
a consistent policy for prioritizing exceptions and
hardware interrupts as listed in Table 2-17.

Table 2·'117. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

1 Debug traps and faults from previous Includes single-step trap and data breakpoints

instruction. specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints

specified in the debug registers.

3 Non-maskable hardware interrupt. Caused by NMI assened.

4 Maskable hardware interrupt. Caused by INTR asserted and IF ~ 1.

5 Faults resulting from fetching the next Includes segment not present, general protection

instruction. fault and page fault.

6 Faults resulting from instruction decoding. Includes illegal opcade, instruction too long, or

privilege violation.

7 WAIT instruction and TS ~ 1 and MP ~ 1. Device not available exception generated.

8 ESC instruction and EM ~ 1 or TS ~ 1. Device not available exception generated.

9 Coprocessor error exception. Caused by ERROR# asserted.

10 Segmentation faults (for each memory Includes segment not present, stack fault, and

reference required by the instruction) that general protection fault.

prevent transferring the entire memory

operand.

11 Page Faults that prevent transferring the

entire memory operand.

12 Alignment check fault.

PRELIMINARY 2·43

Shutdown and Halt

2.6 Shutdown and Halt

The halt instruction (HLT) stops program
execution and prevents the processor from using
the local bus until restarted. The Cx486SLC then
enters a low-power suspend mode. NMI, INTR
with interrupts enabled (IF bit in EFLAGS=l), or
RESET forces the CPU out of the halt state. If
inteffilpted, the saved code segment and instruction
pointer specify the instruction following the HLT.

Shutdown occurs when a severe error is de
tected that prevents further processing. An NMI
input can bring the processor out of shutdown if
the IDT limit is large enough to contain the NMI
interrupt vector (at least OOOFh) and the stack has
enough room to contain the vector and flag
information (i.e., stack pointer is greater than oo05h).
Otherwise, shutdown can only be exited by a
processor reset.

2.7 Protection

Segment protection and page protection are
safeguards built into the Cx486SLC protected
mode architecture which deny unauthorized or
incorrect access to selected memory addresses.
These safeguards allow multitasking programs to
be isolated from each other and from the operat
ing system. Page protection is discussed earlier in
this chapter in section 2.4. This section concen
trates on segment protection.

Selectors and descriptors are the key elements in
the segment protection mechanism. The segment
base address, size, and privilege level are estab
lished by a segment descriptor. Privilege levels
control the use of privileged instructions, I/O
instructions and access to segments and segment

descriptors. Selectors are used to locate segment
descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g, control
transfers) and those involving data accesses. The
ability of a task to access a segment depends on:

• the segment type
• the instruction requesting access
• the type of descriptor used to define the

segment
• the associated privilege levels

(described below).

Data stored in a segment can be accessed only by
code executing at the same or a more privileged
level. A code segment or procedure can only be
called by a task executing at the same or a less
privileged level.

2.7.1 Privilege Levels

The values for privilege levels range between 0
and 3. Level 0 is the highest privilege level (most
privileged), and level 3 is the lowest privilege
level (least privileged). The privilege level in real
mode is effectively o.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the
segment deSCriptor. The DPL field specifies the
minimum privilege level needed to access the
memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as
the current task's privilege level. The CPL of an
executing task is stored in the hidden portion of
the code segment register and essentially is the
DPL for the current code segment.

2·44 PRELIMINARY

The Requested Privilege Level (RPL) specifies a
selector's privilege level and is used to distinguish
between the privilege level of a routine actually
accessing memory (the CPL), and the privilege
level of the original requestor (the RPL) of the
memory access. The lesser of the RPL and CPL is
called the effective privilege level (EPL). There
fore, if RPL = a in a segment selector, the effective
privilege level is always determined by the CPL.
If RPL =3, the effective privilege level is always 3
regardless of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privileged
as the descriptor privilege level (EPL :s: DPL). If
the EPL is less privileged than the DPL (EPL> DPL),
a general protection fault is generated. For
example, if a segment has a DPL = 2, an instruc
tion accessing the segment only succeeds if
executed with an EPL:S: 2.

2.7.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the
operating system executing at CPL=O to define
the least privileged level at which IOPL-sensitive
instructions can unconditionally be used. The
IOPL-sensitive instructions include CLI, IN, OUT,
INS, OUTS, REP INS, REP OUTS, and STI.
Modification of the IF bit in the HLAGS register
is also sensitive to the I/O privilege level.

The IOPL is stored in the EFI.AGS register. An I/O
permission bit map is available as defined by the

Protection 2

32-bit Task State Segment (TSS). Since each task
can have its own TSS, access to individual I/O
ports can be granted through separate I/O
permission bit maps.

If CPL :s: IOPL, IOPL-sensitive operations can be
performed. If CPL > IOPL, a general protection
fault is generated if the current task is associated
with a 16-bit TSS. If the current task is associated
with a 32-bit TSS and CPL> IOPL, the CPU
consults the I/O permission bitmap in the TSS to
determine on a port-by-port basis whether or not
I/O instructions (IN, OUT, INS, OUTS, REP INS,
REP OUTS) are permitted, and the remaining
IOPL-sensitive operations generate a general
protection fault.

2.7.3 Privilege level Transfers

A task's CPL can be changed only through
intersegment control transfers using gates or task
switches to a code segment with a different
privilege level. Control transfers result from
exception and interrupt sevicing and from
execution of the CALL,]MP, INT, IRET and RET
instructions.

There are five types of control transfers that are
summarized in Table 2-18. Control transfers can
be made only when the operation causing the
control transfer references the correct descriptor
type. Any violation of these descriptor usage
rules causes a general protection fault.

PRELIMINARY 2·45

Protection

Table 2·1 8. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER OPERATION DESCRIPTOR DESCRIPTOR
TYPES REFERENCED TABLE

Intersegment within the same privilege level. JMP, CALL, RET, IRET* Code Segment GDTorLDT

Intersegment to the same or a more' CALL Call Gate GDTorLDT

privileged level. Interrupt Instruction, Trap or Interrupt IDT

Interrupt within task (could change CPL Exception, External Gate

level). Interrupt

Intersegment to a less privileged level RET, IREI' Code Segment GDTor LDT

(changes task CPL).

Task Switch via TSS CALL,JMP Task State Segment GDT

Task Switch via Task Gate CALL,JMP Task Gate GDTor LDT

IRET* *, Interrupt Task Gate IDT

Instruction, Exception,

External Interrupt

, NT (Nested Task bit in EFLAGS) = 0
" NT (Nested Task bit in EFLAGS) = I

Any control transfer that changes the CPL within
a task results in a change of stack. The initial
values for the stack segment (55) and stack
pointer (E5P) for privilege levels 0, 1, and 2 are
stored in the T55. During aJMP or CALL control
transfer, the 55 and E5P are loaded with the new
stack pointer and the previous stack pointer is
saved on the new stack. When returning to the
original privilege level, the RET or IRET instruc
tion restores the less-privileged stack.

2.7.3.1 Gates

Gate descriptors provide protection for privilege
transfers among executable segments. Gates are
used to transition to routines of the same or a
more privileged level. Call gates, interrupt gates
and trap gates are used for privilege transfers
within a task. Task gates are used to transfer
between tasks.

Gates conform to the standard rules of privilege.
In other words, gates can be accessed by a task if
the effective privilege level (EPL) is the same or
more privileged than the gate descriptor's privi
lege level (DPL).

2·46 PRELIMINARY

2.7.4 Initialization and
Transition To Protected
Mode

The Cx486SLC microprocessor switches to Real
Mode immediately after RESET. While operating in
real mode, the system tables and registers should be
initialized. The GDTR and IDTR must point to a
valid GDT and IDT, respectively. The size of the
IDT should be at least 256 bytes, and the GDT must
contain descriptors which describe the initial code
and data segments.

The processor can be placed in protected mode by
setting the PE bit in the CRO register. After enabling
protected mode, the CS register should be loaded
and the instruction decode queue should be flushed
by executing an intersegmentJMP. Finally, all data
segment registers should be initialized with appro
priate selector values.

2.8 Virtual 8086 Mode

Both Real Mode and Virtual 8086 (V86) Mode are
supported by the Cx486SLC CPU allowing execu
tion of 8086 application programs and 8086 operat
ing systems. V86 Mode allows the execution of
8086-type applications, yet still permits use of the
Cx486SLC protection mechanism. V86 tasks run at
privilege level 3. Upon entry, all segment limits are
set to FFFFh (64K) as in real mode.

2.8.1 Memory Addressing

While in V86 mode, segment registers are used in
an identical fashion to Real Mode. The contents of
the segment register are shifted left four bits and
added to the offset to form the segment base linear
address. The Cx486SLC CPU permits the operating

Virtual 8086 Mode 2

system to select which programs use the V86
address mechanism and which programs use
protected mode addressing for each task.

The Cx486SLC also permits the use of paging
when operating in V86 mode. Using paging,
the 1-MByte address space of the V86 task can
be mapped to anywhere in the 4-GByte linear
address space of the Cx486SLC cpu. As in
real mode, linear addresses that exceed 1
MByte cause a segment limit overrun exception.

The paging hardware allows multiple V86
tasks to run concurrently, and provides
protection and operating system isolation. The
paging hardware must be enabled to run
multiple V86 tasks or to relocate the address
space of a V86 task to phYSical address space
greater than 1 MByte.

2.8.2 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
Cx486SLC protected mode protection checks.
As a result, any attempt to execute a privileged
instruction within a V86 task results in a
general protection fault.

In V86 mode, a slightly different set of instruc
tions are sensitive to the VO privilege level (lOPL)
than in protected mode. These instructions
are: CLI, INT n, IRET, POPF, PUSHF, and
STI. The INn, INTO and BOUND variations
of the INT instruction are not IOPL sensitive.

PRELIMINARY 2·47

Virtual 8086 Mode

2.8.3 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled as
follows. When an interrupt or exception is
serviced in V86 mode, program execution
transfers to the interrupt service routine at
privilege level 0 (i.e., transition from V86 to
protected mode occurs) and the VM bit in the
EFLAGS register is cleared. The protected mode
interrupt service routine then determines if the
interrupt came from a protected mode or V86
application by examining the VM bit in the
EFLAGS image stored on the stack. The interrupt
service routine may then choose to allow the
8086 operating system to handle the interrupt or
may emulate the function of the interrupt han
dler. Following completion of the interrupt
service routine, an IRET instruction restores the
EFLAGS register (restores VM=l) and segment
selectors and control returns to the interrupted
V86 task.

2.8.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by
either executing an lRET instruction at CPL = 0
or by task switching. If an IRET is used, the stack
must contain an EFLAGS image with VM=l. If a
task switch is used, the TSS must contain an
EFLAGS image containing a 1 in the VM bit
position. The POPF instruction cannot be used
to enter V86 mode since the state of the VM bit is
not effected. V86 mode can only be exited as the
result of an interrupt or exception. The transition
out must use a 32-bit trap or interrupt gate which
must point to a non-conforming privilege level 0
segment (DPL = 0), or a 32-bit TSS. These
restrictions are required to permit the trap
handler to lRET back to the V86 program.

2·48 PRELIMINARY

CYRIX Cx486SLC'M MICROPROCESSOR
High-Perfonnance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx.
7Mva~ing the Standards

3. BUS INTERFACE

3.1 Overview

The following sections describe the Cx486SLC input and output signals. The discussion of these
signals is arranged by functional groups as shown in Figure 3-1. Table 3-1 gives a brief description of
each of the Cx486SLC signals.

2X Clock

Reset

Address
Bus

Data
Bus

Bus
Cycle
Definition

Bus
Cycle
Control

CLKl INTR }
RESET NMI

{
KEN# A

< A23-AI .. FLUSH#
BLE# >-

RPLSET
BHE#

RPLVAL#

¢:::> 015-00 A20M#
Cx486SLC

Microprocessor PEREQ

} W/R#
BUSY#

D/C#
ERROR#

M1IO#
HOLD } LOCK#
HLDA

NA# SUSP# } READY# SUSPA#

ADS# FLT#
{

Figure 3·1. Cx486SLC Functional Signal Groupings

PRELIMINARY

Interrupt
Control

Internal
Cache
Interface

Address Bit
20 Mask

Coprocessor
Interface

Bus
Arbitration

Power
Management

Float
Control

1707300

3·1

Overview

Table 3-1. Cx486SLC Signal Summary

SIGNAL SIGNAL NAME SIGNAL GROUP

A20M# ADDRESS BIT 20 MASK

A23-AI ADDRESS BUS LINES Address Bus

ADS# ADDRESS STROBE Bus Cycle Control

BHE# BYTE HIGH ENABLE Address Bus

BLE# BYTE LOW ENABLE Address Bus

BUSY# PROCESSOR F;XTENSION BUSY Coprocessor Interface

CLK2 2X CLOCK INPUT

DlS-DO DATA BUS

D/C# DATNCONTROL Bus Cycle Definition

ERROR# PROCESSOR EXTENSION ERROR Coprocessor Interface

FLT# FLOAT

FLUSH# CACHE FLUSH Internal Cache Interface

INTR MASKABLE INTERRUPT REQUEST Interrupt Control

HLDA HOLD ACKNOWLEDGE Bus Arbitration

HOLD HOLD REQUEST Bus Arbitration

LOCK# BUS LOCK Bus Cycle Definition

KEN# CACHE ENABLE Internal Cache Interface

MlIO# MEMORYIlNPUT-OUTPUT Bus Cycle Definition

NA# NEXT ADDRESS REQUEST Bus Cycle Control

NMI NON-MASKABLE INTERRUPT REQUEST Interrupt Control

PEREQ PROCESSOR EXTENSION REQUEST Coprocessor Interface

READY# BUS READY Bus Cycle Control

RESET RESET

RPLSET REPLACEMENT SET Internal Cache Interface

RPLVAL# REPLACEMENT SET VALID Internal Cache Interface

SUSP# SUSPEND REQUEST Power Management

SUSPA# SUSPEND ACKNOWLEDGE Power Management

WIR# WRITEIREAD Bus Cycle Definition

The "#" (pound) symbol following a signal name
indicates that when the Signal is in its active
(asserted) state, the Signal is at a logic low level.
When the # is not present at the end of a Signal
name, the logiC high level represents the active
state. The following two sections describe the
signals and their functional timing characteristics.

Additional Signal information may be found in
Chapter 4, Electrical Specifications. Chapter 4
documents the DC and AC characteristics for the
Signals including voltage levels, propagation
delays, setup times and hold times. Specified
setup and hold times must be met for proper
operation of the Cx486SLC.

3-2 PRELIMINARY

Signal Descriptions 3

3.2

3.2.1

Signal Descriptions

2X Clock Input

Table 3-2. Signal States During Reset

The 2X Clock Input (CLK2) signal is the
basic timing reference for the Cx486SLC
microprocessor. The CLK2 input is
internally divided by two to generate the
internal processor clock. The external
CLKl is synchronized to a known phase of
the internal processor clock by the falling
edge of the RESET signal. External timing
parameters are defined with respect to the
rising edge of CLKl.

3.2.2 Reset

Reset is an active high input signal that,
when asserted, suspends all operations in
progress and places the Cx486SLC into a
reset state. RESET is a level sensitive
synchronous input and must meet speci
fied setup and hold times to be recognized
by the Cx486SLC properly. The Cx486SLC
begins executing instructions at phYSical
address location FF FFFOh approximately
400 CLKls after RESET is driven inactive
(low). While RESET is active, all other
input pins, except FLT#, are ignored. The
remaining signals are initialized to their
reset state during the internal processor
reset sequence. The reset signal states for
the Cx486SLC are shown in Table 3-2.

SIGNAL NAME

A20M#

A23-AI

ADS#

BHE#, BLE#

BUSY#

DlS-DO

D/C#

ERROR#

FLT#

FLUSH#

HLDA

HOLD

INTR

KEN#

LOCK#

MIlO#

NA#

NMI

PEREQ

READY#

RESET

RPLSET

RPLVAL#

SUSP#

SUSPA#

W!R#

PRELIMINARY

SIGNAL STATE DURING RESET

Ignored

I

I

0

Ignored

Float

I

Ignored

Input Recognized

Ignored

0

Ignored

Ignored

Ignored

I

0

Ignored

Ignored

Ignored

Ignored

Input Recognized

Float

Float

Ignored

Float

0

3-3

Signal Descriptions

3.2.3 Address Bus

The Address Bus (A23-Al) signals are three
state outputs that provide physical memory or VO
port addresses. All address lines can be used for
addressing physical memory allowing a 16 MB
address space (00 OOOOh to FF FFFFh). During VO
port accesses, except for coprocessor accesses,
A23-A16 are driven low. This allows for a 64
KByte VO address space (00 OOOOh to 00 FFFFh).
During coprocessor VO accesses, A22-AI6 are
driven low and An is driven high to allow it to
be used by external logic to generate a coproces
sor select Signal. Consequently, for coprocessor VO
cycles the 486SLC drives address 80 00F8h with
command transfers and address 80 OOFCh or
8000 FEh with data transfers. An-AI float
while the CPU is in a hold acknowledge or float
state.

Byte Low Enable (BLE#) and Byte High
Enable (BHE#) are three-state outputs that are
driven when the address is active, during a
memory or VO access. These signals indicate
which bytes of the 16-bit data bus are active
during the current bus cycle. BLE# is associated
with the low byte, D7-DO, and BHE# is associated
with the high byte, DlS-D8. When BHE# and
BLE# are both asserted, all 16 bits (high and low
bytes) of the data bus are active in the current bus
cycle. Table 3-3 below defines the possible states
of the byte enables during a bus cycle. BLE# and
BHE# float while the CPU is in a hold acknowl
edge or float state.

3.2.4 Data Bus

The Data Bus (DI5-DO) signals are three-state
bidirectional signals which provide the data path
between the Cx486SLC and external memory
and VO devices. The data bus inputs data during
memory read, VO read and interrupt acknowl
edge cycles and outputs data during memory and
VO write cycles. Data read operations require
that speCified data setup and hold times be met
for correct operation. The data bus signals are
high active and float while the CPU is in a hold
acknowledge or float state.

3.2.5 Bus Cycle Definition

The bus cycle definition (M/IO#, D/C#, W!R#,
LOCK#) signals consist of four three-state out
puts which define the type of bus cycle operation
being performed. Table 3-4 defines the bus
cycles for the possible states of these Signals.
MllO#, D/C# and W!R# are the primary bus
cycle definition Signals and are driven valid as
ADS# (Address Status) becomes active. During
non-pipelined cycles, the LOCK# output is
driven valid along with M/IO#, D/C# and W!R#.
During pipelined addreSSing, LOCK# is driven at
the beginning of the bus cycle, which is after
ADS# becomes active for that cycle. The bus
cycle definition Signals are active low and float
while the Cx486SLC is in a hold acknowledge
or float state.

Table 3-3. Byte Enable Definitions

BHE# BLE# FUNCTION

0 0 Word transfer - D1S-DO

0 1 Upper byte transfer - DlS-DB

1 0 Lower byte transfer - D7 -DO

1 1 Never occurs during a bus cycle

3-4 PRELIMINARY

Signal Descriptions 3
Table 3·4. Bus Cycle Types

M/IO# D/C# W/R# LOCK#

0 0 0 0

0 0 0 1

0 0 1 X

0 1 X 0

0 1 0 1

0 1 1 1

1 0 X 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x = don't care, -- = does not occur

MemorylIO (MlIO#) distinguishes between
memory and VO operations. When high, this
signal indicates that the current bus cycle is a
memory read or write. When low, MlIO# indi
cates that the current bus cycle is an VO read or
write.

Data/Control (D/C#) distinguishes between
data and control operations. When high, this
signal indicates that the current bus cycle is a data
transfer to or from memory or I/O. When low,
D/C# indicates that the current bus cycle involves
a control function such as halt, interrupt servicing
or code fetch.

WriteJRead (W/R#) distinguishes between write
and read bus cycles. When high, this signal
indicates that the current bus cycle is a write to
memory or VO. When low, this signals indicates
that the current bus cycle is a memory or VO
read operation.

BUS CYCLE TYPE

Interrupt Acknowledge

--
--
--

110 Data Read

110 Data Write

--
Memory Code Read

Halt: An-Al = 2h, BHE# = 1 and BLE# = 0

Shutdown: AD-Al = Oh, BHE# = 1 and BLE# = 0

Locked Memory Data Read

Memory Data Read

Locked Memory Data Write

Memory Data Write

LOCK# is an active low output which, when
asserted, indicates that other system bus masters
are denied access to control of the system bus.
The LOCK# signal may be expliCitly activated
during bus operations by including the LOCK
prefix on certain instructions. LOCK# is always
asserted during descriptor updates, interrupt
acknowledge sequences and when executing the
XCHG instruction. The Cx486SLC does not
enter the hold acknowledge state in response to
HOLD while the LOCK# input is active.

3.2.6 Bus Cycle Control

The bus cycle control Signals (ADS#, READY#,
NA#) allow the Cx486SLC to indicate the begin
ning of a bus cycle and allow system hardware to
control address pipelining and bus cycle termina
tion timing.

PRELIMINARY 3·5

Signal Descriptions

Address Strobe (ADS#) is an active low, three
state output which indicates that the Cx486SLC
has driven a valid address (A23-AI, BHE#, BLE#)
and bus cycle definition (MlIO#, D/C#, W/R#) on
the appropriate Cx486SLC output pins. During
non-pipelined bus cycles, ADS# is active for the
first clock of the bus cycle. During address
pipelining, ADS# is asserted during the previous
bus cycle and remains asserted until READY# is
returned for that cycle. ADS# floats while the
Cx486SLC is in a hold acknowledge state.

