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TRANSLATOR’S NOTE.

The aim of this translation is to reproduce, as far as pos-
sible, the ideas and style of the original in idiomatic English,
rather than to give a literal rendering of its contents. Even
the verbal deviations, however, are few in number. So little
has been written in English on the subject that a standard set
of technical terms as yet hardly exists. Where there was any
choice between equivalent words, I have followed the usage of
Dr Forsyth in his recently published work on the Theory of
Functions. A Glossary of the principal technical terms is ap-
pended, giving the original German word together with the
English adopted in the text.

Prof. Klein had originally intended to revise the proofs, but
owing to his absence in America he kindly waived his right
to do so, in order not to delay the publication. The proofs
have therefore not been submitted to him, though it was with
considerable reluctance that I determined to publish without
this final revision.

My thanks are due to Miss C. A. Scott, D.Sc., Professor of
Mathematics in Bryn Mawr College, for many valuable sugges-
tions in difficult passages and for her interest in the progress of
the translation, and also for help in the reading of the proof-
sheets. I must also express my thanks to Mr James Hark-
ness, M.A., Associate Professor of Mathematics in Bryn Mawr
College, for helpful advice given from time to time; and to Miss
P. G. Fawcett, of Newnham College, Cambridge, for reading
over in manuscript the earlier parts which deal more especially
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with the subject of Electricity.

FRANCES HARDCASTLE.

Bryn Mawr College,
Pennsylvania,

June 1, 1893.
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PREFACE.

The pamphlet which I here lay before the public, has
grown from lectures delivered during the past year,∗ in which,
among other objects, I had in view a presentation of Riemann’s
theory of algebraic functions and their integrals.† Lectures on
higher mathematics offer peculiar difficulties; with the best
will of the lecturer they ultimately fulfil a very modest pur-
pose. Being usually intended to give a systematic development
of the subject, they are either confined to the elements or are
lost amid details. I thought it well in this case, as previously
in others, to adopt the opposite course. I assumed that the
ordinary presentation, as given in text-books on the elements
of Riemann’s theory, was known; moreover, when particular
points required to be more fully dealt with, I referred to the
fundamental monographs. But to compensate for this, I de-
voted great care to the presentation of the true train of thought,
and endeavoured to obtain a general view of the scope and ef-
ficiency of the methods. I believe I have frequently obtained
good results by these means, though, of course, only with a
gifted audience; experience will show whether this pamphlet,

∗Theory of Functions treated geometrically. Part i, Winter-semester
1880–81, Part ii, Summer-semester 1881.

†I denote thus the contents of the investigations with which Riemann
was concerned in the first part of his Theory of the Abelian Functions.
The theory of the Θ-functions, as developed in the second part of the
same treatise, is in the first place, as we know, of an essentially different
character, and is excluded from the following presentation as it was from
my course of lectures.
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based on the same principles, will prove equally useful.
A presentation of the kind attempted is necessarily very

subjective, and the more so in the case of Riemann’s theory,
since but scanty material for the purpose is to be found explic-
itly given in Riemann’s papers. I am not sure that I should ever
have reached a well-defined conception of the whole subject,
had not Herr Prym, many years ago (1874), in the course of
an opportune conversation, made me a communication which
has increased in importance to me the longer I have thought
over the matter. He told me that Riemann’s surfaces origi-
nally are not necessarily many-sheeted surfaces over the plane,
but that, on the contrary, complex functions of position can
be studied on arbitrarily given curved surfaces in exactly the
same way as on the surfaces over the plane. The following
presentation will sufficiently show how valuable this remark
has been to me. In natural combination with this there are
certain physical considerations which have been lately devel-
oped, although restricted to simpler cases, from various points
of view.∗ I have not hesitated to take these physical concep-
tions as the starting-point of my presentation. Riemann, as
we know, used Dirichlet’s Principle in their place in his writ-
ings. But I have no doubt that he started from precisely those
physical problems, and then, in order to give what was physi-
cally evident the support of mathematical reasoning, he after-
wards substituted Dirichlet’s Principle. Anyone who clearly

∗Cf. C. Neumann, Math. Ann., t. x., pp. 569–571. Kirchhoff, Berl.
Monatsber., 1875, pp. 487–497. Töpler, Pogg. Ann., t. clx., pp. 375–388.
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understands the conditions under which Riemann worked in
Göttingen, anyone who has followed Riemann’s speculations
as they have come down to us, partly in fragments,∗ will, I
think, share my opinion.—However that may be, the physical
method seemed the true one for my purpose. For it is well
known that Dirichlet’s Principle is not sufficient for the actual
foundation of the theorems to be established; moreover, the
heuristic element, which to me was all-important, is brought
out far more prominently by the physical method. Hence the
constant introduction of intuitive considerations, where a proof
by analysis would not have been difficult and might have been
simpler, hence also the repeated illustration of general results
by examples and figures.

In this connection I must not omit to mention an important
restriction to which I have adhered in the following pages. We
all know the circuitous and difficult considerations by which, of
late years, part at least of those theorems of Riemann which
are here dealt with have been proved in a reliable manner.†

These considerations are entirely neglected in what follows and
I thus forego the use of any except intuitive bases for the the-

∗Ges. Werke, pp. 494 et seq.
†Compare in particular the investigations on this subject by C. Neu-

mann and Schwarz. The general case of closed surfaces (which is the
most important for us in what follows) is indeed, as yet, nowhere ex-
plicitly and completely dealt with. Herr Schwarz contents himself with
a few indications with respect to these surfaces (Berl. Monatsber., 1870,
pp. 767 et seq.) and Herr C. Neumann only considers those cases in which
functions are to be determined by means of known values on the bound-
ary.
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orems to be enunciated. In fact such proofs must in no way be
mixed up with the sequence of thought I have attempted to
preserve; otherwise the result is a presentation unsatisfactory
from all points of view. But they should assuredly follow after,
and I hope, when opportunity offers, to complete in this sense
the present pamphlet.

For the rest, the scope and limits of my presentation speak
for themselves. The frequent use of my friends’ publications
and of my own on kindred subjects had a secondary purpose
important to me for personal reasons: I wished to give my au-
dience a guide, to help them to find for themselves the recip-
rocal connections among these papers, and their position with
respect to the general conception put forth in these pages. As
for the new problems which offer themselves in great number,
I have only allowed myself to investigate them as far as seemed
consistent with the general aim of this pamphlet. Nevertheless
I should like to draw attention to the theorems on the confor-
mal representation of arbitrary surfaces which I have worked
out in the last Part; I followed these out the more readily that
Riemann makes a remarkable statement about this subject at
the end of his Dissertation.

One more remark in conclusion to obviate a misunder-
standing which might otherwise arise from the foregoing words.
Although I have attempted, in the case of algebraic functions
and their integrals, to follow the original chain of ideas which I
assumed to be Riemann’s, I by no means include the whole of
what he intended in the theory of functions. The said functions
were for him an example only, in the treatment of which, it is
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true, he was particularly fortunate. Inasmuch as he wished to
include all possible functions of complex variables, he had in
mind far more general methods of determination than those
we employ in the following pages; methods of determination in
which physical analogy, here deemed a sufficient basis, fails us.
Compare, in this connection, § 19 of his Dissertation, compare
also his work on the hypergeometrical series.—With reference
to this, I must explain that I have no wish to draw aside from
these more general considerations by giving a presentation of
a special part, complete in itself. My innermost conviction
rather is that they are destined to play, in the developments
of the modern Theory of Functions, an important and promi-
nent part.

Borkum,
Oct. 7, 1881.



PART I.

Introductory Remarks.

§ 1. Steady Streamings in the Plane as an Interpretation
of the Functions of x+ iy.

The physical interpretation of those functions of x + iy
which are dealt with in the following pages is well known.∗

The principles on which it is based are here indicated, solely
for completeness.

Let w = u + iv, z = x + iy, w = f(z). Then we have,
primarily,

(1)
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

and hence

(2)
∂2u

∂x2
+
∂2u

∂y2
= 0,

and also, for v,

(3)
∂2v

∂x2
+
∂2v

∂y2
= 0.

∗In particular, reference should be made to Maxwell’s Treatise on
Electricity and Magnetism (Cambridge, 1873). So far as the intuitive
treatment of the subject is concerned, his point of view is exactly that
adopted in the text.
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In these equations we take u to be the velocity-potential, so

that
∂u

∂x
,
∂u

∂y
are the components of the velocity of a fluid mov-

ing parallel to the xy plane. We may either suppose this fluid
to be contained between two planes, parallel to the xy plane, or
we may imagine it to be itself an infinitely thin homogeneous
sheet extending over this plane. Then equation (2)—and this
is the chief point in the physical interpretation—shows that
the streaming is steady . The curves u = const. are called
the equipotential curves , while the curves v = const., which,
by (1), are orthogonal to the first system, are the stream-lines .
For the purposes of this interpretation it is of course indifferent
of what nature we may imagine the fluid to be, but for many
reasons it will be convenient to identify it here with the elec-
tric fluid ; u is then proportional to the electrostatic potential
which gives rise to the streaming, and the apparatus of exper-
imental physics provide sufficient means for the production of
many interesting systems of streamings.

Moreover, if we increase u throughout by a constant the
streaming itself remains unchanged, since the differential co-

efficients
∂u

∂x
,
∂u

∂y
alone appear explicitly; this is also true of v.

Hence the function u+ iv, whose physical interpretation is in
question, is thus determined only to an additive constant près,
a fact which requires to be carefully observed in what follows.

Further, we may observe that equations (1)–(3) remain un-
altered if we replace u by v, and v by −u. Corresponding to
this we get a second system of streamings in which v is the
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velocity-potential and the curves u = const. are the stream-
lines; in the sense explained above this represents the func-
tion v− iu. It is often of use to consider this new streaming as
well as the original one in which u was the velocity-potential;
we shall speak of it, for brevity, as the conjugate streaming.
It is true that the name is somewhat inaccurate, since u bears
the same relation to v, as v does to −u, but it is sufficiently
intelligible for our purpose.

The differential equations (1)–(3), and hence also the whole
preceding discussion, apply in the first place solely to that
portion of the plane (otherwise an arbitrary portion) in which
u+ iv is uniform and in which neither u+ iv nor its differential
coefficients become infinite. In order then that the correspond-
ing physical conditions maybe clearly comprehended, a region
of this kind must be marked off and then by suitable appliances
on the boundary the steady motion within its limits must be
preserved.

In a bounded region of this description points z0 at which

the differential coefficient
∂w

∂z
vanishes call for special atten-

tion To be perfectly general, I will assume at once that
∂2w

∂z2
,

∂3w

∂z3
, . . . , up to

∂αw

∂zα
are all zero as well. To determine the

course of the equipotential curves, or of the stream-lines in the
vicinity of such a point, let w be expanded in a series of as-
cending powers of z − z0; in this series, the term immediately
after the constant term is the term in (z− z0)

α+1. Transform-
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ing to polar-coordinates we obtain the following result: at the
point z0, α+1 curves u = const. intersect at equal angles, while
the same number of curves v = const. are the bisectors of these
angles. In consequence of this property I call such a point a
cross-point , and moreover a cross-point of multiplicity α.

The following figure (which is of course only diagrammatic)
illustrates this for α = 2, and explains, in particular, how
a cross-point makes its appearance in the orthogonal system

formed by the curves u = const., v = const.
The stream-lines v = const. are the heavy lines in the fig-

ure and the direction of motion in each is indicated by an
arrow; the equipotential curves are given by dotted lines. We
see how the fluid flows in towards the cross-point from three
directions, and flows out again in three other directions, this
being possible because the velocity of the streaming is zero
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at the cross-point, or, as we may say, by analogy with known
occurrences, because the fluid is at a standstill, the expression

for the velocity being

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

.