Ready (READY#) is an active low input which is
driven by the system hardware to indicate that
the current bus cycle can be terminated. During
a read cycle, assertion of READY# indicates that
the system hardware has presented valid data to
the Cpu. When READY# is sampled active, the
Cx486SLC latches the input data and terminates
the cycle. During a write cycle, READY# asser
tion indicates that the system hardware has
accepted the Cx486SLC output data. READY#
must be asserted to terminate every bus cycle,
including halt and shutdown indication cycles.

Next Address Request (NA#) is an active low
input used to request address pipelining. Asser
tion of this input by the system hardware indi
cates it is prepared to accept new bus cycle
definition and address Signals (M1IO#, D/C#,
W/R#, A23-AI, BHE#, and BLE#) from the
microprocessor even if the current bus cycle has
not been terminated by assertion of READY#.
If the Cx486SLC has an internal bus request
pending and the NA# input is sampled active, the
next bus definition and address signals are driven
onto the bus.

3.2.7 Interrupt Control
The interrupt control input signals (INTR, NMI)
allow the execution of the Cx486SLC's current
instruction stream to be interrupted and suspended.

Maskable Iuterrupt Request (INTR) is an
active high level-sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
interrupt service routine. The INTR input can be
masked (ignored) through the Flags Register IF
bit. When not masked, the Cx486SLC responds
to the INTR input by performing two locked
interrupt acknowledge bus cycles. The second
interrupt acknowledge cycle reads an 8-bit value,
the interrupt vector, from an external interrupt
controller. The 8-bit interrupt vector indicates
the interrupt level that caused generation of the
INTR and is used by the CPU to determine the
beginning address of the interrupt service rou
tine. To assure recognition of the INTR request,
INTR must remain active until the start of the first
interrupt acknowledge cycle.

Nou-maskable Iuterrupt Request (NMI) is a
rising edge sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
NMI interrupt service routine. The NMI inter
rupt service request cannot be masked by soft
ware. Asserting NMI causes an interrupt which
internally supplies interrupt vector 2h to the CPU
core. External interrupt acknowledge cycles are
not necessary since the NMI interrupt vector is
supplied internally.

Once NMI processing has started, no additional
NMIs are processed until after execution of the
next lRET instruction (typically at the end of the
NMI service routine). If NMI is re-asserted prior
to execution of the IRET instruction, one and
only one NMI rising edge is stored and is pro
cessed after execution of the next IRET. If an
INTR occurs during the NMI service routine and
INTR is unmasked, the INTR is serviced and
execution returns to the NMI service routine
following the next IRET. If a HALT instruction is

3·6 PRELIMINARY

executed within the NMI service routine, the
Cx486SLC restarts execution only in response to
RESET or an unmasked INTR. NMI does not
restart CPU execution under this condition.

The Cx486SLC samples NMI at the beginning of
each phase 2. To assure recognition, NMI must
be inactive for at least eight CLK2 periods and
then be active for at least eight CLK2 periods.
Additionally, specified setup and hold times must
be met to guarantee recognition at a particular
clock edge.

3.2.8 BnternaB Cache
Interface

The internal cache interface signals (KEN#,
FLUSH#, RPLSET, RPL VAL#) are used to indicate
cache status and control caching activity.

Cache Enable (KEN#) is an active low input
which indicates that the data being returned
during the current cycle is cacheable. When
KEN# is active and the Cx486SLC is performing
a cacheable code fetch or memory data read
cycle, the cycle is transformed into a cache fill.
Use of the KEN# input to control cacheability is
optional. The non-cacheable region registers can
also be used to control cacheability. Memory
addresses specified by the non-cacheable region
registers are not cacheable regardless of the state
of KEN#. I/O accesses, locked reads and inter
rupt acknowledge cycles are never cached.

During cached code fetches, two contiguous read
cycles are performed to completely fill the 4-byte
cache line. During cached data reads, the
Cx486SLC performs only those bus cycles
necessary to supply the required data to complete
the current operation. Valid bits are maintained
for each byte in the cache line, thus allowing data
operands ofless than 4 bytes to reside in the cache.

Signal Descriptions 3

During any cache fill cycle with KEN# asserted,
the Cx486SLC ignores the state of the byte
enables (BHE# and BLE#) and always writes two
bytes of data into the cache. The KEN# input is
ignored follOwing reset and can be enabled using
the KEN bit in the CCRO configuration register.

Cache Flush (FLUSH#) is an active low input
which invalidates (flushes) the entire cache. Use
of FLUSH# to maintain cache coherency is
optional. The cache may also be invalidated
during each hold acknowledge cycle by setting
the BARB bit in the CCRO configuration register.
The FLUSH# input is ignored following reset and
can be enabled using the FLUSH bit in the CCRO
configuration register.

Replacement Set (RPLSET) is an output
indicating which set in the cache is currently
undergoing a line replacement. This signal is
meaningful only when the internal cache is
configured as two-way set associative. When the
internal cache is configured as direct-mapped,
RPLSET=O always. The RPLSET output is dis
abled (three-state) following reset and can be
enabled using the RPL bit in the CCRI configura
tion register.

Replacement Set Valid (RPLVAL#) is an active
low output driven during a cache fill cycle to
indicate that RPLSET is valid for the current
cycle. RPLVAL# and RPLSET provide external
hardware the capability of monitoring the cache
LRU replacement algorithm. The RPLVAL#
output is disabled (three-state) following reset
and can be enabled using the RPL bit in the
CCRI configuration register.

PRELIMINARY 3-7

Cv.-txN
7kM:J~ing the standards

Signal Descriptions

3.2.9 Address Bit 20 Mask

Address Bit 20 Mask (A20M#) is an active low
input which causes the Cx486SLC to mask (force
low) physical address bit 20 when driving the
external address bus or performing an internal
cache access. When the processor is in real
mode, asserting AlOM# emulates the 1 MByte
address wrap around that occurs on the 8086.
The AlO signal is never masked when paging is
enabled regardless of the state of the AlOM#
input. The AlOM# input is ignored following
reset and can be enabled using the AlOM bit in
the CCRO configuration register.

The data bus, address bus and bus cycle defini
tion signals, as well as the coprocessor interface
Signals (PEREQ, BUSY#, ERROR#), are used to
control communication between the Cx486SLC
and a coprocessor. Coprocessor or ESC opcodes
are decoded by the Cx486SLC and the opcode
and operands are then transferred to the copro
cessor via VO port accesses to addresses 80 OOF8h,
80 OOFCh or 80 OOFEh. 80 00F8h functions as the
control port address and 80 OOFCh and 80 OOFEh
are used for operand transfers. Additional
handshaking is provided using the three dedi
cated control signals described below.

Coprocessor Request (PEREQ) is an active
high input which indicates the coprocessor is
ready to transfer data to or from the Cpu. The
coprocessor may assert PEREQ in the process of
executing a coprocessor instruction. The
Cx486SLC internally stores the current coproces
sor opcode and performs the correct data trans
fers to support coprocessor operations using
PEREQ to synchronize the transfer of required
operands. PEREQ is internally connected to a

pull-down resistor to prevent this signal from
floating active when left unconnected.

Coprocessor Busy (BUSY#) is an active low
input from the coprocessor which indicates to the
Cx486SLC that the coprocessor is currently
executing an instruction and is not yet able to
accept another opcode. When the Cx486SLC
processor encounters a WAIT instruction or any
coprocessor instruction which operates on the
coprocessor stack (e.g. load, pop, arithmetic
operation), BUSY# is sampled. The BUSY# is
continually sampled and must be recognized as
inactive before the CPU will supply the coproces
sor with another instruction. However, the
following coprocessor instructions are allowed to
execute even if BUSY# is active since these
instructions are used for coprocessor initialization
and exception clearing:

FNINIT
FNCLEX

BUSY# is internally connected to a pull-up
resistor to prevent it from floating active when left
unconnected.

Coprocessor Error (ERROR#) is an active low
input used to indicate that the coprocessor
generated an error during execution of a copro
cessor instruction. ERROR# is sampled by the
Cx486SLC processor whenever a coprocessor
instruction is executed. If ERROR# is sampled
active, the processor generates exception 16
which is then serviced by the exception handling
software.

3·8 PRELIMINARY

Certain coprocessor instructions do not generate
an exception 16 even if ERROR# is active. These
instructions, which involve clearing coprocessor
error flags and saving the coprocessor state, are
listed below:

FNINIT
FNCLEX
FNSTSW
FNSTCW
FNSTENV
FNSAVE

ERROR# is internally connected to a pull-up
resistor to prevent it from floating active when left
unconnected.

3.2. 'II 'II Bus Arbitration
The bus arbitration (HOLD, HLDA) signals allow
the Cx486SLC to relinquish control of its local
bus when requested by another bus master
device. Once the processor has relinquished its
bus (three-stated), the bus master device can then
drive the local bus signals.

Hold Request (HOLD) is an active high input
used to indicate that another bus master requests
control of the local bus. After recognizing the
HOLD request and completing the current bus
cycle or sequence of locked bus cycles, the
Cx486SLC responds by floating (three-state) the
local bus and asserting the Hold Acknowledge
(HLDA) output. A23-Al, ADS#, BHE#, BLE#,
DlS-DO, D/C#, LOCK#, MlIO#, RPLSET,
RPLVAL# and W IR# are floated while HLDA is
asserted.

Once HLDA is asserted, the bus remains granted
to the requesting bus master until HOLD be-

Signal Descriptions , ., 8

comes inactive. When the Cx486SLC recognizes
HOLD is inactive, it simultaneously drives the'
local bus and drives HLDA inactive. External
pull-up resistors may be required on some of the
Cx486SLC tri-state outputs to guarantee that they
remain inactive while in a hold acknowledge state.
The HOLD input is not recognized while RESET
is active. If HOLD is asserted while RESET is
active, RESET has priority and the Cx486SLC
places the bus into an idle state instead of a hold
acknowledge state. The HOLD input is also
recognized during suspend mode provided the
CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and
hold times for correct operation.

Hold Acknowledge (HLDA) is an active high
output which indicates that the Cx486SLC is in a
hold acknowledge state and has relinquished
control of its local bus. While in the hold ac
knowledge state, the Cx486SLC drives HLDA
active and continues to drive SUSPA#. The other
Cx486SLC outputs, A23-Al, ADS#, BHE#, BLE#,
DlS-DO, D/C#, LOCK#, MlIO#, RPLSET,
RPLVAL# and WIR# are in a high-impedance
state allOwing the requesting bus master to drive
these Signals. If the on-chip cache can satiSfy bus
requests, the Cx486SLC continues to operate
during hold acknowledge states.

The processor deactivates HLDA when the
HOLD request is driven inactive. The Cx486SLC
stores one NMI rising edge during a hold acknow
ledge state for processing after HOLD is inactive. The
FLUSH# input is also recognized during a hold
acknowledge state. If SUSP# is asserted during a
hold acknowledge state, the Cx486SLC mayor
may not enter suspend mode depending on the
state of the internal execution pipeline.

PRELIMINARY 3·9

On-txm 7fJdva~ing the standards

Signal Descriptions

Table 3-5 summarizes the state of the Cx486SLC
output signals during hold acknowledge.

Table 3.5. Signal States During Hold
Acknowledge

SIGNAL NAME SIGNAL STATE DURING HOLD
ACKNOWLEDGE

A20M# Ignored

A23-AI Float

ADS# Float

BHE#, BLE# Float

BUSY# Ignored

DlS-DO Float

D/C# Float

ERROR# Ignored

FLT# Input Recognized

FLUSH# Input Recognized

HLDA I

HOLD Input Recognized

INTR Ignored

KEN# Ignored

LOCK# Float

M1IO# Float

NA# Ignored

NMI Input Recognized

PEREQ Ignored

READY# Ignored

RESET Input Recognized

RPLSET Float

RPLVAL# Float

SUSP# Input Recognized

SUSPA# Driven

W/R# Float

3.2.12 Power Management

The power management signals allows the
Cx486SLC to enter suspend mode. Suspend
mode can also be entered as the result of executing

a HALT instruction. Suspend mode circuitry
allows the Cx486SLC to consume minimal power
while maintaining the entire internal CPU state.

Suspend Request (SUSP#) is an active low
input which requests that the Cx486SLC enter
suspend mode. After recognizing SUSP# is active,
the processor completes execution of the current
instruction, any pending decoded instructions and
associated bus cycles. In addition, the Cx486SLC
waits for the coprocessor to indicate a not busy
condition (BUSY# = 1) before entering suspend
mode and asserting suspend acknowledge
(SUSPA#). During suspend mode, internal
clocks are stopped and only the logic associated
with monitoring RESET, HOLD and FLUSH#
remains active. With SUSP A# asserted, the CLK2
input to the Cx486SLC can be stopped in either
phase. Stopping the CLKl input further reduces
current consumption of the Cx486SLC.

To resume operation, the CLKl input is restarted
(if stopped), followed by deassertion of the
SUSP# input. The processor then resumes
instruction fetching and begins execution in the
instruction stream at the point it had stopped.
The SUSP# input is level sensitive and must meet
specified setup and hold times to be recognized at
a particular clock edge. The SUSP# input is
ignored following reset and can be enabled using
the SUSP bit in the CCRO configuration register.

The Suspend Acknowledge (SUSPA#) output
indicates that the Cx486SLC has entered the
suspend mode as a result of SUSP# assertion or
execution of a HALT instruction. If SUSPA# is
asserted and the CLKl input is switching, the
Cx486SLC continues to recognize FLT#, RESET,
HOLD and FLUSH#. If suspend mode was
entered as the result of a HALT instruction, the
Cx486SLC also continues to monitor the NMI

3·10 PRELIMINARY

~ '" , , ' , 'f I" i
. Signal' .Descr.iptions-·,

.,. • ,.11 1- 1', !.i } 3
input and an unmasked INTR input. Detection of
INTR or NMI forces the Cx486SLC to exit sus
pend mode and begin execution of the appropri
ate interrupt service routine. The CLK2 input to
the processor may be stopped after SUSP A# has
been asserted to further reduce the current
consumption of the Cx486SLC. The SUSPA#

output is disabled (floated) following reset and
can be enabled using the SUSP bit in the CCRO
configuration register.

Table 3-6 shows the state of the Cx486SLC
signals when the device is in suspend mode.

SIGNALNAMIE SIGNAL STATIE DURING SUSP# SIGNAL STATE DURING HALT
INITIATIED SUSPEND MODIil BNaTIA'II'I!D SUSPEND MODIli

A20M# Ignored Ignored

A23-AI I 1
ADS# I I

BHE#, BLE# 0 0

BUSY# Ignored Ignored

DIS-DO Float Float

D/C# I I

ERROR# Ignored Ignored

FLT# Input Recognized Input Recognized

FLUSH# Input Recognized Input Recognized

HLDA 0 0

HOLD Input Recognized Input Recognized

INTR latched Input Recognized

KEN# Ignored Ignored

LOCK# I I

MIlO# 0 0

NA# Ignored Ignored

NMI Ignored Input Recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input Recognized Input Recognized

RPLSET Driven Driven

RPLVAL# Driven Driven

SUSP# Input Recognized Ignored

SUSPA# I I

WIR# 0 0

PRELIMINARY 3·11 'iI

On-txm 7A::Jva~ing the Standards

Functional Timing .

3.2.1 3 Float Control (FLT#)

Float (FLT#) is an active low input which forces
all bidirectional and output signals to a tri-state
condition. Floating the signals allows the
Cx486SLC signals to be externally driven without
physically removing the device from the circuit.
The Cx486SLC CPU must be reset following
assertion or deassertion of FLT#. It is recom
mended that FLT# be used only for test purposes.

3.3

3.3.1

Functional Timing

Reset Timing and
Internal Clock
!y!!cl!~!!!ig@!ti@!!

RESET is the highest priority input signal and is
capable of interrupting any processor activity
when it is asserted. When RESET is asserted, the
Cx486SLC aborts any bus cycle. Idle, hold
acknowledge and suspend states are also discon
tinued and the reset state is established. RESET is
used when the Cx486SLC microprocessor is
powered up to initialize the CPU to a known

valid state and to synchronize the internal CPU
clock with external clocks.

RESET must be asserted for at least 15 CLK2
periods to ensure recognition by the Cx486SLC
microprocessor. If the self-test feature is to be
invoked, RESET must be asserted for at least 80
CLK2 periods. RESET pulses less than 15 CLK2
periods may not have sufficient time to propagate
throughout the Cx486SLC and may not be
recognized. RESET pulses less than 80 CLK2
periods followed by a self-test request may
incorrectly report a self-test failure when no true
failure exists.

Provided the RESET falling edge meets specified
setup and hold times, the internal processor clock
phase is synchronized as illustrated in Figure 3-2.
The internal processor clock is half the frequency
of the CLK2 input and each CLK2 cycle corre
sponds to an internal CPU clock phase. Phase 2
of the internal clock is defined to be the second
rising edge of CLK2 following the falling edge of
RESET.

<1>2 OR <1>1 <1>2 OR <1>1 <1>1

CLK2 [

RESET [

Internal
[Processor

Clock

1707200

Figure 3·2. Internal Processor Clock Synchronization

3·12 PRELIMINARY

, Functipnal Timing 3

Following the falling edge of RESET (and after
self-test if it was requested), the Cx486SLC
microprocessor performs an internal initialization
sequence for approximately 400 CLKl periods.
The Cx486SLC self-test feature is invoked if the
BUSY# input is an active low state when RESET
falls inactive. The self-test sequence requires
approximately (220 + 60) CLKl periods to com
plete. Even if the self-test indicates a problem, the
Cx486SLC microprocessor attempts to proceed

ClK2 [

RESET [

ClK (Internal) [

BUSY# [

ERROR# [

BHE#, BlE#, W!R#, [Iv!IIO#, HLDA

A23-AI, [D/C#, LOCK#

ADS# [

NA# [

READY# [

DIS-DO [ZZZZZZ)----- ~----

RPlSET, RPlVAL#,
SUSPA# [ZZxZXZ>----

with the reset sequence. Figure 3-3 illustrates the
bus activity and timing during the Cx486SLC
reset sequence.

Upon completion of self-test, the EAX register
contains 0000 OOOOh if the Cx486SLC micropro
cessor passed its internal self-test with no prob
lems detected. Any non-zero value in the EAX
register indicates that the microprocessor is
faulty.

(Floating)

(Floating)

Internal
Initialization

Cycle 1
Non-Pipelined

If self-test is perfonned add (Read)
(2 "+ 60' to these numbers Tl 12

1 2 3 17 18 19 392 393'394 395'

Notes: 1. BUSY# should be held stable for 80 CLK2 periods before and after
the CLK2 peliod in which RESET falling edge occurs. 1706tlXl

Figure 3·3. Bus Activity from RESET until First Code Fetch

PRELIMINARY 3·13

Cv.txm
7Mva~ing the Standards

Functional Timing

3.3.2 Bus Operation

The Cx486SLC microprocessor communicates
with the external system through separate,
parallel buses for data and address. This is
commonly called a demultiplexed address/data
bus. This demultiplexed bus eliminates the need
for address latches required in multiplexed
address/data bus configurations where the
address and data are presented on the same pins
at different times.

Cx486SLC instructions can act on memory data
operands consisting of 8-bit bytes, I6-bit words
or 32-bit double words. The Cx486SLC bus
architecture allows for bus transfers of these
operands without restrictions on physical address
alignment. Any byte boundary alignment is
pennissible. Operands not aligned on a word
boundary may require more than one bus cycle
to transfer the operand. This feature is transpar
ent to the programmer.

The Cx486SLC data bus (DlS-DO) is a I6-bit
wide bidirectional bus. The Cx486SLC drives the
data bus during write bus cycles and the external
system hardware drives the data bus during read
bus cycles. The address bus provides a 24-bit
value using 23 signals for the 23 upper-order
address bits (A23-AI), defining which I6-bit
word is being accessed, and two byte enable
Signals (BHE# and BLE#) to directly indicate
which of the two bytes within the word are active.

Every bus cycle begins with the assertion of the
address strobe (ADS#). ADS# indicates that the
Cx486SLC has issued a new address and new bus
cycle definition signals. A bus cycle is defined by
four signals: MlIO#, WIR#, D/C# and LOCK#.
MlIO# defines if a memory or 110 operation is
occurring, WIRJt defines the cycle to be read or

write, and D/C# indicates whether a data or
control cycle is in effect. LOCK# indicates that
the current cycle is a locked bus cycle. Every bus
cycle completes when the system hardware
returns READY# asserted.

The Cx486SLC perfonns the following bus cycle
types:

Memory Read
Locked Memory Read
Memory Write
Locked Memory Write
110 Read (or coprocessor read)
110 Write (or coprocessor write)
Interrupt Acknowledge (always locked)
Halt/Shutdown

When the Cx486SLC microprocessor has no
pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on
the bus cycle definition signals, however, the idle
state can be identified by the absence of further
assertions of ADS# following a completed bus
cycle.

3.3.2.1 Bus Cycles using Non-
Pipelined Addressing

Non-Pipelined Bus States

The shortest time unit of bus activity is a bus
state, commonly called T states. A bus state is one
internal processor clock period (two CLKl
periods) in duration. A complete data transfer
occurs during a bus cycle, composed of two or
more bus states.

The first state of a non-pipelined bus cycle is
called Tl. During phase one (first CLKl) ofTl,
the address bus and bus cycle definition signals
are driven valid and, to signal their availability,
address strobe (ADS#) is simultaneously asserted.

3·14 PRELIMINARY

The second bus state of a non-pipelined cycle is
called T2. T2 terminates a bus cycle with the
assertion of the READY# input and valid data is
either input or output depending on the bus
cycle type. The fastest Cx486SLC microproces-

CLK2
(Input)

A23-AI, BHE#, BLE#,
MJIO#, D/C#, W/R#

(Output)

ADS#
(Output)

NA#
(Input)

READY#
(Input)

LOCK#
(Output)

[

[

[

[

[

[

Cycle I
Non'Pipelined

11 (Read) 12

~I I ~2 ~I I ~2

Valid I

Valid I

(Input duri~I~~~~ [T----------

Functional Timing 3
sor bus cycle requires only these two bus states.
READY# is ignored at the end of the Tl state.