Further, it is useful to consider a cross-point of multiplic-
ity α as the limiting case of α simple cross-points. The ana-
lytical treatment shows this to be permissible. For at an α-ple

cross-point the equation
∂w

∂z
= 0 has an α-ple root and this is

caused, as we know, by the coalescence of α simple roots. The
following figures sufficiently explain this view:

For simplicity, I have here drawn the stream-lines only. On
the left we have the same cross-point of multiplicity two as in
Fig. 1; on the right we have a streaming with two simple cross-
points close together. It is at once evident that the one figure
is produced by continuous changes from the other.
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Throughout the foregoing discussion it has been tacitly as-
sumed that the region in question does not extend to infinity.
It is true that no fundamental difficulties present themselves
when we take the point z =∞ into account exactly as we take
any other point z = z0; instead of the expansion in ascending
powers of z − z0, we obtain, by known methods, an expan-

sion in ascending powers of
1

z
; there is an α-ple cross-point

at z = ∞ when the term immediately following the constant

term in this expansion is the term in

(
1

z

)α+1

. But we need

dwell no further on the geometrical relations corresponding to
a streaming of this kind, for the separate treatment of z =∞,
which here presents itself, will be obviated once and for all by
a method to be explained shortly, and for this reason the point
z = ∞ will be left out of consideration in the following sec-
tions (§§ 2–4), although, if a complete treatment were desired,
it ought to be specially mentioned.

§ 2. Consideration of the Infinities of w = f(z).

We now further include in this region points z0 at which
w = f(z) becomes infinite. But, since we are about to con-
sider only a special class of functions, we restrict ourselves in
this direction by the following condition, viz.: the differen-

tial coefficient
∂w

∂z
must have no essential singularities, or, in

other words, w is to be infinite only in the same manner as an
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expression of the following form:

A log(z − z0) +
A1

z − z0

+
A2

(z − z0)2
+ . . .+

Aν
(z − z0)ν

,

in which ν is a determinate finite quantity.
Corresponding to the various forms which this expression

assumes, we say that at z = z0 different discontinuities are
superposed; a logarithmic infinity, an algebraic infinity of order
one, etc. For simplicity we here consider each separately, but
it is also a useful exercise to form a clear idea of the result of
the superposition in individual examples.

In the first instance, let z = z0 be a logarithmic infinity;
we then have:

w = A log(z − z0) + C0 + C1(z − z0) + C2(z − z0)
2 + . . . .

Here A is that quantity which when multiplied by 2iπ is called,
in Cauchy’s notation, the residue of the logarithmic infinity,
a term which will be occasionally employed in what follows.
In the investigation of a streaming in the vicinity of the dis-
continuity it is of primary importance to know whether A is
real, imaginary, or complex. The third case can obviously be
regarded as a superposition of the first two and may therefore
be neglected. There are then only two distinct possibilities to
be considered.

(1) If A is real, let C0 = a + ib. Then, to a first approxi-
mation, we have, writing w = u+ iv, z − z0 = reiφ,

u = A log r + a, v = aφ+ b.
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Thus the curves u = const. are small circles round the infinity,
and the curves v = const. radiate from it in all directions
according to the variable values of φ. The motion is such that
z = z0 is a source of a certain positive or negative strength. To
calculate this strength, multiply the element of arc of a small
circle described about the discontinuity with radius r, by the
proper velocity and integrate this expression round the circle.
Since √(

∂u

∂x

)2

+

(
∂u

∂y

)2

coincides to a first approximation with
∂u

∂r
, that is with

A

r
, we

obtain for the strength the expression∫ 2π

0

A

r
r dφ = 2Aπ.

The strength is therefore equal to the residue, divided by i; it
is positive or negative with A.

(2) Let A be purely imaginary, equal to iA. Then, with
the same notation as before, we have to a first approximation,

u = −Aφ+ b, v = A log r + b.

The parts played by the curves u = const., v = const. are
thus exactly interchanged; the equipotential curves now radi-
ate from z = z0, while the stream-lines are small circles round
the infinity. The fluid circulates in these curves round the
point z = z0; I call the point a vortex-point for this reason.
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The sense and intensity of the circulation are measured by A.
Since the velocity √(

∂u

∂x

)2

+

(
∂u

∂y

)2

is, to a first approximation, equal to
∂u

∂φ
, the circulation is

clockwise or counter-clockwise according as A is positive or
negative. We may call the intensity of the vortex-point 2Aπ,
it is then equal and opposite to the residue of the infinity in
question.

Further, bearing in mind the definition in the last section of
a conjugate streaming and the ambiguity of sign attached to it,
we may say: If one of two conjugate streamings has a source of
a certain strength at z = z0, the other has, at the same point,
a vortex-point of equal, or equal and opposite, intensity.

Next, consider algebraic discontinuities. The general char-
acter of the streaming is independent of the nature of the coef-
ficient of the first term of the power-series, be it real, imaginary
or complex. Let

w =
A1

z − z0

+ C0 + C1(z − z0) + . . . .

To a first approximation, writing

z − z0 = reiφ, A1 = ρeiψ,

w − C0 =
ρ

r

{
cos(ψ − φ) + i sin(ψ − φ)

}
.
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Let us first consider the real part on the right. When

r is very small,
ρ

r
cos(ψ − φ) may still, by proper choice of φ

be made to assume any given arbitrary value; the function u
therefore assumes every value in the immediate vicinity of the
discontinuity. For more exact determination, let us, for the
moment, consider r and φ as variables and write

ρ

r
cos(ψ − φ) = const.