Three consecutive bus read cycles, each consist
ing of two bus states, are shown in Figure 3-4.

Cycle 2
Non:Pipelined

V (Read) 12

~I I ~2 ~I I ~2

Valid 2

Cycle 3
Non-l'ipelined

11 (Read) 12

~I I ~2 ~I I ~2

Valid 3

----- ----~-----

Fastest non-pipelined bus cycles consist ofT! and 12. 1704500

Figure 3·4. Fastest Non-Pipelined Read Cycles

PRELIMINARY 3-15

Functional Timing

Non-Pipelined Read and Write Cycles

Any bus cycle may be performed with non
pipelined address timing. Figure 3-5 shows a
mixture of read and write cycles with non
pipelined address timing. When a read cycle is
performed, the Cx486SLC microprocessor floats
its data bus and the externally addressed device
then drives the data. The Cx486SLC micropro
cessor requires that all data bus pins be driven to
a valid logic state (high or low) at the end of each
read cycle, when READY# is asserted. When a

read cycle is acknowledged by READY# asserted
in the T2 bus state, the Cx486SLC CPU latches
the information present at its data pins and
terminates the cycle.

When a write cycle is performed, the data bus is
driven by the Cx486SLC CPU beginning in phase
two of n. When a write cycle is acknowledged,
the Cx486SLC write data remains valid through
out phase one of the next bus state to provide
write data hold time.

Idle I Cycle 1
Non-Pipelined

(Write)

Cycle 2
Non-Pipelined

(Read)

Cycle 3 I Idle
Non-Pi pelined

(Write)

Cycle 4
Non-Pipelined

(Read)

Idle I

Ti Tl T2 Tl T2 Tl T2 Ti Tl T2 Ti

CLK2 [
A23-A2,

[BHE#, BLE#,
MlIO#, D/C#

W/R# [
ADS# [
NA# [

READY# [

LOCK# [
~~LL~----r-__ -+i-__ .-__ ~~ __ ~ ____ ~~~~ __ ~ ____ ~~~

DIS-DO [------- '---,-__ --,---.!

Note: Idle states are shown here for diagram variety only. 1704700

Figure 3·5. Various Non-Pipelined Bus Cycles (no wail slales)

3·16 PRELIMINARY

" ~ ~ Function~1 Ti~ing', 3 ~ ~i 1

Non-Pipelined Wait States

Once a bus cycle begins, it continues until
acknowledged by the external system hardware
using the Cx486SLC READY# input. Acknowl
edging the bus cycle at the end of the first Tl
results in the shortest possible bus cycle, requir
ing only Tl and Tl. IfREADY# is not immedi
ately asserted however, T2 states are repeated
indefinitely until the READY# input is sampled
active. These intermediate T2 states are referred
to as wait states. If the external system hardware
is not able to receive or deliver data in two bus

states, it withholds the READY# signal and at least
one wait state is added to the bus cycle. Thus, on
an address by address basis the system is able to
define how fast a bus cycle completes.

Figure 3-6 illustrates non-pipelined bus cycles
with one wait state added to cycles 2 and 3.
READY# is sampled inactive at the end of the first
T2 state in cycles 2 and 3. Therefore, the T2 state
is repeated until READY# is sampled active at the
end of the second T2 and the cycle is then
terminated. The Cx486SLC ignores the READY#
input at the end of the Tl state.

Idle
I

Cyclel I
Non-Pipelined

(Read)

Cycle 2
Non-Pipelined

(Write)

Idle I

Ii

Cycle 3
Non-Pipelined

(Read)