We obtain a pencil of circles, all touching the fixed line

φ = ψ +
π

2

and becoming smaller as the modulus of the constant increases.
Then, in the vicinity of the discontinuity, the curves u = const.
are of a similar description, and, in particular, for very large
positive or negative values of the constant they take the form
of small, closed, simple ovals.

A similar discussion applies to the imaginary part on the
right and hence to the curves v = const., but the line touched
by all the curves in this case is φ = ψ. The following figure, in
which the equipotential curves are, as before, dotted lines and
the stream-lines heavy lines, will now be intelligible.

An analogous discussion gives the requisite graphic rep-
resentation of a ν-ple algebraic discontinuity. It is sufficient
merely to state the result: Every curve u = const. passes
ν times through the discontinuity and touches ν fixed tan-
gents, intersecting at equal angles. Similarly with the curves
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v = const. For very great positive or negative values of the
constant both systems of curves are closed in the immediate

vicinity of the discontinuity. For illustration the figure is given
for ν = 2.

These higher singularities, as may be surmised, can be de-
rived from those of lower order by proceeding to the limit. I
postpone this discussion, however, to the next section, since a
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certain class of functions will then easily supply the necessary
examples.

§ 3. Rational Functions and their Integrals. Infinities of
higher Order derived from those of lower Order.

The foregoing sections have enabled us to picture to our-
selves the whole course of such functions as have no infinities
other than those we have just considered and are with these
exceptions uniform over the whole plane. These are, as we
know, the rational functions and their integrals. I briefly state,
without figures, the theorems respecting the cross-points and
infinities of these functions, and, for reasons already stated, I
confine myself to the cases in which z = ∞ is not a critical
point. This limitation, as was before pointed out, will after-
wards disappear automatically.

(1) The rational function about to be considered presents
itself in the form

w =
φ(z)

ψ(z)
,

where φ and ψ are integral functions of the same order which
may be assumed to have no common factor. If this order
is n, and if every algebraic infinity is counted as often as its
order requires, we obtain, corresponding to the roots of ψ =
0, n algebraic discontinuities. The cross-points are given by
ψφ′ − ψ′φ = 0, an equation of degree 2n− 2. The sum of the
orders of the cross-points is then 2n − 2, where, however, it
must be noticed that every ν-fold root of ψ = 0 is a (ν − 1)-
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fold root of ψ′ = 0, and hence that every ν-fold infinity of the
function counts as a (ν − 1)-fold cross-point.

(2) If the integral of a rational function

W =

∫
Φ(z)

Ψ(z)
dz

is to be finite at z = ∞, the degree of Φ must be less by two
than that of Ψ. It is assumed that Φ and Ψ have no com-
mon factor. Then Φ = 0 gives the free cross-points, i.e. those
which do not coincide with infinities. The roots of Ψ = 0
give the infinities of the integral; and, moreover, to a simple
root of Ψ = 0 corresponds a logarithmic infinity, to a double
root an infinity which is, in general, due to the superposition
of a logarithmic discontinuity and a simple algebraic discon-
tinuity, etc. If then every infinity is counted as often as the
order of the corresponding factor in Ψ requires, the sum of the
orders of the cross-points is less by two than the sum of the
orders of the infinities. We must also draw attention to the
known theorem, that the sum of the logarithmic residues of all
the discontinuities is zero.

The foregoing gives two possible methods for the deriva-
tion of discontinuities of higher order from those of lower or-
der. First—and this is the more important method for our
purpose—we may start from the integrals of rational func-
tions. In this case an algebraic discontinuity of order ν makes
its appearance when ν + 1 factors of Ψ become equal, that is,
when ν + 1 logarithmic discontinuities coalesce in the proper
manner. It is clear that the sum of the residues of the latter
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must be zero, if the resulting infinity is to be purely algebraic.
The two following figures, in which only the stream-lines are
drawn, show how to proceed to the limit in the case of the
simple algebraic discontinuity of Fig. 4.

Two different processes are here indicated; in the left-hand
figure two sources are about to coalesce, while in the right-
hand figure these are replaced by vortex-points. Fig. 4 is the
resulting limiting position after either process. The two fol-
lowing figures bear the corresponding relation to Fig. 5.

The second possible method is suggested by considering

the rational function
φ

ψ
itself. Logarithmic discontinuities

are thereby excluded. The ν-fold algebraic discontinuity now
arises from ν simple algebraic discontinuities, for ν simple lin-
ear factors of ψ in coalescing form a ν-fold factor. But at the
same time a number of cross-points coalesce and the sum of
their orders is ν−1. For ψφ′−φψ′ = 0 has, as was pointed out
before, a (ν − 1)-fold factor at the same instant that a ν-fold
factor appears in ψ. The following figure explains the produc-
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tion by this method of the two-fold algebraic discontinuity of
Fig. 5.

It is of course easy to include these two methods of pro-
ceeding to the limit in one common and more general method.
If ν + µ + 1 logarithmic infinities and µ cross-points coalesce
successively or simultaneously, a ν-fold algebraic discontinuity
will in every case make its appearance. But this is not the
place to enlarge on the idea thus suggested.
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§ 4. Experimental Production of these Streamings.

We now give a different direction to our investigations and
consider how to bring about the physical production of those
states of motion which are associated, as we have just seen,
with rational functions and their integrals. Let it be assumed
that the principle of superposition may be freely used, so that
we need only consider the simplest cases. From the theory of
partial fractions it follows that each of the functions in question
can be compounded additively of single parts, which fall under
one of the two following types:

A log(z − z0),
A

(z − z0)ν
.

But since log(z − z0) is discontinuous at z =∞, the first type
is unnecessarily specialised, and may be replaced by the more
general one

A log
z − z0

z − z1

,

and this again, as in § 2, may be divided into two parts—viz.:

writing A = A + iB, we discuss A log
z − z0

z − z1

and iB log
z − z0

z − z1
separately. Hence there are in all three cases to be distin-
guished.