I Idle

Ii Tl 12 Tl 12 12 Tl 12 12 Ii

CLK2 [
A23-Al,

[BHE#, BLE#,
WIO#,D/C#

WIR# [
ADS# [
NA# [

READY# [

LOCK# [Valid 3
~~~-,---p--,--,--~~~--~~--~~ 

015-00 [-----------

Note: Idle states are shown here for diagram variety only. 170480J 

Figure 3-6. Various Non-Pipelined Bus Cycles willi Different Numbers of Wait States 

PRELIMINARY 3-'117 



Functional Timing 

Initiating and Maintaining Non-Pipelined 
Cycles 

The bus states and transitions for non-pipelined 
addressing are illustrated in Figure 3-7. The bus 
transitions between four possible states: TI, T2, 
Ti, and Th. Active bus cycles consist of TI and 
T2 states, with T2 being repeated for wait states. 
Bus cycles always begin with a single TI state. TI 
is always followed by a T2 state. If a bus cycle is 
not acknowledged during a given T2 and NA# is 
inactive, T2 is repeated resulting in a wait state. 
When a cycle is acknowledged during T2, the 
following state is TI of the next bus cycle if a bus 
request is pending internally. If no internal bus 
request is pending, the Ti state is entered. If the 
HOLD input is asserted and the Cx486SLC is 
ready to enter the hold acknowledge state, the Th 
state is entered. 

Due to the demultiplexed nature of the bus, the 
address pipelining option provides a mechanism 
for the external hardware to have an additional 
T state worth of access time without inserting a 
wait state. After the reset sequence and following 
any idle bus state, the processor always uses non
pipelined address timing. Pipelined or non
pipelined address timing is then determined on a 
cycle-by-cycle basis using the NA# input. When 
address pipelining is not used, the address and 
bus cycle definition remain valid during all wait 
states. When wait states are added and it is 
desirable to maintain non-pipelined address 
timing, it is necessary to negate NA# during each 
T2 state of the bus cycle except the last one. 

3.3.2.2 Bus Cycles using 
Pipelined Addressing 

The address pipelining option allows the system 
to request the address and bus cycle definition of 

the next internally pending bus cycle before the 
current bus cycle is acknowledged with READY# 
asserted. If address pipelining is used, the exter
nal system hardware has an extra T state of access 
time to transfer data. The address pipelining 
option is controlled on a cycle-by-cycle basis by 
the state of the NA# input. 

Pipelined Bus States 

Pipelined addressing is always initiated by assert
ing NA# during a non-pipelined bus cycle. 
Within the non-pipelined bus cycle, NA# is 
sampled at the beginning of phase 2 of each T2 
state and is only acknowledged by the Cx486SLC 
during wait states. \Vhen address pipelining is 
acknowledged, the address (BHE#, BLE#, and 
A23-AI) and bus cycle definition (WIR#, D/C#, 
and M/IO#) of the next bus cycle are driven 
before the end of the non-pipelined cycle. The 
address status output (ADS#) is asserted simulta
neously to indicate validity of the above Signals. 
Once in effect, address pipelining is maintained 
in successive bus cycles by continuing to assert 
NA# during the pipelined bus cycles. 

As in non-pipelined bus cycles, the fastest bus 
cycles using pipelined address require only two 
bus states. Figure 3-8 illustrates the fastest read 
cycles using pipelined address timing. The two 
bus states for pipelined addressing are TIP and 
T2P or TIP and T2I. The TIP state is entered 
follOwing completion of the bus cycle in which 
the pipelined address and bus cycle definition 
information was made available and is the first 
bus state of every pipelined bus cycle. 

Within the pipelined bus cycle, NA# is sampled 
at the beginning of phase 2 of the TIP state. If 
the Cx486SLC has an internally pending bus 
request and NA# is asserted, the TIP state is 

3-18 PRELIMINARY 



Functional Timing 3 

followed by a T2P state and the address and bus 
cycle definition for the next pending bus request 
is made available. If no pending bus request 
exists, the TIP state is followed by a T21 state 
regardless of the state of NA# and no new ad
dress or bus cycle information is driven. 

The pipelined bus cycle is terminated in either 
the T2P or T21 state with the assertion of the 
READY# input and valid data is either input or 
output depending on the bus cycle type. 
READY# is ignored at the end of the TIP state. 

HOLD Negated 
No Request 

Bus States: 

HOLD Negate 
No Request 

HOLD Asserted 

HOLD Asserted 

READY# Asserted 
HOLD Asserted 

HOLD Negated 
Request Pending 

READY# Asserted--t---__ 

HOLD Negated 

/ No Request 

Request Pending 
HOLD Negated 

ALWAYS 

READY# Asserted 
HOLD Negated 
Request Pending 

Tl -- First clock of a non-piplined bus cycle (CPU drives new address and asserts ADS#) 
T2 -- Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
Ti -- Idle State 
Th -- Hold Acknowledge (CPOU asserts HLDA) 

The fastest bus cycle consists of two states: Tl and T2 

Figure 3·7. Non-Pipelined Bus States 

PRELIMINARY 

READY# Negated 
NA#Negated 

1704902 

3-19 



Functional Timing 

Cycle I 
Pipelined 

Tl P (Read) 12P 

Cycle 2 
Pipelined 

Tl P (Read) T2P 

Cycle 3 
Pipelined 

Tl P (Read) 12 P 

<1>1 I <1>2 <1>1 I <1>2 <1>1 I <1>2 <1>1 I <1>2 <1>1 I <1>2 <1>1 I <1>2 
CLK2 [ (Input) 

A23-AI, 

[ BHE#, BLE#, 
MlIO#,D/C#,WIR# 

(Output) 
Valid I 

ADS# [ (Output) 

NA# [ (Input) 

READY# [ (Input) 

LOCK# [ (Output) Valid I Vahd2 

DIS-DO 
[ (Input dUrin5 Read 

T 
In I 

Fastest pipelined bus cycles consist of TIP and T2P. 1704600 

figure 3·8. lFastest Pipelined Read Cycles 

Pipelined Read and Write Cycles 

Any bus cycle may be performed with pipe lined 
address timing. When a read cycle is performed, 
the Cx486SLC microprocessor floats its data bus 
and the externally addressed device then drives 
the data. When a read cycle is acknowledged by 
READY# asserted in either the T2P or T21 bus 
state, the Cx486SLC CPU latches the information 
present at its data pins and terminates the cycle. 

When a write cycle is performed, the data bus is 
driven by the Cx486SLC CPU beginning in phase 
two of TlP. When a write cycle is acknowledged, 
the Cx486SLC write data remains valid through
out phase one of the next bus state to provide 
write data hold time. 

Pipelined Wait States 

Once a pipelined bus cycle begins, it continues 
until acknowledged by the external system 
hardware using the Cx486SLC READY# input. 
Acknowledging the bus cycle at the end of the 
first T2P or T21 state results in the shortest 
possible pipelined bus cycle. If READY# is not 
immediately asserted, however, T2P or T21 states 
are repeated indefinitely until the READY# input 
is sampled active. Additional TlP or T21 states 
are referred to as wait states. 

3·20 PRELIMINARY 



Figure 3-9 illustrates pipelined bus cycles with 
one wait state added to cycles 1 through 3. Cycle 
1 is a pipelined cycle with NA# asserted during 
TlP and a pending bus request. READY# is 
sampled inactive at the end of the first T2P state 
in cycle 1. Therefore, the T2P state is repeated 
until READY# is sampled active at the end of the 
second T2P and the cycle is then terminated. The 
Cx486SLC ignores the READY# input at the end 
of the TlP state. Note that ADS#, the address 
and the bus cycle definition signals for the 
pending bus cycle are all valid during each of the 
T2P states. Also, asserting NA# more than once 
during the cycle has no additional effects. Pipe
lined addressing can only output information for 
the very next bus cycle. 

Cycle 2 in Figure 3-9 illustrates a pipelined cycle, 
with one wait state, where NA# is not asserted 
until the second bus state in the cycle. In this 
case, the CPU enters the Tl state follOwing TlP 
because NA# is not asserted. During the T2 state, 
the Cx486SLC samples NA# asserted. Because a 

Functional'~Timing 
, '., 3 

bus request is pending internally and READY# is 
not active, the CPU enters the T2P state and 
asserts ADS#, valid address and bus cycle defini
tion information for the pending bus cycle. The 
cycle is then terminated by an active READY# at 
the end of the TlP state. 

Cycle 3 of Figure 3-9 illustrates the case where no 
internal bus request exists until the last state of a 
pipelined cycle with wait states. In cycle 3, NA# 
is asserted in TlP requesting the next address. 
Because the CPU does not have an internal bus 
request pending, the T2I state is entered. How
ever, by the end of the T2I state, a bus request 
exists. Because READY# is not asserted, a wait 
state is added. The CPU then enters the TlP state 
and asserts ADS#, valid address and bus cycle 
definition information for the pending bus cycle. 
As long as the CPU enters the T2P state at some 
point during the bus cycle, pipelined addressing 
is maintained. NA# need only be asserted once 
during the bus cycle to request pipelined addressing. 

PRELIMINAIRY 3·21 



TlP 

CLK2 [ 

Functional Timing 

Cycle I 
Pipelined 
(Write) 

12P 12P TlP 

Cycle 2 
Pipelined 

(Read) 

12 12P TlP 

Cycle 3 
Pipelined 
(Write) 

121 

Cycle 4 
Pipelined 

(Read) 

12P TlP 

An-AI, 
BHE#, BLE#, 
MlIO#, D/C# [~~~~~~--~~--~~~--~ 

3·22 

W/R# [ 

ADS# [ 

READY# [-jL'"-"---"'-¥--JL-"I 

LOCK# [~~--~--~--~LL--4---~----~---+----'----+~--'
DIS-DO [ 

-+--~~----,---~~ 

1705201 

Figure 3·9. Various Pipelined Cycles (one wail slale) 

PRELIMINARY 



Initiating and Maintaining Pipelined Cycles 

Pipelined addressing is always initiated byassert
ing NA# during a non-pipelined bus cycle with at 
least one wait state. The first bus cycle following 
RESET, an idle bus or a hold acknowledge state is 
always non-pipelined. Therefore, the Cx486SLC 
always issues at least one non-pipelined bus cycle 
following RESET, idle or hold acknowledge 
before pipelined addressing takes effect. 

Once a bus cycle is in progress and the current 
address has been valid for one entire bus state, 
the NA# input is sampled at the end of every 
phase one until the bus cycle is acknowledged. 

CLK2 

A23-AI, 
BHE#,BLE#, 
M/IO#, D/C# 

W/R# 

ADS# 

NA# 

READY# 

LOCK# 

DIS-DO 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

Cycle 2 
Pipelined 

(Read) 

Functional Timing 3 
Once NA# is sampled active, the Cx486SLC 
microprocessor is free to drive a new address and 
bus cycle definition on the bus as early as the 
next bus state and as late as the last bus state in 
the cycle. 

Figure 3-10 illustrates the fastest transition 
possible to pipelined addressing following an idle 
bus state. In Cycle 1, the next address is driven 
during state TIP. Thus, Cycle 1 makes the 
transition to pipelined address timing, since it 
begins with TI but ends with TIP. Because the 
address for Cycle 2 is available before Cycle 2 
begins, Cycle 2 is called a pipelined bus cycle and 
it begins with a TIP state. Cycle 2 begins as soon 
as READY# asserted terminates Cycle 1. 

Cycle 3 
Pipelined 
(Write) 

Cycle 4 
Pipelined 
(Read) 

Note: Following any idle bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. 
To stan address pipelining after an idle state requires a non-pipelined cycle with at least one wait state 
(Cycle 1 above), The pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states. 1705100 

Figure 3· 1 O. Fastest Transition to Pipelined Address Following Idle Bus State 

PRELIMINARY 



Functional Timing 

Figure 3-11 illustrates transitioning to pipelined 
addressing during a burst of bus cycles. Cycle 2 
makes the transition to pipelined addressing. 
Comparing Cycle 2 to Cycle 1 of Figure 3-10 
illustrates that a transition cycle is the same 
whenever it occurs consisting of at least T1, T2 
(NA# is asserted at that time), and T2P (provided 

the Cx486SLC microprocessor has an internal 
bus request already pending). T2P states are 
repeated if wait states are added to the cycle. 
Cycles 2,3, and 4 in Figure 3-11 show that once 
address pipelining is achieved it can be main
tained with two-state bus cycles consisting only of 
TlPand T2P. 

Cycle 2 
Non-Pipelined 

(Read) 

CLK2 [ 
A23-Al. [ BHE#.BLE#. 

WIO#,D/C# 

W/R# [ 

ADS# [ 

NA# [ 
READY# [ 

LOCK# [ 

DlS-DO [ 

Note: Following any idle bus state (Til. addresses are non-pipelined. Within non-pipelined bus ycles. NA# is only sampled 
during wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a 
non·pipelined cycle with at least one wait state (Cycle 2 above). 

l70EmJ 

Figure 3-11. Transilioning io Pipeline" A .... ress During Burst of Bus Cycles 

3-24 PREUMINARY 



Once a pipelined bus cycle is in progress, pipe
lined timing is maintained for the next cycle by 
asserting NA# and detecting that the Cx486SLC 
microprocessor enters T2P during the current 
bus cycle. The current bus cycle must end in 
state TlP for pipelining to be maintained in the 
next cycle. TlP is identified by the assertion of 
ADS#. Figures 3-10 and 3-11 each show 
pipelining ending after Cycle 4. This occurred 

HOLD Asserted 

HOLD Negated. 
No Request 

HOLD Negated. 
RESET Request Pending 

Asserted 

HOLD 

rfoe~~~e:t 

Functional Timing 3 
because the Cx486SLC CPU did not have an 
internal bus request prior to the acknowledgment 
of Cycle 4. 

The complete bus state transition diagram, including 
operation with pipelined address is given in 
Figure 3-12. This is a superset of the diagram for 
non-pipelined address. The three additional bus 
states for pipelined address are shaded. 

READY# Asserted. 
HOLD Asserted 

(N 0 Request + 
HOLD Asserted). NA# Asserted. 

NA# Asserted. (HOLD Asserted + 
READY# Negated No Request) 

READY# Asserted. HOLD Negated. No Request 

BusStates: 
Tl --First clock ofanon-pipelined bus cycle (CPU drives new address 

andassertsADS#). 
T2 - Subsequent clocks ofa busqde wlKn NA# has not been sampled asserted 

in the current bus cycle. 
TIl - Subsequent clocks ofa bus cycle when NA# has been sampled asserted in 

the current bus cyclebutthere isnotyetan internal bus re<juestpendmg 
(CPU does not drive new addess or assert ADSII). 

TlP -. Subsequent docks of a bus cycle when NA# has been sampled asserttd in 
the currentbuscycleand there is an internal busrequestpendmg 
(CPU drives new address and assertsADS#). 

TlP--Firstc1ockofapipelinedbuscycle. 
Ii - Idle state. 
Tb - Hold Acknowledge stale (CPU asserts HWA). READY# Negated 

Figure 3·12. Complete Bus Slates 

PRELIMINARY 

1705300 

3·25 



Functional Timing 

3.3.3 Lockecl Bus Cycles 

When the LOCK# signal is asserted the 
Cx486SLC microprocessor does not allow other 
bus master devices to gain control of the system 
bus. LOCK# is driven active in response to 
executing certain instructions with the LOCK 
prefix. The LOCK prefix allows indivisible 
read/modifY/write operations on memory oper
ands. LOCK# is also active during Interrupt 
Acknowledge Cycles. 

LOCK# is activated on the CLK2 edge that begins 
the first locked bus cycle and is deactivated when 
READY# is returned at the end of the last locked 
bus cycle. When using non-pipelined addressing, 
LOCK# is asserted during phase 1 of Tl. When 
using pipelined addressing, LOCK# is driven 
valid during phase 1 ofTlP. 

Figures 3-4 through 3-6 illustrate LOCK# timing 
during non-pipelined cycles and Figures 3-8 
through 3-11 cover the pipelined address case. 

3.3.4 Interrupt Acknowleclge 
(INTA) Cycles 

The Cx486SLC microprocessor is interrupted by 
an external source via an input request on the 
INTR input (when interrupts are enabled). The 
Cx486SLC microprocessor responds with two 
locked interrupt acknowledge cycles. These bus 

cycles are similar to read cycles. Each cycle is 
terminated by READY# sampled active as shown 
in Figure 3-13. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The address driven 
during the first interrupt acknowledge cycle is 
4h (A23-A3, AI, BLE# = 0; A2, BHE# = 1). The 
address driven during the second interrupt 
acknowledge cycle is Oh (AD-AI, BLE# = 0; 
BHE#= 1). 

To assure that the interrupt acknowledge cycles 
are executed indivisibly, the LOCK# output is 
asserted from the beginning of the first interrupt 
acknowledge cycle until the end of the second 
interrupt acknowledge cycle. Four idle bus states 
(Ti) are always inserted by the Cx486SLC micro
processor between the two interrupt acknowl
edge cycles. 

The interrupt vector is read at the end of the 
second interrupt cycle. The vector is read by the 
Cx486SLC microprocessor from D7 -DO of the 
data bus. The vector indicates the specific 
interrupt number (from 0-255) requiring service. 
Throughout the balance of the two interrupt 
cycles DIS-DO float. At the end of the first 
interrupt acknowledge cycle, any data presented 
to the Cx486SLC is ignored. 

3·26 PRELIMINARY 



CLK2 [ 

BHE# [ 
A23-A3,Al, 

[ BLE#, M/IO# 
D/C#, WfR# 

A2 [ 

LOCK# [ 

ADS# [ 

NA# [ 

READY# [ 

D7-DO [ 
DlS-DB [ 

Previous I 
Cycle 

Interrupt 
Acknowledge 

Cycle 1 

T2 ill T2 lfL Ti 

-rut nIL nIL 
>lXXXXY I'<XXx 

It 
>IXXXX\ IV:XXX 

I 
>!XXX>Y I\xX> 

It 
i<IXXXX\ I 

I~I/ 

tlXXXX !XXI '<X> IXX ~XXXX> 
Xtx:XX)< MIX> lXXY ~\ AX> 
- ~-- --- --- -~8--
- --- --- --- -~~-

Idle 
(4 Bus States) 

Ti Ti 

rut 1fL 
IXXXX XXXX 

IXXX> x:t£Ji 
IXXXX IXW 

IXXX> IXXXX 
!XXX} !XXX> 
--- ---

--- ---

Ti 

nIL 

Functional Timing 

Tl 

Interrupt 

Acknowledge 
Cycle 2 

T2 T2 rm 1fL nIL 
Ti nn 

XXX>IY I'ON !XXX> 
It 

Mll~ i~ lXX2Q( 

XXX>l\ (j ~ lMXX 

II lAM)( 
I~I/ 

IXXX> lXXX> J\ ;IXXX> !XXX> 

XXX> !XXX> lXXY ~ JJ!:i t Vcr'm --- --- --- --(B--

--- ---r-- -~cp~-
Interrupt Vector (0-255) is read on D7-DO at end of second Interupt Acknowledge bus cycle. Because each 
Interrupt Acknowledge bus cycle is followed by idle bus states, assening NA# has no practical effect. 17054C0 

3.3.5 Hall and Shutdown 
Cycles 

Halt Indication Cycle 

3 

Executing the HLT instruction causes the 
Cx486SLC execution unit to cease operation. 
Signaling its entrance into the halt state, a halt 
indication cycle is performed. The halt indication 
cycle is identified by the state of the bus cycle 
definition signals (MJIO#=l, D/C#=O, WIR#=l, 

LOCK#=l) and an address of 2h (A23-A2=O, 
Al=l, BHE#=l, BLE#=O). The halt indication 
cycle must be acknowledged by READY# as
serted. A halted Cx486SLC microprocessor 
resumes execution when INTR (if interrupts are 
enabled), NMI, or RESET is asserted. Figure 3-14 
illustrates a non-pipelined halt cycle. 

PRELIMINARY 3·27 



Cv.txm 
71v:Jva~ing the Standards 

Functional Timing 

I 

Cycle I Cycle 2 Idle 
Non-Pipelined Non-Pipelined 

(Write) (Halt) 

CLK2 [ 
AI, BHE#, [ MlIO#, W!R# 

A23-A2, 
BLE#, D/C# [ 

ADS# [ 

NA# [ 

READY# [ 

LOCK# [ 
-j-------,------f 

DlS-DO [-,-_'---"--,-__ ---,-_L-'----,-__ ---,-----" 

17= 

Figure 3-14. Non-pipelined Halt Cycle 

Shutdown Indication Cycle 

Shutdown occurs when a severe error is detected 
that prevents further processing. The Cx486SLC 
microprocessor shuts down as a result of a 
protection fault while attempting. to process a 
double fault as well as the conditions referenced 
in Chapter 2. Signaling its entrance into the 
shutdown state, a shutdown indication cycle is 
performed. The shutdown indication cycle is 

identified by the state of the bus cycle definition 
Signals (MlIO#=l, D/C#=O, WIR#=l, LOCK=l) 
and an address of Oh (A23-A1 = 0, BHE# = 1, 
BLE#=O). The shutdown indication cycle must 
be acknowledged by READY# asserted. A shut 
down Cx486SLC microprocessor resumes 
execution only when NMI or RESET is asserted. 
Figure 3-15 illustrates a shutdown cycle using 
pipelined addressing. 

3-28 PRELIMINARY 



CLK2 

BHE#, 
M1IO#, W!R# 

A23-AI, 
BLE#, D/C# 

ADS# 

NA# 

READY# 

[ 

[ 

[ 

[ 

[ 

[ 

Cycle I 
Pipelined 
(Read) 

Functional Timing 3 

Idle 

Note: Shutdown cycle must be acknowledged 
by READY# asserted. Wait states may be added 
to the cycle if desired. 

LOCK# [ Valid I 

Dl5-DO [ In 

17056ClJ 

Figure 3·' 5. Pipelined Shutdown Cycle 

3.3.6 Internal Cache Interface 

3.3.6.1 Cache Fills 

Any unlocked memory read cycle can be cached 
by the Cx486SLC. The Cx486SLC automatically 
does not cache accesses to memory addresses 
speCified by the non-cacheable region registers. 
Additionally, the KEN# input can be used to 
enable caching of memory accesses on a cycle-by
cycle basis. The Cx486SLC acknowledges the 
KEN# input only if the KEN enable bit is set in 
the CCRO configuration register. 

As shown in Figures 3-16 and 3-17, the 
Cx486SLC samples the KEN# input one CLK2 
before READY# is sampled active. If KEN# is 
asserted and the current address is not set as non
cacheable per the non-cacheable region registers, 
then the Cx486SLC fills two bytes of a line in the 
cache with the data present on the data bus pins. 
The states of BHE# and BLE# are ignored if 
KEN# is asserted for the cycle. 

If the RPL bit in the CCR1 configuration register 
is set, then the RPLSET and RPL VAL# output 

PRELIMINARY 3·29 



Functional Timing 

signals are driven by the Cx486SLC during cache 
fill cycles. If the cache is configured as direct
mapped (CO bit in CCRO configuration register), 
RPLSET is always driven low. If the cache is 
configured as two-way set associative, RPLSET 
indicates which set in the cache is undergoing a 
line replacement. RPL V AL# indicates that the 
Cx486SLC will perform a cache fill to the indi
cated set with the data present on the data bus 
pins at the time READY# is sampled active. 
However, if KEN# is enabled and sampled 

CLK2 
(Input) 

A23-AI, BHE#, BLE#, 
D/C#, MIlO#, WIR# 

(Output) 

ADS# 
(Output) 

RPLVAU 
(Output) 

RPLSET 
(Output) 

NA# 
(Input) 

KEN# 
(Input) 

READY# 
(Input) 

LOCK# 
(Output) 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

Cycle I 
Non-Pipelined 

(Read - Cache Fill) 
Tl T2 

cjll I cjl2 cjll I cjl2 

Valid I 

Valid I 

inactive, the data is not cached and the line in the 
set indicated by RPLSET is not overwritten. 

Figures 3-16 and 3-17 illustrate RPL V AL# and 
RPLSET functional timing for both non-pipelined 
and pipelined cache fills. RPL VAL# is driven at 
the same time and for the same duration as the 
ADS# output for the cache fill cycle. RPLSET is 
driven one CLK2 after RPLVAL# is driven regard
less of whether or not the current bus cycle is 
pipelined. 

Cycle 2 
Non-Pipelined 

(Read - Cache Fill) 
Tl T2 T2 

<I> I I <I> 2 <I> I I <I> 2 cjll I cjl2 

Valid 2 

Valid 2 

DIS-DO [ (Input during Read) ----- ----cp----- ----~~~~~ 
1701\<Xl 

Figure 3-16. Non-Pipelined Cache Fills using KEN# 

3-30 PRELIMINARY 



Functional Timing 3 

Cycle I Cycle 2 
Pipelined Pipelined 

(Read - Cache Fill) (Read - Cache Fill) 
TIP T2P T2P TIP T2P TIP 

ClK2 [ (Input) 
~ -lJt M M -lJt -lJt iSL IU 

A23-AI, 
BHE#, BlE#, [ D/C#, MIlO#,WIR# 

(Output) 

ADS# [ (OutpUl) 

Valid I IX Valid 2 ,X Valid 3 

/' /' 
~ 

/ 1/ 1/ / / 

RPlVAl# [ (Output) 
~ 

/ 1/ 1/ / 

RPlSET# [ (Output) Valid I Valid 2 Valid 3 

NA# [ (Input) 

~ 

~L/ I~L/ 

KEN# (Input) [ X XXXX XXXX X XXXX X XXXX XX 
READY# [ (Input) 

~ ~ 

LOCK# [ (Output) X Valid I IX Valid 2 X Valid 3 

DIS-DO ~ 
(Input during [ ~~~~-------- ----- In I ---- ----- In 2 ---- ~~~ 

Read) 

170180) 

Figure 3·1 7. lPipelined Cache Fills using KIEN# 

3.3.6.2 Flushing the Cache 

To maintain cache coherency with external 
memory, the Cx486SLC cache contents should 
be invalidated when previously cached data is 
modified in external memory by another bus 
master. The Cx486SLC invalidates the internal 
cache contents during execution of the INVD and 
WBINVD instructions, follOwing assertion of 
HLDA if the BARB bit is set in the CCRO configu
ration register, or following assertion of FLUSH# 
if the FLUSH bit is set in CCRO, 

The Cx486SLC samples the FLUSH# input on 
the rising edge of CLK2 corresponding to the begin
ning of phase 2 of the internal processor clock. If 
FLUSH# is asserted, the Cx486SLC invalidates the 
entire contents of the internal cache, The actual 
point in time where the cache is invalidated depends 
upon the internal state of the execution pipeline, 
FLUSH# must be asserted for at least two CLK2 
periods and must meet specified setup and hold 
times to be recognized on a specific CLK2 edge, 

PRELIMINARY 3·31 



Functional Timing 

3.3.7 Address Bit 20 Masking 

The Cx486SLC internal cache addressing must be 
forced to emulate 8086 IMByte wrap-around 
addressing, when system logic emulates the 
wrap-around addressing and data within the 64 
KByte wrap-around area resides in the Cx486SLC 
internal cache. The Cx486SLC emulates the 
wrap-around addressing if the A20 bit is set in 
the CCRO configuration register and the A20M# 
input is asserted. Both the address bit 20 input to 
the internal cache and the external A20 pin are 
masked (zeroed) when the A20M# input is asserted. 

CLK2 [ 
A1j?Jl: 

Ul~,1j5Jtt;; 
[ 

W!R# [ 

ADS# [ 

A20M# [ 

A20 [ 

NA# [ 

READY# [ 

LOCK# [ 

DIS-DO [ 

As shown in Figure 3-18, the Cx486SLC samples 
the A20M# input on the rising edge of CLK2 
corresponding to the beginning of phase 2 of the 
internal processor clock. If A20M# is asserted 
and paging is not enabled, the Cx486SLC masks 
the A20 signal internally starting with the next 
cache access and externally starting with the next 
bus cycle. If paging is enabled, the A20 signal is 
not masked regardless of the state of A20M#. 
A20 remains masked until the access following 
detection of an inactive state on the A20M# pin. 
A20M# must be asserted for a minimum of two 
CLK2 periods and must meet specified setup and 
hold times to be recognized on a specific CLK2 edge. 

1701700 

3·32 

Figure 3· 1 8. Masking A20 using A20M# During Burst of Bus Cycles 

PRELIMINARY 



An alternative to using the AlOM# pin is provided 
by the NCO bit in the CCRO configuration register. 
The Cx486SLC automatically does not cache 
accesses to the first 64 KBytes and to 1 MByte + 64 
KBytes if the NCO bit is set. This prevents data 
within the Wrap-around memory area from resid
ing in the internal cache and thus eliminates the 
need for masking AlO to the internal cache. 

3.3.8 Holel Acknowledge State 

The hold acknowledge state provides the mecha
nism for an external device in a Cx486SLC 
system to acquire the Cx486SLC system bus 
while the Cx486SLC is held in an inactive bus 
state. This allows external "bus masters" to take 
control of the Cx486SLC bus and directly access 
system hardware in a shared manner with 
the Cx486SLC. The Cx486SLC continues to 
execute instructions out of the cache (if enabled) 
until a system bus cycle is reqUired. 

The hold acknowledge state (Th) is entered in 
response to assertion of the HOLD input. In the 
hold acknowledge state, the Cx486SLC micro
processor floats all output and bi-directional 
signals, except for HLDA and SUSPA#. HLDA is 
asserted as long as the Cx486SLC CPU remains 
in the hold acknowledge state and all inputs 
except HOLD, FLUSH#, FLT#, SUSP# and RESET 
are ignored. 

Functional Ti~ing 3 

Th may be entered directly from a bus idle state, 
as in Figure 3-19, or after the completion of the 
current physical bus cycle if the LOCK# signal is 
not asserted, as in Figures 3-20 and 3-21. The 
CPU samples the HOLD input on the rising edge 
of CLK2 corresponding to the beginning of phase 1 
of the internal processor clock. HOLD must 
meet specified setup and hold times to be recog
nized at a given CLK2 edge. 

The hold acknowledge state is exited in response 
to the HOLD input being negated. The next bus 
state is an idle state (TO if no bus request is 
pending, as in Figure 3-19. If a bus request is 
internally pending, as in Figures 3-20 and 3-21, 
the next bus state is Tl. Th is also exited in 
response to RESET being asserted. If HOLD 
remains asserted when RESET goes inactive, the 
Cx486SLC enters the hold acknowledge state 
before performing any bus cycles provided 
HOLD is still asserted when the CPU is ready to 
perform its first bus cycle. 

If a rising edge occurs on the edge-triggered NMI 
input while in the Th state, the event is remem
bered as a non-maskable interrupt 2 and is 
serviced when the Th state is exited. 

PRELIMINARY 3·33 



3·34 

Functional Timing 

Idle 

l~ 
Hold Acknowledge 

~l 
Idle 

Ti Th Th Th Ti 
CLK2 [ 

HOLD [ 

HLDA [ 

An-AI, BHE#, 
[ BLE#,D/C#, 

MJIO#, W/R# 
(Floating) 

ADS# [ (Floating) 

NA# [ 

READY# [ 

LOCK# [ (Floating) ------ <XXX> 
I 

I 

015-00 [ -- ------- ------ (Floating) 

Note: For maximum design flexibility the CPU has no internal pull-up resistors on its outputs. 
External pull-ups may be required on ADS# and other outputs to keep them negated 
during hold acknowledge period. 

Figure 3· 19. Requesting Hold from Idle Bus State 

PRELIMINARY 

1705700 



Functional Timing 3 

CLK2 [ 

HOLD [ 

HLDA [ 

A23-AI, BHE#, BLE#, [ 
BLE#,O/C#, 

M1I0#, W/R# 

AOS# [ 

NA# 

REAOY# 

LOCK# [ 

11 

Cycle I 
Non.Pipelined 

(Read) 

T2 

Valid I 

T2 

(Ne ted or Last Locked C de) 
Valid I 

Th 

Hold 
Acknowledge 

Th 

HOLD assened no later 
than REAOY# assened 

Note: HOLD is a synchronous input and can be asserted at any elK2 edge, provided setup and hold 
requirements are met. This wavefonn is useful for delennining Hold Acknowledge latency. 

Tl 

Cycle 2 
Non.Pipelined 

(Write) 

Valid 2 

Figure 3·20. Requesting Hold from Active Non-Pipelined Bus 

PRELIMINARY 

T2 

,= 

3-35 



CLK2 [ 

HOLD [ 

HLDA [ 

A23-AI, BHE#, 
BLE#, D/C#, [ 

MlIO#, WIR# 

ADS# [ 

NA# 

READY# [ 

LOCK# [ 

Functional Timing 

TIP 

Cycle I 
Pipelined 
(Write) 

Tll TlI 

HOLD asserted in same bu 
state as NA# asserted. 

Th 

Hold 
Acknowledge 

Th TI 

Cycle 2 
Non-Pipelined 

(Read) 

Tl 

Valid 2 

DIS-DO [ 
(Flo ting) ----------1-------- ---- In2 

Note: HOLD is a synchronous input and can be asserted at any eLK2 edge, provided setup and hold requirements are met. 

This waveform is useful for determining Hold Acknowledge latency. 
1705900 

Fiigure 3·2 'I. Requesting Hold from Active Pipelined Bus 

3·36 PRELIMINARY 



3.3.9 Coprocessor Interface 

The coprocessor interface consists of the data 
bus, address bus, bus cycle definition signals, and 
the coprocessor interface signals (BUSY#, 
ERROR# and PEREQ). The Cx486SLC auto
matically accesses dedicated coprocessor I/O 
addresses 80 00F8h, 8000 FCh and 80 OOFEh to 
transfer opcodes and operands to/from the 
coprocessor whenever a coprocessor instruction 
is decoded. Coprocessor cycles can be either 
read or write and can be either non-pipelined or 
pipelined. Coprocessor cycles must be termi
nated by READY# and, as with any other bus 
cycle, can be terminated as early as the second 
bus state of the cycle. 

BUSY#, ERROR# and PEREQ are asynchronous 
level-sensitive inputs used to synchronize CPU 
and coprocessor operation. All three signals are 
sampled at the beginning of phase 1 and must 
meet specified setup and hold times to be recog
nized at a given CLIQ edge. 

3.3.1 0 Power Management 

SUSP# Initiated Suspend Mode 

The Cx486SLC enters suspend mode when the 
SUSP# input is asserted and execution of the 
current instruction, any pending decoded in
structions and associated bus cycles are com
pleted. The Cx486SLC also waits for the 
coprocessor to indicate a not busy status 

Functional Timing 3 

(BUSY# = 1) prior to entering suspend mode. 
The SUSPA# output is then asserted. The 
Cx486SLC responds to SUSP# and asserts 
SUSP A# only if the SUSP bit is set in the CCRO 
configuration register. 

Figure 3-22 illustrates the Cx486SLC functional 
timing for SUSP# initiated suspend mode. SUSP# 
is sampled on the phase 2 CLKl rising edge and 
must meet specified setup and hold times to be 
recognized at a particular CLKl edge. The time 
from assertion of SUSP# to activation of SUSP A# 
varies depending on which instructions were 
decoded prior to assertion of SUSP#. The mini
mum time from SUSP# sampled active to 
SUSPA# asserted is 2 CLIQs. As a maximum, the 
Cx486SLC may execute up to two instructions 
and associated bus cycles prior to asserting 
SUSPA#. The time reqUired for the Cx486SLC to 
deactivate SUSPA# once SUSP# has been 
sampled inactive is 4 CLIQs. 

If the Cx486SLC is in a hold acknowledge state 
and SUSP# is asserted, the processor mayor may 
not enter suspend mode depending on the state 
of the Cx486SLC internal execution pipeline. If 
the Cx486SLC is in a SUSP# initiated suspend 
state and the CLId input is not stopped, the 
processor recognizes and acknowledges the 
HOLD input and stores the occurrence of 
FLUSH#, NMI and INTR (if enabled) for execu
tion once suspend mode is exited. 

PRELIMINARY 3·37 



Functional Timing 

I <1>1 I <1>2 I <1>1 I <1>2 
elK2 [ 

SUSP# [ 

BUSY# [ 
4 CLK2s 

SUSPA# [ 

17012(0 

Figure 3·22. SUSP# Initiated Suspend Mode 

HALT Initiated Suspend Mode 

The Cx486SLC also enters suspend mode as a 
result of executing a HALT instruction. The 
SUSPA# output is asserted no more than. 17 
CLKls following READY# sampled active for the 
HALT bus cycle as shown in Figure 3-23. Sus
pend mode is then exited upon recognition of an 
NMI or an unmasked lNTR. SUSPA# is deacti
vated 12 CLKls after sampling of an active NMI 
or unmasked lNTR. If the Cx486SLC is in a 
HALT initiated suspend mode and the CLKl 
input is not stopped, the processor recognizes 
and acknowledges the HOLD input and stores 
the occurrence of FLUSH# for execution once 
suspend mode is exited. 

Stopping the Input Clock 

Because the Cx486SLC is a static device, the 
input clock (CLK2) can be stopped and restarted 

without loss of any internal CPU data. CLK2 can 
be stopped in either phase 1 or phase 2 of the 
clock and either in a lOgic high or logic low state. 
However, entering suspend mode prior to stop
ping CLKl dramatically reduces the CPU current 
requirements. Therefore, the recommended 
sequence for stopping CLK2 is to initiate 
Cx486SLC suspend mode, wait for assertion of 
SUSP A# by the processor and then stop the input 
clock. 

The Cx486SLC remains suspended until CLK2 is 
restarted and suspend mode is exited as de
scribed above. While CLKl is stopped, the 
Cx486SLC can no longer sample and respond to 
any input stimulus including the HOLD, 
FLUSH#, NMl, lNTR and RESET inputs. 
Figure 3-24 illustrates the recommended 
sequence for stopping CLK2 using SUSP# to 
initiate suspend mode. CLK2 should be stable for 
a minimum of 10 clock periods before SUSPA# is 
deasserted. 

3·38 PRELIMINARY 



Functional Timing 3 

Ii Ti 

f-- 12 CLK2s ---l 

1701300 

Figure 3·23. Halt Initialed Suspend Mode 

I <1>1 
I 

<1>2 I <1>1 
I 

<1>2 I <1>1 <1>2 I <1>1 
I 

<1>2 I <1>1 
I 

<1>2 I 
CLK2 [ 

()) 
SUSP# [\ 'l:, 'l:, 

BUSY# [ 
'l:, 'j) ()) (IJ 

SUSPA# [ 'l:, 
\ ;-()) cIJ CIJ 

1701400 

Figure 3·24. Slopping CLK2 During Suspend Mode 

PRELIMINARY 3·39 



Functional Timing 

3.3.11 Float 

Activating the FLT# input floats all Cx486SLC 
microprocessor bi-directional and output signals. 
Asserting FLT# electrically isolates the Cx486SLC 
microprocessor from the surrounding circuitry. 
This feature is useful in board-level test environ
ments. As the Cx486SLC microprocessor is 
packaged in a surface mount PQFP, it is not 
usually socketed and cannot be removed from 
the motherboard when In-Circuit Emulation 
(ICE) is needed. Float capability allows connec
tion of an emulator by clamping the emulator 
probe onto the Cx486SLC microprocessor PQFP 
without removing it from the circuit board. 

FLT# is an asynchronous, active low input. It is 
recognized on the rising edge of CLK2. When 

CLK2 [ 

recognized, it aborts the current bus state and 
floats the outputs of the Cx486SLC microproces
sor as shown in Figure 3-25. FLT# must be 
asserted for a minimum of 16 CLK2 cycles. To 
exit the float condition, RESET should be asserted 
and held asserted until after FLT# is deasserted. 

Asserting the FLT# input unconditionally aborts 
the current bus cycle and forces the Cx486SLC 
microprocessor into the float mode. As a result, 
the Cx486SLC microprocessor is not guaranteed 
to enter float in a valid state. After deactivating 
FLT#, the Cx486SLC CPU is not guaranteed to 
exit float in a valid state. The Cx486SLC micro
processor RESET input must be asserted prior to 
exiting float to guarantee that the Cx486SLC is 
reset and that it returns to a valid state. 

FLT# [ \L~~~~~~~~~/ 

Control [~ Valid )--------------------------\L ____ ~X~ __ _ 

Data [--0--\ Valid )------------------------~'__ ___ ~ 

Address [ ~ Valid )-------------------------\L-~~XL_~_ 

Reset [ ~-----~/ 
1706100 

Figure 3·25. Entering and Exiting Float 

3·40 PRELIMINARY 



CYRIX Cx486SLC" MICROPROCESSOR 
High-Perfonnance 486-Class CPU with 
Single-Cycle Execution and On-Chip Cache 

4. 

4.1 

ELECTRICAL SPECIFICAnONS 

Electrical Connections 

4. 'I • 'II Powell' and Ground Conm 

nections and Decoupling 

Due to the high frequency of operation of the 
Cx486SLC, it is necessary to install and test this 
device using standard high frequency techniques. 
The high clock frequencies used in the 
Cx486SLC and its output buffer circuits can 
cause transient power surges when several output 
buffers switch output levels simultaneously. 
These effects can be minimized by filtering the 
DC power leads with low-inductance decoupling 
capacitors, using low impedance wiring, and by 
utilizing all of the 14 Vee and 18 GND pins. 

4. 'II .2 Pull.Up/lPull-Down 
Resistors 

Table 4-1 lists the input pins which are internally 
connected to pull-up and pull-down resistors. 
The pull-up resistors are connected to V and cc 
the pull-down resistors are connected to Vss' 
When unused, these inputs do not require 
connection to external pull-up or pull-down 
resistors. 

Table 4·1. Pins Connected to 
Intemal PuII·Up and Pull. Down Resistors 

SIGNAL PIN RESISTOR 

AlOM# 31 20-kn pull-up 
BUSY# 34 20-kn pull-up 
ERROR# 36 20-kn pull-up 
FLT# 28 20-kn pull-up 
FLUSH# 30 20-kn pull-up 
KEN# 29 20-kn pull-up 
PEREQ 37 20-kn pull-down 
SUSP# 43 20-kn pull-up 

It is recommended that the ADS# and LOCK# 
output pins be connected to pull-up resistors, as 
indicated in Table 4-2. The external pull-ups 
guarantee that the signals will remain negated 
during hold acknowledge states. 

Table 4·2. Pins Requiring 
IExtemal PuIl·Up Resistors 

SIGNAL PIN EXTERNAL RESISTOR 

ADS# 16 20-kn pull-up 
LOCK# 26 20-kn pull-up 

PRELIMINARY 



Absolute Maximum Ratings 

4.1.3 Unused Input Pins 

All inputs not used by the system designer and 
not listed in Table 4-1 should be connected either 
to ground or to Vee Connect active-high inputs 
to ground through a 20 kQ (± 10%) pull-down 
resistor and active-low inputs to Vee through a 
20 kQ (± 10%) pull-up resistor to prevent pos
sible spurious operation. 

4.1.4 N/C Designated Pins 

Pins designated N/C should be left disconnected. 
Connecting an N/C pin to a pull-up resistor, pull
down resistor, or an active signal could cause 
unexpected results and possible circuit malfunc
tions. 

4.2 Absolute Maximum 
Ratings 

The following table lists absolute maximum 
ratings for the Cx486SLC and Cx486SLC-V 
microprocessors. Stresses beyond those listed 
under Table 4-3 limits may cause permanent 
damage to the device. These are stress ratings 
only and do not imply that operation under any 
conditions other than those listed under "Recom
mended Operating Conditions" '(Table 4-4) is 
pOSSible. Exposure to conditions beyond Table 
4-3 may (l) reduce device reliability and (2) 
result in premature failure even when there is no 
immediately apparent sign of failure. Prolonged 
exposure to conditions at or near the absolute 
maximum ratings (Table 4-3) may also result in 
reduced useful life and reliability. 

Table 4-3. Absolute Maximum Ratings 

PARAMETER MIN MAX UNITS NOTES 

Case Temperature _650 +1100 C Power Applied 
Storage Temperature -650 +1500 C No Bias 
Supply Voltage, Va: -0.5 6.5 V With Respect to Vss 
Voltage On Any Pin -0.5 Vee + 0.5 V With Respect to Vss 
Input Clamp Current, 11K 10 rnA Power Applied 
Output Clamp Current, 10K 25 rnA Power Applied 

4-2 PRELIMINARY 



Recommended Operating Conditio!,s 

403 Recommended Opell'Cllllting COllIdotiollIs 

The following table presents the recommended operating conditions for the Cx486SLC and 
Cx486SLC-V devices. The Cx486SLC-V can be operated as a Cx486SLC 

Table 4·4. Recommendec!l Operating Conditions 

Cx486SLC Cx486SLC-V 
PARAMETER UNITS NOVES 

MIN MAl( MIN MAl( 