(1) Corresponding to the type A log
z − z0

z − z1

a source of

strength 2Aπ must be produced at z0, and one of strength
−2Aπ at z1. To effect this, conceive the xy plane to be covered
with an infinitely thin, homogeneous conducting film. Then it
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is clear that the required state of motion will be produced by
placing the two poles of a galvanic battery of proper strength
at z0 and z1.

∗ The reason that the residue of z0 must be equal
and opposite to that of z1 is now at once evident: the stream-
ing is to be steady, hence the amount of electricity flowing in
at one point must be equal to that flowing out at the other.
There is obviously an analogous reason for the corresponding
theorem concerning any number of logarithmic infinities, but
applying in the first place only to the purely imaginary parts
of the respective residues (these being associated with sources
at the infinities).

(2) In the second case, where iB log
z − z0

z − z1

is given, the

experimental construction is rather more difficult. The sim-
plest arrangement is to join z0 to z1 by a simple arc of a curve
and make this the seat of a constant electromotive force. A
streaming is then set up in the xy plane with vortex-points
at z0, z1, but otherwise continuous, and from this, by integra-
tion, we obtain as velocity-potential a function whose value is
increased by a certain modulus of periodicity for every circuit
round z0 or z1. We must carefully distinguish between this
velocity-potential and the necessarily one-valued electrostatic
potential. The curve joining z0 to z1 is a curve of disconti-
nuity for the latter, and this very fact makes the electrostatic
potential one-valued.†

∗See Kirchhoff’s fundamental memoir: “Ueber den Durchgang eines
elektrischen Stromes durch eine Ebene,” Pogg. Ann. t. lxiv. (1845).

†The statements in the text are intimately connected, as we know,
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I cannot say whether there are any experimental means of
producing this simplest arrangement. It would appear that
we must go to work in a more roundabout way. Let us first
think of thermo-electric currents. Let the xy plane be cov-
ered, partly with material I, partly with material II, and let
the strength of the films be so arranged that the conductivity
shall be everywhere the same. If we now contrive that the
two parts of the contour separated by z0 and z1 may be kept
at constant and different temperatures, an electric streaming
of the kind required will be set up. And the electrostatic po-
tential, by the principles of the theory of thermo-electricity,
exhibits discontinuities on both parts of the said contour. It
would apparently be still more complicated to use electric cur-
rents produced by the ordinary galvanic elements. The plane
must then be divided by at least three curves drawn from z0

to z1, and two of these parts must be covered by a metallic
film, the other by a conducting liquid film. See Fig. 12.

In all these constructions it is clear, ab initio, that the
vortex-points at z0 and z1 must have equal and opposite inten-
sities. For similar reasons the total intensity of all the vortex-
points must always be zero, and thus the theorem that the
sum of the logarithmic residues must vanish has been placed
on a physically evident basis as regards the real, as well as the

with the theory of “Doppelbelegungen” for which cf. Helmholtz, Pogg.
Ann. (1853) t. lxxxix. pp. 224 et seq. (Ueber einige Gesetze der Ver-
theilung elektrischer Ströme in körperlichen Leitern), and C. Neumann’s
treatise Untersuchungen über das Logarithmische und Newton’sche Po-
tential (Leipzig, Teubner, 1877).
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imaginary, parts of these residues.
(3) The states of motion associated with the algebraic types
A

(z − z0)ν
can, by the results of § 3, be derived from those just

established, by proceeding to the limit. This is, of course, only
possible to a certain degree of approximation. For example,
let ν+ 1 wires, connected with the poles of a galvanic battery,
be placed close together on the xy plane. Then a streaming is
set up which at a little distance from the ends of the wires sen-
sibly resembles that associated with an algebraic discontinuity
of multiplicity ν. At the same time an additional fact in con-
nection with the above construction is brought to light. The
galvanic battery must be very strong if an electric streaming of
even medium strength is to be originated. This corresponds to
the well-known analytical theorem that the residues of the log-
arithmic infinities must increase to an infinite degree in order
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that the conjunction of logarithmic discontinuities may lead
to an algebraic discontinuity. No further details need be here
given as it is only necessary for what follows that the general
principles should be grasped by means of Figs. 6–9.

§ 5. Transition to the Surface of a Sphere. Streamings on
arbitrary curved Surfaces.

To extend the treatment of finite values of z to infinitely
great values, the use of the surface of a sphere∗ derived from
the xy plane by stereographic projection is now adopted in all
text-books. The simple geometrical relations involved in this
representation are known,† and we are also perfectly familiar

∗Following the example of C. Neumann, Vorlesungen über Riemann’s
Theorie der Abel’schen Integrale, Leipzig, 1865.—The introduction of the
sphere is, so to speak, parallel to the substitution for z of the ratio

z1
z2

of

two variables, whereby the treatment of infinitely great values of z is, as
we know, formally included in that of the finite values.

†If ξ, η, ζ are rectangular coordinates, let the equation of the sphere
be ξ2 + η2 + (ζ − 1

2 )2 = 1
4 . Project from the point ξ = 0, η = 0, ζ = 1, let

the plane of projection be the xy plane, and the opposite tangent-plane
the ξη plane. Then we have

ξ =
x

x2 + y2 + 1
, η =

y

x2 + y2 + 1
, ζ =

1
x2 + y2 + 1

.

If ds is the element of arc on the plane, dσ that corresponding to it on
the sphere, we have

dσ =
ds

x2 + y2 + 1
,
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with the fact that the infinitely distant parts of the plane are
drawn together to one point of the sphere, the point from
which we project, so that it is no longer merely symbolical to
speak of the point z =∞ on the sphere. It appears however to
be a matter of far less general knowledge that by means of this
representation the functions of x+ iy acquire a signification on
the sphere exactly analogous to that they had on the plane,
and hence, that in the foregoing sections the sphere may be
substituted everywhere for the plane and that thus, from the
outset, there is no question of exceptional conditions for the
value z =∞.∗ The propositions of the theory of surfaces from
which this statement follows are now briefly set forth in a form
sufficiently general to serve for certain future purposes.