Te Case Temperature 0° +100° 0° +85° C Power Applied 

4 

Vee Supply Voltage 4.5 5.5 2.7 3.6 V With Respect to Vss 

VIH High Level Input 2.0 Vee + 0.3 2.0 Vee + 0.3 V 

VIL Low Level Input -0.3 0.8 -0.3 0.6 V 

VILe CLK2 Input LOW -0.3 0.8 -0.3 0.5 V 

Voltage 

VIHe CLK2 Input HIGH 3.7 Vee + 0.3 Vee - 0.5 Vee + 0.3 V 
Voltage 

IOH Output Current -1.0 -1.0 rnA V =V OH OH(min) 

(High) 

IOL Output Current 5.0 3.0 rnA VOL;;;; V OL(max) 

(Low) 

11K Input Clamp +10 +10 rnA VIN<VSS or 

Current VIN>Vee 

10K Output Clamp +25 +25 rnA VOUT<VSS or 

Current Vou?Vec 

PRELIMINARY 4·3 



DC Characteristics 

4.4 DC Characteristics 

Table 4·5. DC Characteristics (at Recommended Operating Conditions) 

Cx486SLC Cx486SLC·Y 
PARAMETER UNITS NOTES 

MIN MAX MIN MAX 

VOL Output Low Voltage 

IOl = 3 rnA 0.35 V 

IOL = 5 rnA 0.45 

VOH Output High Voltage V 

IOH = -1 rnA 2.4 Vee - 0.4 
IOH = -0.2 rnA Vee - 0.5 Vee - 0.4 

ILl Input Leakage Current ±15 ±l5 !lA o <VIN<Vee 
For all pins except for those 
listed in Table 4-l. 

IIH Input Leakage Current 200 200 ~lA VIN = 2.4 
PEREQ Note 1 

IlL Input Leakage Current - 400 - 400 !lA VIL = 0.45V 
A20M#, BUSY#, ERROR#, FLT#, Note 2 
FLUSH#, KEN#, SUSP# 

Icc Active Icc Typical: Typical: 
20 MHz (CLK2 = 40 MHz) 380 500 175 230 rnA 
25 MHz (CLK2 = 50 MHz) 435 550 220 280 rnA 

IeesM Suspend Mode ICC Typical: Typical 
25 MHz (CLK2 = 50 MHz) 5.0 10.0 3.0 6.0 rnA Note 3 

Ieess Standby ICC Typical: Typical: 
o MHz (SuspendedlCLK2 Stopped) 100 250 60 150 !lA Note 3 

CIN Input Capacitance 10 10 pF fe = 1 MHz (Note 4) 

COUT Output or I/O Capacitance 12 12 pF fe = 1 MHz (Note 4) 

CelK CLK2 Capacitance 20 20 pF fe = 1 MHz (Note 4) 

Notes: 1. PEREQ input has an internal pull-down resistor 
2. A20M#, BUSY#, ERROR#, FLT#, FLUSH#, KEN#, and SUSP# inputs each have an internal pull-up resistor. 
3. All inputs at 0.4 or Vcc-O.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA). 
4. Not 100% tested. 

4·4 PRELIMINARY 



4.5 AC Characteristics 

Tables 4-7 and 4-8 list the AC characteristics 
including output delays, input setup require
ments, input hold requirements and output float 
delays. These measurements are based on the 
measurement points identified in Figures 4-1 
and 4-2. The rising clock edge reference level 
V REFC' and other reference levels are shown in 
Table 4-6 below for the Cx486SLC and 
Cx486SLC-y' Input or output signals must cross 
these levels during testing. 

Figure 4-1 shows delay (A and B) and input setup 
and hold times (C and D). Input setup and hold 
times (C and D) are specified minimums, defining 
the smallest acceptable sampling window a 
synchronous input signal must be stable for 
correct operation. 

AC Characteristics 4 

The outputs: An-AI, ADS#, BHE#, BLE#, D/C#, 
HLDA, LOCK#, M1IO#, RPLVAL#, and W/R# 
change only at the beginning of phase one 
(Figure 4-1). DIS-DO (write cycles), RPLSET 
and SUSPA#change at the beginning of phase two. 

The inputs: BUSY#, DIS-DO (read cycles), 
ERROR#, FLT#, HOLD, PEREQ, and READY# 
are sampled at the beginning of phase one 
(Figure 4-1). AlOM#, FLUSH#, INTR, KEN#, 
NA#, NMI, and SUSP# are sampled at the begin
ning of phase two. 

Table 4·6. Measurement Points for Switching Characteristics 

SYMBOL Cx486SLC Cx486SLC-V UNITS 

VREFe 2 1.5 V 

VREF 1.5 1.2 V 

VIHe Vee - 0.8 Vee - 0.5 V 

VILe 0.8 0.6 V 

VIHD 3 2.3 V 

VILD 0 0 V 

PRELIMINARY 4·5 



CLK2: 

OUTPUTS: 

A23-Al, ADS#, BHE#, 
BLE#, D/C, HLDA, 

LOCK#, M/lO#, 
RPLVAL#, W/R# 

OUTPUTS: 

Dl5-DO, RPLSET, 
SUSPA# 

INPUTS: 
A20M#, FLUSH#, 

INTR, KEN#, 
NA#, NMI#, SUSP# 

INPUTS: 

BUSY#, Dl5-DO, 
ERROR#, FLT#, HOLD, 

PEREQ, READY# 

AC Characteristics 

Tx 

\{HD 

V;lD 

\{HD 

LEGEND: A - Maximum Output Delay Specification 
B - Minimum Output Delay Specification 
C - Minimum Input Setup SpecifiGation 
D - Minimum Input Hold Specification 

MAX 

~EF 
Valid 
Output n+l 

17002200 

Figure 4· 1. Drive Level and Measurement Points for Swikhing Characteristics 

4·6 PRELIMINARY 



AC Characteristics 4 

~------------Tl------------~ 

CLK2 

Figure 4·2. CLK2 Timing Measurement Points 

PRELIMINARY 4·7 



Cv.txru 
7Ad.o~ing the Standards 

AC Characteristics 

Table 4-7. AC Characteristics for Cx486SLC-Y20 
Cx486SLC-V20: vee = 2.7 to 3.6 V, Te = 0° to 85°C 

20 MHz 

SYMBOL PARAMETER MIN MAX FIGURE NOTES 

ens) ens) 

Tl CLK2 Period 25 4-2 Note 1 
T2a CLK2 High Time 8 4-2 Note 2 
T2b CLK2 High Time 5 4-2 Note 2 
na CLK2 Low Time 8 4-2 Note 2 
nb CLK2 Low Time 6 4-2 Note 2 
T4 CLK2 Fall Time 8 4-2 Note 2 
TS CLK2 Rise Time 8 4-2 Note 2 
T6 A23-Al Valid Delay 4 30 4-4,4-6 CL = 50pF 
T7 A23-Al Float Delay 4 32 4-6 Note 3, Note 6 

T8 BHE#, BLE#, LOCK# Valid Delay 4 30 4-4, 4-6 CL = 50 pF 

T9 BHE#, BLE#, LOCK# Float Delay 4 32 4-6 Note 3 
TlO ADS#, D/C#, MIlO# 4 26 4-4,4-6 CL = 50 pF 

RPLVAL#, WIR#Valid Delay 

Tll ADS#, D/C#, M1IO#, RPLVAL#, 6 30 4-6 Note 3 
W IR# Float Delay 

Tl2 DlS-DO Write Data, RPLSET, 4 38 4-4,4-5A CL = 50 pF, Note 5 
SUSPA# Valid Delay 

Tl2A DIS-DO Write Data Hold Time 4 4-SB 

Tl3 DlS-DO Write Data, RPLSET, 4 27 4-6 Note 3 
SUSPA# Float Delay 

Tl4 HLDA Valid Delay 4 28 4-6 CL - 50pF 

TlS NA#, SUSP#, FLUSH#, KEN#, 5 4-3 

A20M# Setup Time 
Tl6 NA#, SUSP#, FLUSH#, KEN#, 12 4-3 

A20M# Hold Time 
Tl9 READY# Setup Time 12 4-3 
T20 READY# Hold Time 4 4-3 
T21 D15-DO Read Data Setup Time 9 4-3 
T22 D15-DO Read Data Hold Time 6 4-3 
T23 HOLD Setup Time 17 4-3 
T24 HOLD Hold Time 5 4-3 
T25 RESET Setup Time 12 4-7 
T26 RESET Hold Time 4 4-7 
T27 NMI, INTR Setup Time 16 4-3 Note 4 
T28 NMI, INTR Hold Time 16 4-3 Note 4 
T29 PEREQ, ERROR#, BUSY# 14 4-3 Note 4 

Setup Time 
no PEREQ, ERROR#, BUSY# 5 4-3 Note 4 

Hold Time 

4-8 PRELIMINARY 



AC Characteristics 

Table 4·8. AC Characteristics for Cx486SLC-25, Cx486SLC-V25 
486SLC-25: vee = 5.0 V ± 10%, Te = 00 to 100°C 486SLC-V25: Vee = 2.7 to 3.6 V, Te = 0° to 85° C 

25 MHz 

SYMBOL PARAMETER MIN MAX FIGURE NOTES 

(ns) (ns) 

11 CLK2 Period 20 4-2 Note 1 
12a CLK2 High Time 7 4-2 Note 2 
12b CLK2 High Time 4 4-2 Note 2 
T3a CLK2 Low Time 7 4-2 Note 2 
T3b CLK2 Low Time 5 4-2 Note 2 
14 CLK2 Fall Time 7 4-2 Note 2 
T5 CLK2 Rise Time 7 4-2 Note 2 
T6 A23-Al Valid Delay 4 21 4-4,4-6 CL = 50 pF 
17 A23-Al Float Delay 4 30 4-6 Note 3, Note 6 

T8 BHE#, BLE#, LOCK# Valid Delay 4 21 4-4,4-6 CL = 50 pF 
T9 BHE#, BLE#, LOCK# Float Delay 4 30 4-6 Note 3 
110 ADS#, D/C#, MJIO#, 4 21 4-4,4-6 CL = 50 pF 

RPLVAL#, WIR# Valid Delay 
III ADS#, D/C#, MJIO#, 4 30 4-6 Note 3 

RPLVAL#, WIR# Float Delay 
112 DIS-DO Write Data, RPLSET, 7 27 4-4,4-5A CL = 50 pF, Note 5 

SUSPA# Valid Delay 
Il2a DIS-DO Write Data Hold Time 2 4-5B 
113 015-DO Write Data, RPLSET, 4 22 4-6 Note 3 

SUSPA# Float Delay 
114 HLDA Valid Delay 4 22 4-6 CL = 50 pF 

115 NA#, SUSP#, FLUSH#, KEN#, 5 4-3 
A20M# Setup Time 

116 NA#, SUSP#, FLUSH#, KEN#, 3 4-3 
A20M# Hold Time 

119 READY# Setup Time 9 4-3 
120 READY# Hold Time 4 4-3 
T21 DIS-DO Read Data Setup Time 7 4-3 
122 DIS-DO Read Data Hold Time 5 4-3 

T23 HOLD Setup Time 9 4-3 
124 HOLD Hold Time 3 4-3 
125 RESET Setup Time 8 4-7 
126 RESET Hold Time 3 4-7 
127 NMI, INTR Setup Time 6 4-3 Note 4 
128 NMI, INTR Hold Time 6 4-3 Note 4 
129 PEREQ, ERROR#, BUSY# 6 4-3 Note 4 

Setup Time 
T30 PEREQ, ERROR#, BUSY# 5 4-3 Note 4 

Hold Time 

PRELIMINARY 

4 

4-9 



AC Characteristics 

AC Characteristics Notes: 
1. Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz. 
2. These parameters are not tested. They are guaranteed by design characterization. 
3. Float condition occurs when maximum output current becomes less than Iu in magnitude. Float is not 100% tested. 
4. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure 

recognition within a specific CLK2 period. 
5. T12 minimum time is not 100% tested. 
6. SUSPA# floats only in response to activation ofFLT#. SUSPA# does not float during a hold acknowledge state. 

CLK2 

READY# 

HOLD 

DlS-DO 

PEREQ, ERROR#, 
FLT#,BUSY# 

NA#, SUSP#, FLUSH#, 
KEN#,A20M# 

NMI,INTR 

Figure 4-3. Input Signal Setup and Hold Timing 

4-10 PRELIMINARY 



AC Characteristics 

CLK2 

BHE#, BLE#, 
LOCK# 

ADS#, 
D/C#,MlIO#, 

RPLVAL#, W/R# 

A23-Al 

015-00 (Write Data), 
RPLSET, SUSPA# 

Figure 4·4. Output Signal Valid Delay Timing 

Tl 

CLK2 

W/R# 

DIS-DO 
17081:00 

Figure 4·5A. Data Write Cycle Valid Delay Timing 

PRELIMINARY 

1702500 

4 



CLK2 

BHE#, BLE#, 
LOCK# 

ADS#, 
D/C#, MlIO#, 

RPLVAL#, W/R# 

A23-AI 

DIS-DO (Write Data), 
RPLSET,SUSPA# 

HillA 

AC Characteristics 

CLK2 

W!R# 

DIS-DO 1708700 

Figure 4·5B. Data Write Cycle Hold Timing 

Tl4_~+=;c;-__ "'i MAX Tl4 -",-~-o=o---~ MAX 

Figure 4.6. Output Signal Float Delay and HLDA Valid Delay Timing 

4·12 PRELIMINARY 

1= 



AC Characteristics 4 

-E--------- Reset---c~---Initialization Sequence----7» 

¢lor¢2 ¢1 or ¢2 ¢2 ¢1 

CLK2 

RESET 

Figure 4·7. RESET Setup and Hold timing 

PRELIMINARY 4·13 





CYRIX Cx:486SLCTMMICROPROCESSOR 

Cv.tx. 7A:Jva'!;ing the Standards 

High-Peifonnance 486-Class with 
Single-Cycle Execution and On-Chip Cache 

5. Mechanical Specifications 

5. 'I Pin Assignments 

The pin assignments for the Cx486SLC are shown in Figure 5-1. The signal names are shown in 
Table 5-1 sorted by pin numbers and in Table 5-2 sorted by signal names. 

DO 
Vss 

HLDA 
HOLD 

Vss 
NA# 

READY# 
Vee 
Vee 
Vee 

Vee 
Vss 

Mf[O# 
D/C# 

WIR# 

o 

TOP VIEW 

75 A20 
74 AI9 
73 AI8 
72 AI7 
71 Vee 
70 AI6 
69 Vee 
68 Vss 
67 Vss 
66 AI5 
65 AI4 
64 Al3 
63 Vss 
62 AI2 
61 All 
60 AID 
59 A9 
58 A8 
57 Vee 
56 A7 

53 A4 
52 A3 
51 A2 

~r~~~ 

V ~~~~~~~~~~~~~~~~~~~~~~~~~ V 
NC ~ No Connect 1706900 

Figure 5·1. Pin Assignments 

PRELIMIARY 5·1 



Pin Assignments 

Table 5-1. Signal Names Sorted by Pin Number 

PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL 
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME 

1 DO 21 Vee 41 Vss 61 All 81 Dl5 
2 Vss n Vss 42 Vee 62 A12 82 Dl4 
3 HLDA 23 MlIO# 43 SUSP# 63 Vss 83 Dl3 
4 HOLD 24 D/C# 44 SUSPA# 64 Al3 84 Vee 
5 Vss 25 W!R# 45 RPLSET 65 A14 85 Vss 
6 NA# 26 LOCK# 46 RPLVAL# 66 A15 86 D12 
7 READY# 27 N/C 47 N/C 67 Vss 87 Dll 
8 Vee 28 FLT# 48 Vee 68 Vss 88 D10 
9 Vee 29 KEN# 49 Vss 69 Vee 89 D9 
10 Vee 30 FLUSH# 50 Vss 70 A16 90 D8 
11 Vss 31 A20lvi# 51 A2 71 Vee 91 Vee 
12 Vss 32 Vee 52 A3 72 A17 92 D7 
13 Vss 33 RESET 53 A4 73 A18 93 D6 
14 Vss 34 BUSY# 54 AS 74 A19 94 D5 
15 CLK2 35 Vss 55 A6 75 A20 95 D4 
16 ADS# 36 ERROR# 56 A7 76 All 96 D3 
17 BLE# 37 PEREQ 57 Vee 77 Vss 97 Vee 
18 Al 38 NMI 58 A8 78 Vss 98 Vss 
19 BHE# 39 Vee 59 A9 79 An 99 D2 
20 N/C 40 INTR 60 AlO 80 A23 100 Dl 

5·2 PRELIMINARY 



Pin Assignments Ii 

Table 5.2. Pin Numbers Sorted by Signal Name 

SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN 
NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. 

Al 18 A2l 76 Dll 87 PEREQ 37 Vee 97 
Al 51 A22 79 Dl2 86 READY# 7 Vss 2 
A3 52 Al3 80 DB 83 RESET 33 Vss 5 
A4 53 ADS# 16 Dl4 82 RPLSET 45 . Vss 11 

A5 54 AlOM# 31 Dl5 81 RPLVAL# 46 Vss 12 
A6 55 BHE# 19 D/C# 24 SUSP# 43 Vss 13 

A7 56 BLE# 17 ERROR# 36 SUSPA# 44 Vss 14 
A8 58 BUSY# 34 FLT# 28 Vee 8 Vss 22 

A9 59 CLIQ 15 FLUSH# 30 Vee 9 Vss 35 
AlO 60 .DO 1 HOLD 4 Vee 10 Vss 41 
All 61 Dl 100 HLDA 3 Vee 21 Vss 49 

A12 62 D2 99 INTR 40 Vee 32 Vss 50 
AB 64 D3 96 KEN# 29 -Vee 39 Vss 63 
A14 65 D4 95 LOCK# 26 Vee 42 Vss 67 
AI5 66 D5 94 M1IO# 23 Vee 48 Vss 68 
A16 70 D6 93 NA# 6 Vee 57 Vss 77 
A17 72 D7 92 N/C 20 Vee 69 Vss 78 
A18 73 D8 90 N/C 27 Vee 71 Vss 85 
A19 74 D9 89 N/C 47 Vee 84 Vss 98 
AlO 75 DlO 88 NMI 38 Vee 91 W/R# 25 

PRELIMINARY 5-3 



Package Dimensions 

5.2 Package Dimensions 

TOP SIDE VIEW 

Note: All dimensions in inches (millimeters). 
'Note: For metal BQFP package only: 0.735 ± 0.003 (18.64 ± 0.08) 

rr\'-" 
0 00 
o~ 
ci° 
+1 +1 

011"\ 
II"\~ 
I'- 01 ........ 
o~ 

* * 

11"\ ,-.. 
orr\ 
O""'! 
ci° 
+1 +1 

011"\ 
00C'! 
OON 
c:i.c::!. 

rr\'-" 
0 00 
O~ 
0 0 
+1 +1 
0'0 
O~ 
OIN 

. N 
O~ 

I U ~170'OOlO 
: _ ~4.32..o.251-0.26) 

0.020 MIN 
(0.51) 

1703001 

Figure 5-2. 100-Pin Bumpered QFP Package Dimensions 

5·4 PREUMINARY 



Thermal Characteristics 5 

5.3 Thermal Characteristics 

The Cx486SLC is designed to operate when case temperature is between 0° - 100° C and between 
0° - 85° C for the Cx486SLC-V. The case temperature is measured on the top center of the package. 
The maximum die temperature (T ) and the maximum ambient temperature (T ) can be calcu-

Jrnax Jrnax 
lated using the following equations. 

where: 

T =T+P xe 
J max c max JC 

T =T-P xe 
a max J max JC 

T. 
Jmax 

T 
C 

P 
max 

e 
JC 

T 
• max 

= Maximum average junction temperature (OC) 
= Case temperature at top center of package (OC) 

= Maximum device power dissipation 0N) 

= Junction-to-case thermal resistance COCJW) 
= Maximum ambient temperature (OC) 

= Average junction temperature (OC) 

= Junction-to-ambient thermal resistance coaw) 

Values for e. and e are gr'ven in Table 5-3 for various airflows. 
Ja JC 

Table 5·3. Package Thermal Res~sIance and AirFlow 

n.enna. Resistance loc/W) 

IOO·LEAD IOO·LEAD 
AIRFLOW 
In/SEC) 

PLASnc BQFP metal BQFP 

e. ejC e. e. 
l" J' JC 

0 23 2 28 2 

100 21 2 25 2 

250 17 2 21 2 

500 l3 2 16 2 

PRELIMINARY 5·5 





CYRIX Cx486SLC™MICROPROCESSOR 
High-Peifonnance 486-Class CPU with 
Single-Cycle Execution and On-Chip Cache 

6. INSTRUCTION SET 

This section summarizes the Cx486SLC instruc
tion set and provides detailed information on the 
instruction encodings. All instructions are listed 
in the Instruction Set Summary Table 
(Table 6-16), which provides information on the 
instruction encoding, which flags are effected, 
and the instruction clock counts for each instruc
tion. The clock count values are based on the 
assumptions described in section 6.3. 

6.1 General Instruction 
Format 

All of the Cx486SLC machine instructions follow 
the general instruction format shown in Figure 
6-1. These instructions vary in length and can 
start at any byte address. An instruction consists 
of one or more bytes that can include: prefix 
byte(s), at least one opcode byte(s), mod rim 
byte, s-i-b byte, address displacement byte(s) and 
immediate data byte(s). An instruction can be as 
short as one byte and as long as 15 bytes. If there 
are more than 15 bytes in the instruction a 
general protection fault (error eo de of 0) is 
generated. 

I P P P P P P P PiT T T T T T TTl mod R R R rim I ss index base I d321161s1 none id321161s1 none 
7 07 0765320765320 

optional prefix byte(s) op-code mod rim s-i-b address 
(one or two bytes) byte byte displacement 

immediate 
data 

(4,2, 1 bytes, 
or none) P = -prefix bit 

T = opcade bit 
R = opcode bit or reg bit 

~-~~~~v-~~~~-~ (4,2,1 bytes, 
or none) 

register and address 
mode specifier 

Figure 6·1. General Instruction Format 

PRELIMINARY 

1703101 

6-'11 



Instruction Fields 

6.2 Instruction Fields 

The general instruction format shows the larger 
fields that make up an instruction. Certain 
instructions have smaller encoding fields that 
vary according to the class of operation. These 

fields define information such as the direction of 
the operation, the size of the displacements, 
register encoding and sign extension. All the 
fields are described in Table 6-1 and the subse
quent paragraphs provide greater detail. 

Table 6· 1. Instruction Fields 

FIELD NAME DESCRIPTION NUMBER OF BITS 

Prefix Specifies segment register override, address and operand size, repeat 8 per byte 

elements in string instruction, LOCK# assertion. 

Opcode Identifies instruction operation. lor 2 bytes 

w Specifies if data is byte or full size (full size is either 16 or 32 bits). 1 

d Specifies direction of data operation. 1 

s Specifies if an immediate data field must be sign-extended. 1 

reg General register specifier. 3 
mod rim Address mode specifier. 2 for mod; 3 for rim 

ss Scale factor for scaled index address mode. 2 

index General register to be used as index register. 3 

base General register to be used as base register. 2 

sreg2 Segment register for CS, SS DS and ES. 2 

sreg3 Sigment register for CS, SS, DS ES FS and GS. 3 

eee Control, debug and test register specifier. 3 

Address Address displacement operand. 1,2 or 4 bytes 

displacement 

Immediate data Immediate data operand. 1, 2 or 4 bytes 

6·2 PRELIMINARY 



6.2.1 Prefixes 

Prefix bytes can be placed in front of any instruc
tion. The prefix modifies the operation of the 
next instruction only. When more than one 
prefix is used, the order is not important. There 
are five type of prefixes as follows: 

1. Segment Override explicitly specifies which 
segment register an instruction will use. 

2. Address Size switches between 16- and 
32-bit addressing. Selects the inverse of the 
default. 

3. Operand Size switches between 16- and 
32-bit addressing. Selects the inverse of the 
default. 

Instruction Fields 6 

4. Repeat is used with a string instruction 
which causes the instruction to be repeated 
for each element of the string. 

5. Lock is used to assert the hardware LOCK# 
signal during execution of the instruction. 

Table 6-2 lists the encodings for each of the 
available prefix bytes. The operand size and 
address size prefixes allow the individual overrid
ing of the default value for operand size and 
effective address size. The presence of these 
prefixes select the opposite (non-default) oper
and size and/or effective address size as the case 
maybe. 

Table 6·2. Instruction Prefix Summary 

PREFIX ENCODING DESCRIPTION 

ES: 26h Overide segment default, use ES for memory operand 

CS: 2Eh Overide segment default, use CS for memory operand 

SS: 36h Overide segment default, use SS for memory operand 

DS: 3Eh Overide segment default, use DS for memory operand 

FS: 64h Overide segment default, use FS for memory operand 

GS: 65h Overide segment default, use GS for memory operand 

Operand Size 66h Make operand size attribute the inverse of the default 

Address Size 67h Make address size attribute the inverse of the default 

LOCK FOh Assert LOCK# hardware Signal. 

REPNE F2h Repeat the follOwing string instruction. 

REPIREPE F3h Repeat the follOwing string instruction. 

PRELIMINARY 6·3 



Instruction Fields 

6.2.2 Opcode Field 

The opcode field is either one or two bytes in 
length and specifies the operation to be per
formed by the instruction. Some operations have 
more than one ol=lCOde, each specifying a differ
ent form of the operation. Some opcodes name 
instruction groups. For example, opcode Ox80 
names a group of operations that have an immediate 
operand, and a register or memory operand. The 

6.2.3 w Field 

group opcodes use an opcode extension field of 3 
bits in the follOwing byte, called the MOD RIM 
byte, to resolve the operation type. Opcodes for 
the entire Cx486SLC instruction set are listed in 
the Instruction Set Summary Table. The opcodes 
are given in hex values unless shown within 
brackets ([ D. Values shown in brackets are 
binary values. 

The I-bit w field indicates the operand size during 16- and 32- bit data operations. 

Table 6-3. w Field Encoding 

w fle!d OPIi!U~M~ S!ZIi OPERAND SIZE 
, 6-81T DATA OPERATIONS 32-81T DATA OPERATIONS 

0 8 Bits 8 Bits 

1 16 Bits 32 Bits 

6.2.4 d Field 

The d field determines which operand is taken as the source operand and which operand is taken as 
the destination. 

Table 6-4. d Field Encoding 

d FIELD DIRECTION OF OPERATION SOURCE OPERAND DESTINATION OPERAND 

0 Register --> RegisterlMemory reg mod rim or 

mod ss-index-base 

1 RegisterlMemory --> Register mod rim or reg 
mod ss-index-base 

6-4 PRELIMINARY 



Instruction Fields 6 

6.2.5 reg Field 

The reg field determines which general registers are to be used. The selected register is dependent on 
whether 16- or 32- bit operation is current and the status of the "w" bit. 

Table 6-5. reg Field Encoding 

reg 16·BIT 32·BIT 16·BIT 16.BIT 32·BIT 32.BIT 
OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION 
w Field Not w Field Nol w=O w=1 w=O w=1 

Present Present 

000 AX EAX AL AX AL EAX 

001 CX ECX CL CX CL ECX 
010 DX EDX DL DX DL EDX 
all BX EBX BL BX BL EBX 
100 SP ESP AH SP AH ESP 
101 BP EBP CH BP CH EBP 
110 51 ESl DH 51 DH ESl 
III DI EDI BH DI BH EDI 

PRELIMINARY 6-5 



Instruction Fields 

6.2.6 mod and rim Fields 

The mod and rim sub-fields, within the mod rim 
byte, select the type of memory addressing to be 
used. Some instructions use a fixed addressing 
mode (e.g., PUSH or POP) and therefore, these 

fields are not present. Table 6-6 lists the address
ing method when 16-bit addressing is used and a 
mod rim byte is present. Some mod rim field 
encodings are dependent on the w field and are 
shown in Table 6-6A. 

Table 6·6. mod rim Field Encoding 
mod rim 16.BIT ADDRESS MODE 32·BIT ADDRESS MODE 

with mod rim Byte with mod rim Byte and 
No s·i·b Byte Present 

00000 DS:[BX+Slj DS:[EAXj 

00 001 DS:[BX+DIj DS:[ECXj 

00 010 55: [BP+Slj DS:[EDXj 

00 all 55: [BP+DIj DS:[EBXj 

00 100 DS:[SI] s-i-b is present (See 6.2.7) 

00 101 DS:[DI] DS:[d32j 

00 110 DS:[d16j DS:[ESlj 

00 III DS:[BXj DS:[EDI] 

01000 DS: [BX+SI+d8j DS: [EAX+d8j 

01001 DS: [BX+DI+d8j DS:[ECX+d8j 

01010 55: [BP+SI+d8j DS:[EDX+d8j 

01011 55: [BP+DI+d8j DS:[EBX+d8j 

01100 DS:[5I+d8j s-i-b is present (See 6.2.7) 

01 101 DS:[DI+d8j 55: [EBP+d8j 

01110 55: [BP+d8j DS: [ESI+d8j 

01 111 DS:[BX+d8j DS:[EDI+d8j 

10 000 DS: [BX+SI+d16j DS: [EAX+d32j 

10001 DS: [BX+DI+d16j D5:[ECX+d32j 

10010 55: [BP+SI+d16j DS:[EDX+d32j 

10011 55: [BP+DI+d16j D5: [EBX+d32j 

10100 DS: [SI+d16j s-i-b is present (See 6.2.7) 

10 101 DS: [DI+d16j 55: [EBP+d32j 

10 110 55: [BP+d16j DS: [ESI+d32j 

10111 D5: [BX+d16j DS:[EDI+d32j 

11 000-11 111 See Table 6-6A See Table 6-6A 

6·6 PRELIMINARY 



Instruction Fields 6 

Table 6·6A. mod rim Field Encoding Dependent on w Field 

mod rim 16·BIT 16.BIT 32·BIT 32·81T 
OPERATION OPERATION OPERATION OPERATION 

w=O w=1 w=O w=1 

11 000 AL AX AL EAX 

1100l CL CX CL ECX 
11010 DL DX DL EDX 
11 Oll' BL BX BL EBX 
11100 AH SP AH ESP 
11101 CH BP CH EBP 
11110 DH SI DH ES1 
11 111 BH DI BH EDI 

PRELIMINARY 6·7 



Cyrtx. , 

Instruction Fields 

6.2.7 mod and base Fields 

In Table 6-6A, the note "s-i-b present" for certain 
entries forces the use of the mod and base field as 
listed in Table 6-7. 

Table 6.7. mod base Field Encoding 

mod base 32-BIT ADDRESS MODE 
with mod rim and 
s-i-b Bytes Present 

00000 OS:[EAX+(scaled indexl] 

00001 OS:[ECX+(scaled indexl] 

00010 OS:[EOX+(scaled indexl] 

00011 OS:[EBX+(scaled indexl] 

00100 55: [ESP+(scaled indexl] 

00101 OS: [d32+(scaled indexl] 

00110 OS: [ESI+(scaled indexl] 

00 111 OS: [EDI +(scaled indexl] 

01000 OS: [EAX+(scaled indexl+d8] 

01 001 OS: [ECX+(scaled indexl+d8] 

01010 OS:[EOX+(scaled indexl+d8] 

01011 OS: [EBX+(scaled indexl+d8] 

01100 SS:[ESP+(scaled indexl+d8] 

01101 SS: [EBP+(scaled indexl+d8] 

01 IlO OS:[ESI+(scaled indexl+d8] 

01111 OS: [EDI+(scaled indexl+d8] 

10 000 OS: [EAX+(scaled indexl+d32] 

10001 OS: [ECX+(scaled indexl+d32] 

10 010 OS: [EOX+(scaled indexl+d32] 

100ll OS: [EBX+(scaled indexl+d32] 

10100 55: [ESP+(scaled indexl+d32] 

10 101 SS: [EBP+(scaled indexl+d32] 

10 110 OS: [ESI+(scaled indexl+d32] 

10 III OS:[EDI+(scaled indexl+d32] 

6.2.8 55 Field 

The ss field (Table 6-8) specifies the scale factor 
used in the offset mechanism for address calcula
tion. The scale factor multiplies the index value 
to provide one of the components used to 
calculate the offset address. 

Table 6·8. ss Field Encoding 

ss FIELD SCALE FACTOR 

00 xl 

01 x2 

10 x4 

11 x8 

6.2.9 index Field 

The index field (Table 6-9) specifies the index 
register used by the offset mechanism for offset 
address calculation. When no index register is 
used (index field = 100), the ss value must be 00 
or the effective address is undefined. 

Table 6·9. index Field Encoding 

index FIELD INDEX REGISTER 

000 EAX 

001 ECX 

010 EOX 

Oll EBX 

100 none 

101 EBP 

110 ESI 

III EDI 

6·8 PRELIMINARY 



Instruction Fields 6 

6.20'11 0 sreg2 Field 602. 'II 'II sreg3 Field 

The sreg2 field (Table 6-10) is a 2-bit field that 
allows one of the four 286-type segment registers 
to be specified. 

The sreg3 field (Table 6-11) is 3-bit field that is 
similar to the sreg2 field, but allows use of the FS 
and GS segment registers. 

Table 6· 'I o. sreg2 Field Encoding Table 6· 'I 1. sreg3 Field Encoding 

sreg2 FIELD SEGMENT REGISTER SELECTED sreg3 FIELD SEGMENT REGISTER SELECTED 

00 ES 000 ES 

01 CS 001 CS 

10 55 010 55 

11 OS all os 
100 FS 

101 GS 

110 undefined 

111 undefined 

6.2.12 eee Field 

The eee field is used to select the control, debug and test registers as indicated in Table 6-12. The 
values shown in Table 6-12 are the only valid encodings for the eee bits. 

Table 6· '112. eee Field iEncoding 

eee FIELD REGISTER TYPIE BASE REGISTER 

000 Control Register CRO 

010 Control Register CR2 

all Control Register CRJ 

000 Debug Register ORO 

001 Debug Register DRI 

010 Debug Register DR2 

all Debug Register DRJ 

110 Debug Register DR6 

III Debug Register DR7 

all Test Register TRJ 

100 Test Register TR4 

101 Test Register TRS 

110 Test Register TR6 

111 Test Register TR7 

PRELIMINARY 6·9 



Flags 

6.3 Flags 

The Instruction Set Summary Table lists nine flags 
that are affected by the execution of instuctions. 
The conventions shown in Table 6-13 are used to 
identify the different flags. Table 6-14 lists the 
conventions used to indicate what action the 
instuction has on the particular flag. 

Table 6· 1 3. Flag Abbreviations 

ABBREVIATION NAME OF FLAG 

OF Overflow Flag 

DF Direction Flag 

IF Interrupt Enable Flag 

TF Trap Flag 

SF Sign Flag 

ZF Zero Flag 

AF Auxiliary Flag 

PF Parity Flag 

CF Carry Flag 

Table 6· 14. Action of Insllvction on Flag 

INSTUCTION ACTION TABLE 
SYMBOL 

x Flag is modified by the instruction. 

- Flag is not changed by the instruction. 

0 Flag is reset to "0". 

1 Flag is set to "1". 

6.4 

6.4.1 

Clock Counts 

Assumptions 

The following assumptions have been made in 
presenting the clock count values for the 
individual instructions: 

1. The instruction has been prefetched, 
decoded and is ready for execution. 

2. Bus cycles do not require wait states. 
3. There are no local bus HOLD requests 

delaying processor access to the bus. 
4. No exceptions are detected during instruc-

tion execution. ~ 
5. If an effective address is calculated, it does 

not use two general register components. 
One register, scaling and displacement can 
be used within the clock count shown. 
However, if the effective address calcula
tion uses two general register components, 
add 1 clock to the clock count shown. 

6. All clock counts assume aligned 16-bit 
memorylIO operands for cache miss 
counts. 

7. If instructions access a misaligned 16-bit 
operand or a 32-bit operand on even 
address, add 2 clocks for read or write and 
add 4 clock counts for read and write. 

S. If instructions access a 32-bit operand on 
odd addresses, add 4 clocks for read or 
write and add S clocks for read and write. 

6·10 PRELIMINARY 



Clock Counts 6 

6.4.2 Abbreviations 

The clock counts listed in the Instruction Set Summary Table are grouped by operating mode and 
whether there is a registerlcache hit or a cache miss. In some cases, more than one clock count is 
shown in a column for a given instruction, or a variable is used in the clock count. The abbreviations 
used for these conditions are listed in Table 6-15. 

Table 6·1 5. Clock Count Abbreviations 

CLOCK EXPLANATION 
COUNT 

SYMBOL 

/ Register operand/memory operand. 

n Number of times operation is repeated. 

L Level of the stack frame. 

I Condition jump taken I conditional jump not taken. 

\ CPL s::: IOPL \ CPL > IOPL. 

PRELIMINARY 



0\ • .. 
~ 

I 
!: 
I 

= 
== 

Table 6- 'Ii 6. Instfl'ucticln Set lSummary 
REAL PROTECTED 

INSTRUCT~ON OPICODE FLAGS MODE CLOCK MODE CLOCK NOTES I 

COUNT COUNT ! 

OF DF IF TF SF ZF AI' PF CF Reg/ ,I Cache Reg/ I Cache Real I Prolected I 
C'ache HII Miss Cache Hit Miss Mode Mode I 

[ AM-AsciI AdjilltALajte; Add - - J 37 - . [ - . - . -. x . x [ 4 4 

[AADASCII Adjillt AX bejore Divide -IDs -OA --- - - -1-.-.-.- ~. ~ -x -. -x -.-[ - 4· -1- -- -r . 4 -1- - . 

[AAMASCIiAdjust AX ajter Multiply 1 D4 OA . - .-:-;;- -;---: -x - .- [ =lZ=::r ---1- - 16 - -1- - - -1- - - 1 -I 
IAASASCIIAdjilltALajterSubtract - - - J:lF -- - - - - ---r -- ~ . - .. x . x ·4 - - r 4 

ADC Add with Carry 
Register to Register 1 [OOdw[ [11 reg r/m[ 
Register to Memory 1 [OOOW[ [mod reg rim] 

Memory to Register 1 [OOlw] [mod reg rim] 
Immediate to Register/Memory 8 [OOsw] [mod 010 r/m]# 
Immediate to Accumulator 1 [OIOw] # 

ADD Integer Add 
Register to Register o [OOdw] [11 reg rim] 
Register to Memory O· [OOOw] [mod reg rim] 
Memory to Register o [OOlw] [mod reg rim] 
Immediate to RegisterlMemoty 8 [OOsw] [mod 000 r/Jp]# 
Immediate to Accumulator o [OlOw] # 

AND Boolean AND 
Register to Register 2 [OOdw] [11 reg rim] 
Register to Memory 2 [OOOw] [mod reg rim] 
Memory to Register 2 [OOlw] [mod reg rim] 
Immediate to RegisterlMemory 8 [OOsw] [mod 100 r/m]# 
Immediate to Accumulator 2 [0 I Ow] # 

--------- -- --- --- --

ARPL Adjust Requested Privilege Level 
FromRegisterltv1emory 63 [mod reg rim] 

x - x x x x x 

x - x x x x x 

0 . x x - x 0 

- - -: - - X - - -

# = immediate data ++ =' 16-bit displacement x '" modified 
+ '" 8-btt dtsplacement +++ '" 32-bit displacement (fun) - '" unchanged 

1 1 
3 5 3 
3 5 3 

1/3 5 1/3 
1 1 

1 1 
3 5 3 
3 5 3 

1/3 5 1/3 
1 1 

1 1 
3 5 3 
3 5 3 

1/3 5 1/3 
1 I 

b h 
5 
5 
5 

b h 
5 
5 
5 

b h 
5 
5 
5 

i 
57 
;! 



! 
I'" 

i 
i 
:= 

0\ • 
"" " 

INSTRUCTION 

BOUND Check Array Boundaries 
If Out of Range (lnt 5) 
IfIn Range 

BSF Scan Bit Forward 
RegisterlMemoty, Register 

BSR Scan Bit Reverse 
RegisterlMemory, Register 

OPCODE 

62 [mod reg rim] 

OF BC [mod reg rim] 

OF BC [mod reg rim] 

FLAGS 

OF DF IF TF SF XF AF PI' CF 

- - - - - x - - -

- - - - - x - - -

REAL PROTECTED 
MODE CLOCK MODE CLOCK 

COUNT COUNT 

Regl I Cache 
Cache Hit Miss 

Regl I Cache 
Cache Hit Miss 

I BSWAP Byte Swap I OF C [1 reg] -- r--:----- --=- -:- ~ -:- - 4 . 4 

BT Test Bit 
RegisterlMemol)', Immediate 
RegisterlMemory, Register 

BTC Test Bit and Complement 
RegisterlMemoty, Immediate 
RegisterlMemoty, Register 

BTR Test Bit and Reset 
RegisterlMemory, Immediate 
RegisterlMemory, Register 

BTS Test Bit and Set 
RegisterlMemory 
Register (short form) 

OF BA [mod 100 r/m]# 
OF A3 [mod reg rim] 

OF BA [mod III r/m]# 
OF BB [mod reg rim] 

OF BA [mod 110 r/m]# 
OF B3 [mod reg rim] 

OF BA [mod lOI rim] 
OF AB [mod reg rim] 

- - - - - - - - x 

x 

- - - - - - - - x 

- - - - - - - - x 

# '= immediate datu ++" 16-bit displacement x = modified 
+ = 8-blt displacement +++ = 32-bit displacement (full) • " unchanged 

NOTES 

Real I Protected 
Mode Mode 

at 



0-• .. .. 

I c 
:I 

I 
= 

REAL PROTECTED 
INSTRUC'IlION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF 'IF 5F ZF AF PF CF Regl ,I Cache Regl I Cache Real I Protected 
f:ache Hit Miss Cacha Hit Miss Mode Mode 

CALL Subroutine Call - - - b h,j,k,r 

I 

Direct Within Segment E8 +++ 7 7 
RegistcriMemory Indirect Within Segment FF [mod 010 rim] 8/9 10 8/9 10 
Direct Intersegment 9A [unsigned full offset, 12 30 

I 
Can Gate to Same Privilege selector] 41 49 

I 
Call Gate to Differem Privilege No P 83 97 

I 

i 
R* 
~ 

Can Gate to Different Privilege P's 81+4x 95+4x 
16-bit Task to 16-bit TSS 262 263 

I 

16-bit Task to 32-bit TSS 293 317 
16-bit Task to V86 Task 179 206 
32-bit Task to 16-bit TSS 238 258 
32-bit Task to 32-bit TSS 296 340 

32-bit Task to V86 Task 182 229 
Indirect Interscgment FF [mod 011 rim] 14 17 14 34 

Can Gate to Same Privilege 43 51 
Can Gate to Different Privilege No P 85 99 
Can Gate to Different Privilege Level P's 86+4x 100+4x 
16-bit Task to 16-bit TSS 267 268 
16-bit Task to 32-bit TSS 298 322 
16-bit Task to V86 Task 181 211 

32-bit Task to 16-bit TSS 243 263 
32·bit Task to 32-bit TSS 301 345 
32-bit Task to V86 Task 184 230 

[CBWConvertBytetoWord [98--- [=-:-:-.:---------.-[--3-[- - -[- -[- -r---[ 

[ CDQ Convert Doubleword to Quadword [ 99 [ - - -. - - - - J -[ 

[ CLC Clear Carry Flag [Fs I :- =- =- -- -- : .- .- 0-[ -1- I - - [- - 1 - [ - - J - - T -

[ CLD Clear Direction Flag [ FC - 0 - - - -[ -[ 

[CUClearInterruptFlag [FA [ -- 0 - - - . - - [-7 -r-~--7--[==r-- J - ill -] 

[CrrSCI;-rTa;kSwitchedFlag -- - -[OF 06 - - - - I -: -.: - - - - - - - - - T - - - [- - [---[- c- -[ - -1- -[ 

P '" Parameters # = immedmte data ++ = 16~blt displacement x = modified 
+ '" 8-blt displacement +++ = 32-bit displacement (full) - = unchanged 



I c 
51 

i 
= 

0-• ... 
UI 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF IF SF ZF AF PF CP Reg/ ,I Cache Reg/ I Cache Real I Protected 

Cache Hit Miss Cache Hit Miss Mode Mode 

[CMCCompi~enttheCarryFlag- ~F5 T- - - - - - - - x 1- [-

CMP Compare Integers x - - - x x x x x b h 
Register to Register 3 [10dw) [11 reg rIm) 1 1 
Register to Memory 3 [lOlw) [mod reg rIm) 3 5 3 5 
Memory to Register 3 [lOOw) [mod reg rIm) 3 5 3 5 
Immediate to RegisterlMemory, 8 [OOsw) [mod 111 r/m)# 1/3 5 1/3 5 
Immediate to Accumulator 3 [llOw) # 1 I 

ICMPSCompareString 1 A [Ollw) 1 x x x x x ~ 1-7- C 8 J 7 8 b h 

CMPXCHG Compare and Exchange 
Registerl, Register2 
Memory. Register 

OF B [OOOw) [11 reg2 regI) 
OF B [OOOW) [mod reg rIm) 

x---xxxxx 

[CWO Conv;'::; Word to Doubleword 1 99 -I~ - - - - - - - -

~e;ertWordtoDoubleword -]98- - - --I~ ~ ----=- - 3 r 3 

[DM. Dec;malAd~tXLajt-;;Add - - T 27 - - - -- -I - - - x- x-x ~7r4-1- - 4 

[DASDedmdlAdju~tAL~fterSubtract - -:::r2F - x x x x x 4-1--] 4 

DEC Decrement by 1 
RegisterlMemory 
Register (short form) 

DIY Unsigned Divide 
Accumulator by RegisterlMemory 

Divisor: Byte 
Word 
Doubleword 

F [llIw) [modOOI rim) 
4 [I reg] 

F [Ollw) [mod 110 rIm) 

x---xxxx-

- - - - - - -

# = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

14/15 17 14/15 
22123 24 22123 
38/39 40 38/39 

b,e e,h 

17 
24 
40 

--

CD 



o • .. 
o 

! c 
:I ; 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 

OF DF IF " SF :IF AF PF CF Rog/ I C.cho Rog/ I each. 
1:.ch. HII Miss C.ch. HII Miss 

ENTER Enter New Stack Frame e8 ++ [8-bit Level] - - - - - - - - T Level=O 7 7 
Level = 1 10 10 10 

10 I Level(L) > 1 6+4*L 6+4*L 6+4*L 6+4*L 

1 HlT Halt - -- - - - - 11:4 - - -I - - - - - - - - - 3 3 

IDlY lnteger (Signed) Divide 
Accumulator by RegisterlMemory 

Divisor: Byte 
Word 
Doubleword 

IMUl lnteger (Signed) Multiply 
Accumulator by RegisterlMemory 

Multiplier: Byte' 
Word 
Doubleword 

Registerwith RegisterlMemory 
Multiplier: Byte 

Word 
Doubleword 

RegisterlMemory with Immediate to Register2 
Multiplier: Byte 

Word 
Doubleword 

" IN lnput from YO Port 
FixedPon 
Variable Pon 

INC lncrement by 1 
RegisterlMemory 
Register (shon fonn) 

-

F [Ollw] [mod III rIm] 

F [Ollw] [mod 101 rIm] 

OF AF [mod reg rIm] 

6 [1051] [mod reg rIm] # 

E [OIOw] [pon number] 
E [llOw] 

F [lllw] [mod 000 rIm] 
4 [0 reg] 

- - - - - - - - -

x - - - - - - - x 

x---xxxx-

# '" immediate data -++ = 16-bit displacement x = modified 
+ = a-hit displacement +++ .. 32-bit displacement (full) - = unchanged 

19/20 22 19/20 22 
27128 29 27128 29 
43/44 47 43/44 47 

3/5 7 3/5 7 
3/5 7 3/5 7 
719 13 719 13 

3/5 7 3/5 7 
3/5 7 3/5 7 
719 13 7/9 13 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

NOTES 

R •• I I Protected 
Modo Mod. 

b h 

i 
5r 
~ 

b,e e,h 

b h 



" I: 
!: 
~ 
i 

= 

0\ 
I 

"" -.. 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF Z' AF PF CF Reg/ ,I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

I INS Input Stringfram 110 Port I 6 [l1Ow[ J 20 20r 6/N -[Jfio b h, ;,~ 

INT Software Interrupt x 0 b,e g,j,k,r 
INTi CD Ii] 14 16 
Protected Mode: 
Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-bit Task to I6-bit TSS by Task Gate 265 266 
16-bit Task to 32-bit TSS by Task Gate 296 320 
16-bit Task to V86 by Task Gate 177 205 
16-bit Task to I6-bit TSS by Task Gate 241 261 
32-bit Task to 32-bit TSS by Task Gate 299 343 
32-bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
86 to 32-bit TSS by Task Gate 299 343 
86 to Privilege 0 by Trap GateJInt Gate 106 114 
INT3 CC 14 16 
Protected Mode: 
Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-bit Task to 16-bit TSS by Task Gate 265 266 
16-bit Task to 32-bit TSS by Task Gate 296 320 
16-bit Task to V86 by Task Gate 177 205 
32-bit Task to 16-bit TSS by Task Gate 241 261 
32-bit Task to 32-bit TSS by Task Gate 299 343 
32-bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
V86 to 32-bit TSS by Task Gate 299 343 
V86 to Privilege 0 by Trap GateJInt Gate 106 114 

Continued on the next page .,. 

# = immediate daHl ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

at 



o • .. 
CD 

! .. 
i 
i 
== 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGJ5 MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF 1F SF l:F AIF PF CF Reg/ ,I Cache Reg/ I Cache Real I Protected 
Cache Hil Miss Cache Hil Miss Mode Mode 

INT Software Interrupt (Continued) x 0 - - b,e g,j,k,r 
INTO CE 
If OF ==0 1 1 1 1 
If OF==l (INT 4) 15 17 

i >r • Protected Mode: 
Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-bit Task to 16-bit TSS by Task Gate 265 266 
16-bit Task to 32-bit TSS by Task Gate 296 320 
16-bit Task to V86 by Task Gate 177 205 
32-bit Task to 16-bit TSS by Task Gate 241 261 
32-bit Task to 32-bit TSS by Task Gate 299 343 
32-bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
V86 to 32-bit TSS by Task Gate 299 343 
V86 to Privilege 0 by Trap Gate!Int Gate 106 II4 

1 INVD Invalidate Cache 1 OF 08 1 - - - - - - - - - 1 4 4 

1 INVLPG Invalidate TLB Entry 1 OF 01 [mod III rlml - - - - - - - - ---] 4 4 1--- 1-- 1 --

IRET Interrupt Return CF x x x x x x x x x g,h,j,k,r 
Real Mode 14 14 
Protected Mode: 

Within Task to Same Privilege 35 37 
Within Task to Different Privilege 74 78 

16-bit Task to 16-bit Task 259 260 
16-bit Task to 32-bit TSS 290 314 
16-bit Task to V86 Task 173 203 
32-bit Task to 16-bit TSS 235 255 
32-bit Task to 32-bit TSS 295 339 
32-bit Task to V86 Task 176 226 

# = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) = unchanged 



! .. 
i 
i 
= 

o • .. 
'0 

INSTRUcnON 

J~AFlJCJump on BelowlNo! Above or Equal! 
Carry 
8-bit Displacement 
Full Displacement 

JBFJjNA Jump on Below or EquallNo! Above 
8-bit Displacement 
Full Displacement 

OPCODE 

72 + 

OF 82 +++ 

76 + 
OF 86 +++ 

FLAGS 

OF DF IF 1F SF ZF AI PF CF 

- - - - -

- -

REAL PROTECIED 
MODE CLOCK MODE CLOCK NOTES I 

COUNT COUNT 

Ragl .1 Cacha 
Cache Hit Miss 

Ragl 1 Cache 
Cacha Hit Miss 

Raal 1 Protacted 
Mode Modo I 

r 

611 611 
611 611 

'~mp-;;;'CXZe;;;--- Is:':- - .,-- - - - - - - - - ,- 713- ,- 713 -,- ,- ,- -, 

JFlJZ Jump on Equal/Zero 
8-bit Displacement 
Full Displacement 

74 + 
OF 84 +++ 

[JECxzjumponECxZ~ro - J E3 + - - - - - - - - - , . 713 713 - I 

J~GE Jump on LesslNot Greater or Equal 
8-bit Displacement 
Full Displacement 

JLEaNG Jump on Less or EquallNo! Greater 
8-bit Displacement 
Full Displacement 

7C + 
OF 8C +++ 

7E + 
OF 8E +++ 

# = immediate data ++ = 16-bit displacement x '" modified 
+ .. 8-bit displacement +-t+ = 32-bi[ displacement (full) -.. unchanged 

en 



0\ • ~ o 

I c 
! 

= 
= 

INSTRUCTION 

JMP Uru;onditiolUll Jump 
Shon 
Direct within Segment 
RegisterlMemory Indirect Within Segment 
Direct Intersegment 
Call Gate Same Privilege level 
16-bit Task to 16-bit TSS 
16-bit Task to 32-bit TSS 
16-bit Task to V86 Task 
32-bit Task to 16-bit TSS 
32-bit Task to 32-bit TSS 
32-bit Task to V86 Task 

Indirect Intersegment 
Call Gate Same Privilege level 
16-bit Task to 16-bit TSS 
16-bit Task to 32-bit TSS 
16-bit Task to V86 Task 
32-bit Task to 16-bit TSS 
32-bit Task to 32-bit TSS 
32-bit Task to V86 Task 

JNBaAEJjNCJump on Not Below/Above or 
EquolINot Carry 
8-bit Displacement 
Full Displacement 

JNB~AJump on Not Below or Equal/Above 
8-bit Displacement 
Full Displacement 

JN~NZ Jump on Not EqualJNot Zero 
8-bit Displacement 
Full Displacement 

JNl.I]GE Jump on Not Less/Greater or Equal 
8-bit Displacement 
Full Displacement 

OPCODE FLAGS 

OF DF IF 'I'F SF Zl' AF PF CF 