In the study of fluid motions parallel to the xy plane we
have already had occasion to assume the film of fluid under
investigation to be infinitely thin. The general question of
fluid motion on any surface may obviously be similarly re-
garded. An example is afforded by the displacements of fluid-
membranes, freely extended in space, over themselves, as may

a formula of great importance hereafter, inasmuch as it indicates the
conformal character of the representation.

∗In connection with this and with the following discussion compare
Beltrami, “Delle variabili complesse sopra una superficie qualunque,”
Ann. di Mat. ser. 2, t. i., pp. 329 et seq.—The particular remark that
surface-potentials remain such after a conformal transformation is to be
found in the treatises cited in the preface, by C. Neumann, Kirchhoff, and
Töpler, as well as e.g. in Haton de la Goupillière, “Méthodes de trans-
formation en Géométrie et en Physique Mathématique,” Journ. de l’Éc.
Poly. t. xxv. 1867, pp. 169 et seq.
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be particularly well observed in Plateau’s experiments.
We shall attempt to define such states of motion also by a

potential and we shall especially enquire what is the case in
steady motion.

The proper extension of our conception of a potential
presents itself at once. Let u be a function of position on the
surface and let the curves u = const. be drawn; moreover let
the direction of fluid-motion on the surface at every point be
perpendicular to the curve u = const. passing through that

point, and let the velocity be
∂u

∂n
, where ∂n is the element of

arc drawn on the surface normal to the curve. Then u, as in
the plane, is called the velocity-potential.

This streaming, so defined, is now to be steady. To be def-
inite, let us make use on the surface of a system of curvilinear
coordinates p, q, and let the expression for the element of arc
in this system be

(1) ds2 = E dp2 + 2F dp dq +Gdq2.

Then by a few simple steps similar throughout to those usually
employed in the plane, we find that if u is to give rise to
a steady streaming, it must satisfy the following differential
equation of the second order:

(2)

∂

F
∂u

∂q
−G ∂u

∂p√
EG− F 2

∂p
+

∂

F
∂u

∂p
− E ∂u

∂q√
EG− F 2

∂q
= 0.
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A short discussion in connection with this differential equa-
tion will now bring out the full analogy with the results for the
plane. From the form of (2) it follows that for every u which
satisfies (2) another function v can be found having the known
reciprocal relation to u. For, by (2), the following equations
hold simultaneously:

(3)


∂v

∂p
=

F
∂u

∂p
− E ∂u

∂q√
EG− F 2

,

∂v

∂q
=

G
∂u

∂p
− F ∂u

∂q√
EG− F 2

;

and they define v, save as to a necessarily indeterminate con-
stant. But solving (3) we have

(4)


−∂u
∂p

=

F
∂v

∂p
− E ∂v

∂q√
EG− F 2

,

−∂u
∂q

=

G
∂v

∂p
− F ∂v

∂q√
EG− F 2

,

and hence,

(5)

∂

F
∂v

∂q
−G ∂v

∂p√
EG− F 2

∂p
+

∂

F
∂v

∂p
− E ∂v

∂q√
EG− F 2

∂q
= 0,
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so that, on the one hand, u bears to v the same relation as
v to −u, and on the other hand v, as well as u, satisfies the
partial differential equation (2). At the same time the geomet-
rical meaning of equations (3) and (4) respectively shows that
the systems of curves u = const., v = const. are in general
orthogonal.

As regards the statement at the beginning of this section
with respect to the stereographic projection of the sphere on
the plane, it follows at once from the fact that the equations
(2)–(5) are homogeneous in E, F , G, and of zero dimensions.∗

If two surfaces can be mapped conformally upon one another,
and if corresponding curvilinear coordinates are employed, the
expression for the element of arc on the one surface differs
from that on the other only by a factor; but this factor simply
disappears from equations (2)–(5) for the reason just assigned.
We have therefore a general theorem, including, as a special
case, the above statement relating to a sphere and a plane.
Forming the combination u+ iv from u and v and calling this
a complex function of position on the surface, this theorem
may be stated as follows:

If one surface is conformally mapped upon another, every
complex function of position which exists on the first is changed
into a function of the same kind on the second.

It may perhaps be as well to obviate a misunderstanding

∗This statement can also be easily verified without the use of formulæ;
reference may be made to the works of C. Neumann and of Töpler, already
cited.
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which might arise at this point. To the same function u + iv
there corresponds a motion of the fluid on the one surface and
on the other; it might be imagined that the one arose from the
other by the transformation. This is of course true as regards
the position of the equipotential curves and the stream-lines,
but it is in no wise true of the velocity. Where the element
of arc of one surface is greater than the element of arc of the
other, there the velocity is correspondingly smaller. This is
precisely the reason that the value z = ∞ loses its critical
character on the sphere. At infinity on the plane, the velocity
of the streaming, as we see at once, is infinitely small of the
second order, and if infinity is a singular point, still the velocity
there is less by two degrees than the velocity at a similar point
in the finite part of the plane. Now let us refer to the formula
given in the foot-note at the beginning of this section:

dσ =
ds

x2 + y2 + 1
,

giving the element of arc of the sphere in terms of the element
of arc of the plane. Here x2+y2+1 is a quantity of precisely the
second order and is cancelled in the transition to the sphere.

§ 6. Connection between the foregoing Theory and the
Functions of a complex Argument.