- - - - - - -
EB + 
E9 +++ 
FF [mod 100 rim] 
EA [full offset. selector] 

FF [mod 101 rim] 

- - - - - - - - -

73.+ 
OF 83 +++ 

77 + 
OF 87 +++ 

75 + 
OF 85 +++ 

7D + 
OF 8D+++ 

# = immediate data ++ - 16-bit displacement 
+ .. 8-bit displacement +++ = 32-bit displacement (full) 

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

Reg/ I I Cach. Reg/ I Cacho Real I Protected 
Cache Hit Miss Cacho Hit Miss MH. Mod. 

b hj.k.r 
6 6 
6 6 

6/8 10 6/8 10 

i 
57 
~ 

9 26 
45 45 
265 266 
296 320 
182 209 
241 261 
299 343 
185 232 

11 14 30 30 
47 47 
270 271 
301 325 
184 214 
246 266 
304 348 
187 237 

r 
611 611 

611 611 



'III 
:II 
III 
po -11 
i • 
= 

0. • 
~ ... 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 

OF DF IF 1F SF %F AF PF CF Regl ,I Cache Regl I Cache 
Cache Hil Miss Cache HII Miss 

JNLEaG Jump on Not Less or Equal/Greater 
8-bit Displacement 17F + 
Full Displacement OF SF +++ 

JNO Jump on Not Overflow 
8-bit Displacement 

171 
+ 

Full Displacement OF 81 +++ 

JNP(JPO Jump on Not Parity/Parity Odd 
8-bit Displacement 17B + 
Full Displacement OF SB+++ 

IJNS Jump on Not Sign 
8-bit Displacement 

1
79 

+ 
Full Displacement OF 89+++ 

IJO Jump on Overflow 
8-bit Displacement 

1
70 

+ 
Full Displacement OF 80+++ 

JP(JPEjump on ParitylParity Even 
8-bit Displacement 17A + 
Full Displacement OF SA+++ 

JS Jump on Sign 
8-bit Displacement 

1
78 

+ 
Full Displacement OF 88 +++ 

JIAHFLoadAHwithFlags J9F "==r ~---- - - - - - - 2-1-1- 2' 

IAR Load Access Rights 
From RegisterlMemory 

- - - - - x 
OF 02 [mod reg rim] 

# '" Immediate data ++ '" 16-bit displacement 
+ '" 8-bit displacement +++ = 32-bit displacement (full) 

x '" modified 
- '" unchanged 

NOTES 

Real I Prolecled 
Mode Mode 

at 



o • lit 
lit 

" ;: 
c 
I: 
j 

= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF 1F SF:z:r- AF PF CF Reg/ ,I Cache Reg/ I Cache Real I Protected 

Cache Hit Miss Cache Hit Miss Mode Mode 

1 LDS Load Pointer to DS 1 CS [~~dregr/m[ I~ - - - - - - - - - r- 6-1-7 =r 23 -, 24 b 1- h,i,j 

LEA Load Ejjective Address 
No Index Register 
With Index Register 

8D [mod reg r/m[ 

[iEAVE-L,;aveCurrentStackFrame 1 C9 I - - - - - - - - - J 4 3 4 b 1- h 

I LES Load Pointer to ES 0~g drr;] - --I - - - - - - - - - 6 7 23 24 I b h,i,j 

ILFSLoadPoint;;FS- [DF B4[modregr/m[ 6 1- 7 23 -I 24 b I-h,i,-j -I 

I LGDT Load GDT Register I OF 01 [mod 010 r/m[ I - - - - - - - - I 9 9 9 I b,c h,l 

ILGSLoadPointertoGS--- COY B5[modregr/m[ 1-- T- 6 1- 7 -I 23 ] 24-1 b I-h,i,j 

IUDTLoadIDTRegtster - [OF~ Ol[;;;;;dOJj,:/m-[ -1--------- :--:- r 9 1- 9 ~- 9 T 9-1 b,c 1- h,l 

LLDT Load LDT Register 
FromRegisterlMemory 

LMSW Load Machine Status Word 
From RegisterlMemory 

OF 00 [mod 010 r/m[ 

OF 01 [mod lIO r/m[ 

I LODSLoadStnng - [AJ1l~ -'1---= - - - - - 4' 4 4 4 b h 

I LOOP Ojjset LooplNo Loop I E2 + - - - - - - - - 9 13 913 T - I - C r-I 

I LOOPNZlLOOPNEOjjset I EO + - - - - - - - - - 913 913 -,--c=!~ 
# = immediate data ++ = 16-hit displacement x = modified 
+ = 8-bit displacement +++ = 32-blt displacement (full) - = unchanged 

i 
5r 
~ 



! .. 
i 
i 
= 

o 
o 
~ 
W 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF SF Z' A'i PF CF Regl I Cache Regl I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

II.OoPvLOOPEOjfter-- - -I El----:" --- .---------1-913~ C 913 r~ 

LSL Load Segment Limit 
FromRegisterlMemory OF 03 [mod reg r/m[ 

- - - - - x - - -

1 LSS Load Pointer to 55 1 OF B2 [~regdm[ -=r- - - - - - - - - - 1 6 7 23 24 1 a h,i,j 

LTR Load T ash Register 
From RegisterlMemory 

MOV Move Data 
Register to RegisterlMemory 
RegisteriMemory to Register 
Immediate to RegisterlMemory 
Immediate to Register (shan form) 
Memory to Accumulator (short form) 
Accumulator to Memory (short fonu) 
RegisterlMemory to Segment Register 
Segment Register to RegisterlMemory 

MOV Move to/from 'ControllDebuglTest Regs 
Register to CROICR2ICR3 
CROICR2ICR3 to Register 
Register to DRO-DR3 
DRO-DR3 to Register 
Register to DR6-DR7 
DR6-DR7 to Register 
Register to TR3-5 
TR3-5 to Regisler 
Register to TR6-TR7 
TR6-TR7 to Register 

OF 00 [mod reg r/m[ 

8 [lOOw[ [mod reg r/m[ 
8 [lOlw[ [mod reg r/m[ 
C [Ollw[ [mod 000 rlml # 

B [wreg] # 

A [OOOw] +++ 

A [OOlw] +++ 
BE [mod sreg3 rim] 
8C [mod reg rim] 

- - - -
OF 22 [11 eee reg] 
OF 20 [11 eee reg] 
OF 23 [11 eee reg] 
OF 21 [lleeereg] 
OF 23 [11 eee reg] 
OF 21 [11 eee reg] 
OF 26 [11 eee reg] 
OF 24 [11 eee reg] 
OF 26 [11 eee reg] 
OF 24 [ll eee reg] 

b h,i,j 
112 2 112 2 
112 4 112 4 
112 2 1/2 2 
1 1 
2 4 2 4 

112 2 112 2 
213 5 15/16 18 
1/2 2 112 2 

- 1 
111313 1113/3 
1/3/3 113/3 

1 1 
3 3 
1 1 
3 3 
5 5 
5 5 
1 1 
3 3 

1 MOVS Move String ~ A [Glow] 1 - 5 5- 1-5 T b J h 

# '" immediate data ++ -= 16-hit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchnnged 

I 

i 

at 



0\ 
~ .. 

,. 
I .. 
i 
i 

= 

INSTRUCTION 

MOVSX Move with Sign Extension 
Register from RegisterlMemory 

MOVZX Move with Zero Extension 
Register from RegisterlMemory 

MUL Unsigned Multiply 
Accumulator with RegisterIMernory 
Multiplier - Byte 

-Word 
- Doubleword 

OPCODE 

OF B [lllw] [mod reg rim] 

OF B [011 w] [mod reg rim] 

F [Ollw] [mod 100 rim] 

FLAGr. 

OF DF IF TF SF %IF #of PF CF 

x - - - x 

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

Reg/ ,I Cache 
Cache Hit MIss 

Reg/ I Cache 
Cache Hit Miss 

Real I Protected 
Mode Mode 

b h 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

[NEGikgateln(;ger ------ IF [Ollw] [mod 011 r~[ x - - - x x x x x 1/3 1/3 b h 

I NOP No Operation I 90 I - - - - - - - - 3 3 I - [ 

I NOT Boolean Complement IF[OI1W] [mod 010 rim] ]-- IDI-5-1 1/3 -r- Q b h 

OR Boolean OR 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator 
--- - --

OUT Output to Port 
Fixed Port 
Variable Port 

- -

o [10dw] [11 reg rim] 
a [lOOw] [mod reg rim] 
o [10Iw] [mod reg rim] 
8 [OOOw] [mod 001 rim] # 

o [llOw] # 

E [Ollw] [port number] 
E [lllw] 

a - - x x x x 0 

foUTS Output String T6 [11];] 1-- l 
# = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

b h 
1 I 
3 5 3 5 
3 5 3 5 

1/3 5 1/3 5 
1 1 

20 1 20 1 6\19 1 6\19 1 b 1 h,m 

i 
>r 
1! 

I 



I c 
I: 

I 

0-• W 
&II 

REAL PROTECTED 
INSTRUCTION OPCODe FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF 1'1' SF ZF AI PF CF Reg/ 1 Cache Reg/ 1 Cache Real 1 Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

----- ---- --

POP Pop Value off Stack - b h,i,j 
RegisterlMemory 8F [mod 000 rim] 3/5 4/5 3/5 4/5 
Register (short form) 5 [1 reg] 3 4 3 4 
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 4 5 18 19 
Segment Register (ES, CS, SS, DS, FS, GS) OF' [10 sreg3 001] 4 5 18 19 

1 POPA Pop All General Registers 1 61 - - - - - - - - - IS 18 IS is-I b 1--~ 

POPF Pop Stack into FLAGS 9D x x x x x x x x x 

PREFIX BYTES m 
Assert Hardware LOCK Prefix FO 
Address Size Prefix 67 
Operand Size Prefix 66 
Segment Override Prefix 

CS 2E 
DS 3E 
ES 26 
FS 64 
GS 65 
SS 36 

PUSH Push Value onto Stach - - - - b h 
RegisterlMemory FF [mod 110 rim] 2/4 4 2/4 4 
Register (short form) 5 [0 reg] 2 2 2 2 
Segment Register (ES, CS, SS, DS) [000 sreg2 11 0] 2 2 2 2 
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 000] 2 2 2 2 
Immediate 6 [1Os0] # 2 2 2 2 

1 PUSHA Push All General R;gist;rs - -~ 60 - - - - - - - - - 17 17 17 17 1 b - 1 h 

IpUSHFPushFLAGSRegister 19C - - - 1 2 -2-Tb h 

# = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) = unchanged 

en 



01 .:. 
01 

" ;: .. 
i 
i 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF TF SF %I' AF PF CF Reg/ 1 Cache Reg/ 1 Cache Real I Protected 

Cache Hit Miss Cache Hit Miss Mode Mode 

RCL Rotate Through Cony Left x - x b h 
RegisterlMemory by 1 D [OOOw[ [mod 010 rim] 9/9 10 9/9 10 
RegisterlMemory by CL D [OOlw] [mod 010 r/m[ 9/9 10 9/9 10 
RegisterlMemory by Immediate C [OOOw[ [mod 010 rim] # 9/9 10 9/9 10 

--

RCR Rotate Through Carry Right x - x b h 
RegisterlMemory by 1 D [OOOw[ [mod 011 r/m[ 9/9 10 9/9 10 
RegisterlMemory by CL D [OOlw] [mod 011 r/m[ 9/9 10 9/9 10 
RegisterlMemory by Immediate C [OOOw] ]mod 011 rim] # 9/9 10 9/9 10 

- - --- ---

REP INS Input String F2 6 [llOw] 

[REP LODsr.;;;dString-- - 1 F2 A [DOw] - - - - - - - - - 4+5n 4+5n 4+5n 4+5n b h 

1 REP MOVS Move String 1 F2 A [010w] 1 _. - - - -- --I 5+~-5+4n 5+4n 5+4n b h 

REP OUTS Output String F2 6 [Illw] 

1 REP STOS-Store String-- @A[IOlw]--13+4n3+4n3+4n3+4nbh 

REPE CMPS Compare String 
(Find non-match) 

REPE SCAS Scan String 
(Findnon-AUAXlEAX) 

REPNE CMPS Compare String 
(Find match) 

REPNE SCAS Scan String 
(Find AU AXIEAX) 

F3 A [Ollw] 

F3 A [Illw] 

F2 A [Ollw] 

F2 A [lllw] 

# = immediate data 
+ = 8-bit displacement 

x---xxxxx 

x---xxxxx 

x---xxxxx 

x---xxxxx 

++ = 16-bit displacement x = modified 
+++ = 32-bit displacement (full) - = unchanged 

i R+ 
" 



REAL PROTECTED 
INSTRUcnON OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IFD SF DAI PF CF Rog/ I I ea.ho Reg/ I Ca.he Real I Pro ..... d 

Ca.he Hit Miss Ca.he Hit Miss Mode Modo 

RET Return from Subroutine. - - - - - - - - b g,hj,k,r 
Within Segment C3 10 10 
Within Segment Adding Immediate to SP C2 ++ 10 10 
Intersegment CB I3 I3 26 26 
Intersegment Adding Immediate to SP CA ++ I3 I3 26 27 
Protected Mode: Different Privilege Level 

Intersegment 69 72 
Intersegment Adding Immediate to SP 69 72 

---_ .. _---- ----

ROL Rotate Left x - - - - - - - x b h 
RegisterlMemory by 1 D [OOOw] [mod 000 rIm] 214 6 214 6 
RegisterlMemory by CL D [OOlw] [mod 000 rIm] 3/5 7 3/5 7 

i! RegisterlMemory by Immediate C [OOOW] [mod 000 rim] # 214 6 214 6 

i 
= 

ROR Rotate Right x - - - - - - x b h 
RegisterlMemory by 1 D [OOOw] [mod 001 rim] 214 6 214 6 
RegisterlMemory by CL D [OOlw] [mod 001 rIm] 3/5 7 3/5 7 
RegisterlMemory by Immediate C [OOOW] [mod 001 rim] # 214 6 214 

L .. ~ --_ .. - - _. 

I SAHF Store AH in FIAGS 19E - - - - x x x x. x I - -2--T--1 2 

SAL Shift Left Arithmetic x - - x x - x x b h 
I RegisterlMemory by 1 D [OOOW] [mod 100 rim] 214 6 214 6 

RegisterlMemory by CL D [OOlw] [mod 100 rIm] 3/5 7 3/5 7 

I RegisterlMemory by Immediate C [OOOw] [mod 100 rIm] # 214 6 214 6 

SAR Shift Right Arithmetic x - - - x x - x x b h 
RegisterlMemory by 1 D [OOOw] [mod 111 rim] 214 6 214 6 
RegisterlMemory by CL D [OOlw] [mod 111 rIm] 3/5 7 3/5 7 
RegisterlMemory by Immediate C [OOOW] [mod 111 rim] # 214 5 214 L-__ ~_ _ -

SBB Integer Subtract with Borrow x - - - x x x x x b h 
Register to Register 1 [lOdw] [11 reg rim] 1 1 
Register to Memory 1 [lOOw] [mod reg rim] 3 5 3 5 

o • lit -.. 
Memory to Register 1 [lOlw] [modregr/m] 3 5 3 5 
Immediate to RegisterlMemory 8 [OOsw] [mod 011 rIm] # 1/3 5 1/3 5 
Immediate to Accumulator (shan fonnl I [l1Ow] # 1 I 
-_ .. _- --- - - -- - • 



0-
~ 
CI 

! c 
I 

I 
= 

HAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT , 
OF DF IF" SF U AF PF CF Regl I Cache Regl I Cache Real I Protected 

Cache Hit MI .. Cache HII MI .. Made Made 

ISCASScanString 1 A [lllw] - -Tx x-x-,,--;;--;-r-5-1-5~--1-5 1 b·1 h 

SETBlSETNAEISETC Set Byte on Be/owlNot 
Above Dr Equal/Cany 

To RegisterIMemory I OF 92 [mod 000 rIm] 

SETBEISETNA Set Byte on Below Dr 
EquallNot Above 

To RegisterIMemory 

SETEISETZ Set Byte on Equal/Zero 

OF 96 [mod 000 rIm] 

To RegisterIMemory I OF 94 [mod 000 rIm] 

SETlJSETNGE Set Byte on LessINot Greater 
Dr Equal 

To RegisterIMemory I OF 9C [mod 000 rIm] 

SETLEISETNG Set Byte on Less Dr EqualINot 
Greater 

To RegisterIMemory I OF 9E [mod 000 rIm] 

SETNBlSETAElSETNC Set Byte on Not Belowl 
Above Dr EquallNot Cany I OF 93 [mod 000 rIm] 

To Register/Memory 

,. SETNBEISETA Set Byte on Not Below Dr 
Equal/Above 

To RegisterIMemory I OF 97 [mod 000 rIm] 

SETNEISETNZ Set Byte on Not EquallNot 
Zero 

To RegisterIMemory OF 95 [mod 000 rIm] 

# = immediate data .. 16-hit displacement x - modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

i 
Sf 
~ 



"III ;: ... 
i 
i 
= 

0-• 
~ 
\0 

INSTRUCTION 

SETNUSETGE Set Byte on Not LesslGreater 
or Equal 

To RegisterlMemory 

SETNlElSETG Set Byte on Not Less or 
Equal/Greater 

To RegisterlMemory 

SETNO Set Byte on Not Overflow 
To RegisterlMemary 

SETNP/SETPO Set Byte on Not 
Parity/Parity Odd 

To RegisterlMemory 

SETNS Set Byte on Not Sign 
To RegisterlMemory 

SETO Set Byte on Overflow 
To RegisterlMemary 

SETP/SETPE Set Byte on ParitylParity Even 
To RegisterlMemory 

SETS Set Byte on Sign 
To RegisterlMemory 

SGDT Store GDT Register 
To RegisterlMemory 

ilEAL PROTECTED 
OPCODE FLAGS MODE CLOCK MODE CLOCK NOTIES 

COUNT COUNT 

OF DF IF 1F SF ZF AF PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache HII Miss Coche Hil Miss Mode Mode 

OF 90 [mod 000 rim) 

OF 9F [mod 000 rim) 

OF 91 [mod 000 rim) 

OF 9B [mod 000 rim) 

OF 99 [mod 000 rim) 

OF 90 [mod 000 rim) 

OF 9A [mod 000 rim) 

OF 98 [mod 000 rim) 

OF 01 [mod 000 rim) 

# = Immedmte data ++ = 16-bit dIsplacement x = modIfIed 
+ = 8-bit dIsplacement +++ = 32-blt displacement (full) - = unchanged 

en 



0-• Col 
o 

= c 
! 

= = 

INSTRUC'Il'ION 

SHL Shift Left Logical 
RegisteriMemory by I 
RegisteriMemory by CL 
RegisteriMemory by Immediate 

SHLD Shift Left Double 
RegisteriMemory by Immediate 
RegisteriMemory by CL 

SHR Shift Right Logical 
RegisteriMemory by I 
RegisteriMemory by CL 
RegisteriMemory by Immediate 

SHRD Shift Right Double 
RegisteriMemory by Immediate 
RegisteriMemory by CL 

SIDT Store /DT Register 
To RegisteriMemory 

SLDT Store LDT Register 
To RegisteriMemory 

SMSW Store Machine Status Word 

OPCODIE 

D [OOOw[ [mod 100 r/m[ 
D [OOlw] [mod 100 rim] 
C [OOOw] [mod 100 rim] # 

OF A4 [mod reg rim] # 

OF A5 [mod reg rim] 

D [OOOw] [mod 101 rim] 
D [OOlw] [mod 101 rim] 
C [OOOw] [mod 101 rim] # 

OF AC [mod reg rim] # 

OF AD [mod reg rim] 

OF 01 [mod 001 rim] 

OF 00 ]mod 000 rim] 

OF 01 [mod 100 rim] 

FLAGS 

OF DF IF TF SF ZF AI PF CF 

x x x x x 

- - - - x x - x x 

x - - x x x x 

- - - - x x - x x 

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

Reg/ ,I Cache 
f:ache Hit Miss 

Reg/ I Cache 
Cache Hit Miss 

Real I Prolected 
Mode Mode 

2/4 6 2/4 6 b h 

3/5 7 3/5 7 
2/4 6 2/4 6 

b h 
2/4 6 214 6 
3/5 7 3/5 7 
2/4 5 2/4 6 

1 STC Set Carry Flag 1 F9 1 - - - - - - - - I T - - - J 

1 STD Set Direction Flag IFD - I - - - - - 1 r--J--I- - [ - --1-

1 STISetlnterruptFlag 1 FB - - - - -r~ ~ 1 -.: -.: ~ -.: -.: ~ I J - - - 1- I - m 

# '" immediate data ++ = 16-bit displacement x = modified 
+ '" 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

i 
~ . 



i! c 
J 

I 

o • tot ... 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF IF SF ZF M PF a: Reg/ IJ Cache Reg/ L Cache aaal I Protected 

Cache Hit ~i~ _Caclle I!lt MJss " made made 
- -----

[sros Slor;String 1 Alio!;] - - - ------r3 3 3 3 1 b h 

STR Store Task Register 
To RegisterlMemory 

SUB Integer Subtroct 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator (short form) 
- - ----- -

TEST Test Bits 
RegisterlMemory and Register 
Immediate Data and RegisterlMemory 
Immediate Data and Accumulator 

--

VERR Verify Read Access 
To RegisterlMemory 

VERW Verify Write Access 
To RegisterlMemory 

-

OF 00 [mod 001 rIm] 

2 [lOdw] [11 reg rIm] 
2 [lOOw] [mod reg rIm] 
2 [lOlw] [mod'regr/m] 
8 [OOsw] [mod 101 rIm] # 

2 [llOw] # 
- ------- --- -

8 [OlOw] [mod reg rIm] 
F [Ollw] [mod 000 rim] # 

A [lOOw] # 

OF 00 [mod 100 rIm] , 

OF 00 [mod 101 rIm] 

x - - x x x x x' 

- ,- - -

0 - - - x x - x 0 

-

- - - - - x - - -

- - - - - x - - -

b h 
I I 
3 5 3 5 
3 5 3 5 

113 5 1/3 5 
I I 

- - L--__ - - - - -

b h 
113 5 1/3 5 
1/3 5 1/3 5 
I I 

- - - - -

IWAITWaitUntilFPUNotBUsy - 19B- - - - - - - - - - - 5 'I 5 5 -I 

1 WBINVD Write-Back and Invalidate Cache 1 OF 09 - - - - - - - - ---1- 4 4 

XADD Exchange and Add 
Register I, Register2 
Memory, Register 

OF C [OOOw] [11 reg2 regIl 
OF C [OOOw] [mod reg rIm] 

x - - - x x x x x 

# = immediate data ++ = 16-bit displacement x '" modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged ,. 



01 
• w ... 

i c 
! 

= 
= 

INSTRUCTION 

XCHG Exchange 
RegisterIMemorywith Register 
Register with Accumulator 

OPCODE 

8 [Ollw] [modregr/m] 
9 [0 reg] 

FLAGS 

OF DF IF TF SF ZF AI PI' CF 

REAL 
MODE CLOCK 

COUNT 

Reg/ I Cache 
Cuche Hit Miss 

PROTECTED 
MODE CLOCK NOTES 

COUNT 

Reg/ I Cache 
Cache Hit Miss 

Real I Protected 
Mode Mode 

IXIATTranslateByte I D7 [- --=- =-- -- - [ -3 - LS J - 3- -,5- [ - h 

XOR Boolean Exclusive OR 0 - - - x x - x 0 b h 
Registe~toRegister 3 [OOdw] [11 reg rIm] 1 1 
Registerto Memory 3 [OOOW] [mod reg rIm] 3 5 3 5 
Memory to Register 3 [001 w] [mod reg rIm] 3 5 3 5 
Immediate to RegisterIMemory 8 [OOsw] [mod 110 rIm] # 1/3 5 1/3 5 
~mm-"dia~toAccumulator(shortform) _ 3 [OlOw] # __ _ ___ ~ _ _ _ _ _1_ L_ _ _ _ __ _ 

# = immediate data 
+ = B-bit displacement 

Instruction Notes (or Instruction Set Snmmary 

Notes a through c apply to Real Address Mode only: 

++ = 16-hit displacement x = modified 
+++ = 32-bit displacement (full) - = unchanged 

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid op-code). 
b. Exception 13 fault (general protection) will occur in Real Mode if an· operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment limit 

(FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum 55 
limit. 

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 

Notes e through g apply to Real Address Mode and Protected Virtual Address Mode: 
e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK prefIx. 
g. LOCK# is asserted during descriptor table accesses. 

Notes h throngh r apply to Protected VJrtuaIAddress Mode only: 
h. Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit is violated, 

an exception 12 occurs. 
'i. For segment load operatiOns, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault. The segment's descriptor must indicate "present" or exception 11 

(CS, DS, ES, FS, GS not present). If the 55 register is loaded and a stack segment not present is detected, an exception 12 occurs. 
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain descriptor integrity in multiprocessor systems. 
k. ]MP, CALL, INT, RET, and lRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
1. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = O. 
o. The PE bit ofthe MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault will occur before the ESC instruction is executed. An exception 12 fault will 

occur if the stack limit is violated by the operand's starting address. 
r. The destination of a ]MP, CALL, INT, RET, or lRET must be in the defIned limit of a code segment or an exception 13 fault will occur. 

i 
5r 
~ 



· ' Notes 



Notes 



Notes 



Notes 



'- , , " '.. -. , Notes 



Notes , 



Notes 



Noles 



Ordering Information < 

Ordering Information 

Cyrix Prefix 

Device Name 
486SLC 

Voltage 
Blank = 5 volts 
V = 3 volts 

Speed 
25 =25 MHz 

Package Type 
Q = Quad Flat Pak 

Temperature Range 
P = Commercial 

ex 486SLC - V 25 Q P 

The currently available Cyrix Cx486SLC part numbers are listed below: 

Cx:486SLC Part Numbers 

PART NUMBER DESCRIPTION 
Cx486SLC-25-QP 5 V, 25 MHz, QFP Package 

Cx486SLC-V20-QP 3 V, 20 MHz, QFP Package 

031292 



us 

Cyrix Corporation 
2703 North Central Exprressway 
Richardson, TX 75080 
Tel: (214) 234-8387 
Fax: (214) 699-9857 

Japan 

Cyrix KK 
7F Nisso 11 Bldg, 2-3-4 
Shin-Yokohama, Koh-Hoku-Ku 
Yokohama, 222 Japan 
Tel: 011-81-45-471-1661 
Fax: 011-81-45-471-1666 

SALES OFFICES 

Taiwan &: Hong Kong 

ACCEL Technology Corp. 
3F-l, 678 Tun-Hua S. Rd. 
Taipei, Taiwan, R.O.c. 
Tel: 011-886-02-755-2838 
Fax: 011-886-02-708-0878 

On-tx 7Mvo'!::ing the Standards 

Europe 

Cyrix Europe HQ 
603 Delta Business Park 
Weldon Road 
Swindon Road, SN57XF UK 
Tel: 011-44-793-417-779 
Fax: 011-44-793-417-788 

Canada 

Kaytronics 
5800 Thimens Blvd. 
Ville St. Laurent 
Quebec H4S-1S5 
Tel: (514) 745-6800 
Fax: (514) 745-5858 

2703 North Central Expressway • Richardson, Texas 75080 • (214) 234-8387 
#. Printed in the USA 

Febuary 1992 Order Number 94073-00 t.J Printed on Recycled Paper 



270.3 No//Il CCII//(// EX/JlcssI\'UV l~id/(//(/soll,T('X(/S 7.'50~O 