Since we have now obtained the sphere as basis of oper-
ations, the theorems of §§ 3, 4 respecting rational functions
and their integrals must be restated; we hereby gain in gener-
ality, the previously established theorems holding for infinitely
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great values of z and being thus valid with no exceptions. This
makes it the more interesting to trace the course of any par-
ticular rational function on the sphere and to consider means
for its physical production.∗ But another important question

∗A good example of not too elementary a character is the Icosahedron
equation (cf. Math. Ann., t. xii. pp. 502 et seq.),

w =

(
−(z20 + 1) + 228(z15 − z5)− 494z10

)3
1728z5(z10 + 11z5 − 1)5

,

which is of the 60th degree in z. The infinities of w are coincident by fives
at each of 12 points which form the vertices of an icosahedron inscribed
in the sphere on which we represent the values of z. Corresponding to
the 20 faces of this icosahedron, the sphere is divided into 20 equilateral
spherical triangles. The middle points of these triangles are given by
w = 0 and form cross-points of multiplicity two for the function w. Hence
of the 2 · 60 − 2 = 118 cross-points, we already know (including the
infinities) 4 · 12 + 2 · 20 = 88.

The remaining 30 are given by the middle points of the 30 sides of those
20 spherical triangles. The annexed figure is a diagram of one of these
20 triangles with the stream-lines drawn in; the remaining 19 are similar.



[sect vi.] introductory remarks. 27

suggests itself during these investigations:—the different func-
tions of position on the sphere are at the same time functions
of the argument x+ iy; whence this connection?

It must first be noticed that x+ iy is itself a complex func-
tion of position on the sphere, for the quantities x and y satisfy
the differential equations already established in § 1 for u and v;
while working in the plane we may imagine that this function
has an essential advantage over all other functions, but when
the scene of operations is transferred to the sphere there is
no longer any inducement to think so. In fact we are at once
led to a generalisation of the remark which gave rise to this
enquiry. If u + iv and u1 + iv1 are both functions of x + iy,
u1 + iv1 is also a function of u+ iv; hence for plane and sphere
we have the general theorem: Of two complex functions of po-
sition, with the usual meaning of this expression in the theory
of functions, each is a function of the other.

But is this a peculiarity of these surfaces alone? It is cer-
tainly transferable to all such surfaces as can be conformally
mapped upon part of a plane or of a sphere; this follows from
the last theorem of the preceding section. But I maintain that
this peculiarity belongs to all surfaces, whereby it is implicitly
stated that a part of any arbitrary surface can be conformally
mapped upon the plane or the sphere.

The proof follows at once, if we take x, y, the real and imag-
inary parts of a complex function of position on a surface, for
curvilinear coordinates on that surface. For then the coeffi-
cients E, F , G, in the expression for the element of arc, must
be such that equations (2)–(5) of the preceding section are
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identically satisfied when x and y are substituted for p and q
and also for u and v. This, as we see at a glance, imposes
the conditions F = 0, E = G. But then the equations are
transformed into the well-known ones,

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, etc.,

and these are the equations by which functions of the argument
x+ iy are defined; hence u+ iv is a function of x+ iy, as was
to be shown.

At the same time the statement respecting conformal rep-
resentation is confirmed. For, from the form of the expression
for the element of arc,

ds2 = E (dx2 + dy2),

it follows at once that the surface can be conformally mapped
upon the xy plane by x+ iy. This result may be expressed in
a somewhat more general form, thus:

If two complex functions of position on two surfaces are
known, and the surfaces are so mapped upon one another that
corresponding points give rise to the same values of the func-
tions, the surfaces are conformally mapped upon each other.

This is the converse of the theorem established at the end
of the last section.

These theorems have all, as far as regards arbitrary sur-
faces, a definite meaning only when the attention is confined
to small portions of the surface, within which the complex
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functions of position have neither infinities nor cross-points. I
have therefore spoken provisionally of parts of surfaces only.
But it is natural to enquire concerning the behaviour of these
relations when the whole of any closed surface is taken into
consideration. This is a question which is intimately connected
with the line of argument presently to be developed; §§ 19–21
are specially devoted to it.

§ 7. Streamings on the Sphere resumed. Riemann’s general
Problem.

A point has now been reached from which it is possible to
start afresh and to take up the discussion contained in the first
sections of this introduction in an entirely different manner;
this leads us to a general and most important problem, in fact
to Riemann’s problem, the exact statement and solution of
which form the real subject-matter of the present pamphlet.

The most important position in the previous presentation
of the subject has been occupied by the function of x + iy;
this has been interpreted by a steady streaming on the sphere,
and characteristics of the function have been recognized in
those of the streaming. Rational functions in particular, and
their integrals have led to one simple class of streamings—
one-valued streamings—in which one streaming only exists
at every point of the sphere. Moreover, subject to the con-
dition that no discontinuities other than those defined in § 2
may present themselves, these are the most general one-valued
streamings possible on a sphere.
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Now it seems possible, ab initio, to reverse the whole order
of this discussion; to study the streamings in the first place and
thence to work out the theory of certain analytical functions.
The question as to the most general admissible streamings can
be answered by physical considerations; the experimental con-
structions of § 4 and the principle of superposition giving us,
in fact, means of defining each and every such streaming. The
individual streamings define, to a constant of integration près,
a complex function of position whose variations can be thereby
followed throughout their whole range. Every such function is
an analytical function of every other. From the connection
between any two complex functions of position forms of ana-
lytical dependence are found, considered initially as to their
characteristics and only afterwards identified—to complete the
connection—with the usual form of analytical dependence.

This is all too clear to need a more minute explanation;
let us proceed at once to the proposed generalisation. And
even this, after the previous discussion, is almost self-evident.
All the problems just stated for the sphere may be stated in
exactly the same terms if instead of the sphere any arbitrary
closed surface is given. On this surface one-valued streamings
and hence complex functions of position can be defined and
their properties grasped by means of concrete demonstrations.
The simultaneous consideration of various functions of position
thus changes the results obtained into so many theorems of
ordinary analysis. The fulfilment of this design constitutes
Riemann’s Theory ; the chief divisions into which the following
exposition falls have been mentioned incidentally.



PART II.

Riemann’s Theory.

§ 8. Classification of closed Surfaces according to the Value
of the Integer p.∗

All closed surfaces which can be conformally represented
upon each other by means of a uniform correspondence, are,
of course, to be regarded as equivalent for our purposes. For
every complex function of position on the one surface will be
changed by this representation into a similar function on the
other surface; hence, the analytical relation which is graphi-
cally expressed by the co-existence of two complex functions on
the one surface is entirely unaffected by the transition to the
other surface. For instance, the ellipsoid may be conformally
represented, by virtue of known investigations, on a sphere, in
such a way that each point of the former corresponds to one
and only one point of the latter; this shows us that the ellip-
soid is as suitable for the representation of rational functions
and their integrals as the sphere.

It is of still greater importance to find an element which
is unchanged, not only by a conformal transformation, but by

∗The presentation of the subject in this section differs occasionally
from Riemann’s, since surfaces with boundaries are not at first taken into
account, and thus, instead of cross-cuts from one point on the boundary
to another, so-called loop-cuts are used (cf. C. Neumann, Vorlesungen
über Riemann’s Theorie der Abel’schen Integrale, pp. 291 et seq.).
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any uniform transformation of the surface.∗ Such an element is
Riemann’s p, the number of loop-cuts which can be drawn on a
surface without resolving it into distinct pieces. The simplest
examples will suffice to impress this idea on our minds. For
the sphere, p = 0, since it is divided into two disconnected
regions by any closed curve drawn on its surface. For the
ordinary anchor-ring, p = 1; a cut can be made along one, and
only one, closed curve—though this may have a very arbitrary
form—without resolving the surface into distinct portions.

That it is impossible to represent surfaces having differ-
ent p’s upon one another, the correspondence being uniform,
seems evident.†

It is more difficult to prove the converse, that the equality of
the p’s is a sufficient condition for the possibility of a uniform
correspondence between the two surfaces. For proof of this

∗Deformations by means of continuous functions only are considered
here. Moreover in the arbitrary surfaces of the text certain particular
occurrences are for the present excluded. It is best to imagine them
without singular points; branch-points and hence the penetration of one
sheet by another will be considered later on (§ 13). The surfaces must
not be unifacial, i.e. it must not be possible to pass continuously on the
surface from one side to the other (cf. however § 23). It is also assumed—
as is usual when a surface is completely given—that it can be separated
into simply-connected portions by a finite number of cuts.

†It is not meant, however, that this kind of geometrical certainty
needs no further investigation; cf. the explanations of G. Cantor (Crelle,
t. lxxxiv. pp. 242 et seq.). But these investigations are meanwhile
excluded from consideration in the text, since the principle there insisted
upon is to base all reasoning ultimately on intuitive relations.
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important proposition I must here confine myself to references
in a foot-note.∗ In consequence of this, when investigating
closed surfaces, we are justified, so long as purely descriptive
general relations are involved, in adopting the simplest possible
type of surface for each p. We shall speak of these as normal
surfaces. For the determination of quantitative properties the
normal surfaces are of course insufficient, but even here they
provide a means of orientation.

Let the normal surface for p = 0 be the sphere, for p = 1,
the anchor-ring. For greater values of p we may imagine a
sphere with p appendages (handles) as in the following figure
for p = 3.

There is, of course, a similar normal surface for p = 1;

∗See C. Jordan: “Sur la déformation des surfaces,” Liouville’s Jour-
nal, ser. 2, t. xi. (1866). A few points, which seemed to me to call for
elucidation, are discussed in Math. Ann., t. vii. p. 549, and t. ix. p. 476.
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the surfaces being, by hypothesis, not rigid, but capable of
undergoing arbitrary distortions.

On these normal surfaces there must now be assigned cer-
tain cross-cuts which will be needed in the sequel. For the
case p = 0 these do not present themselves. For p = 1, i.e. on
the anchor-ring, they may be taken as a meridian A combined
with a curve of latitude B.

In general 2p cross-cuts will be needed. It will, I think,
be intelligible, with reference to the following figure, to speak
of a meridian and a curve of latitude in connection with each
handle of a normal surface.

We choose the 2p cross-cuts such that there is a meridian
and a curve of latitude to each handle. These cross-cuts will
be denoted in order by A1, A2, . . . , Ap, and B1, B2, . . . , Bp.
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§ 9. Preliminary Determination of steady Streamings on
arbitrary Surfaces.

We have now before us the task of defining on arbitrary
(closed) surfaces, the most general, one-valued, steady stream-
ings, having velocity-potentials, and subject to the condition
that no infinities are admitted other than those named in § 2.∗

For this purpose we turn to the normal surfaces of the last
section and once more employ the experimental methods of
the theory of electricity. We imagine the given surface to be

∗These infinities were first defined for the plane (or the sphere) only.
But it is clear how to make the definition apply to arbitrary curved sur-
faces; the generalisation must be made in such a manner that the original
infinities are restored when the surface and the steady streamings on it
are mapped by a conformal representation upon the plane. This limita-
tion in the nature of the infinities implies that only a finite number of
them is possible in the streamings in question, but it must suffice to state
this as a fact here. Similarly, as I may point out in passing, it follows
from our premises that only a finite number of cross-points can present
themselves in the course of these streamings.
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covered with an infinitely thin homogeneous film of a conduct-
ing material, and we then employ those appliances whose use
we learnt in § 4. Thus we may place the two poles of a gal-
vanic battery at any two points of the surface; a streaming is
then produced having these two points as sources of equal and
opposite strength. Next we may join any two points on the
surface by one or more adjacent but non-intersecting curves
and make these seats of constant electromotive force, bearing
in mind throughout the remarks made in § 4 about the nec-
essary experimental processes for this case. A steady motion
is then obtained, in which the two points are vortex-points of
equal and opposite intensity. Further, we superpose various
forms of motion and finally, when necessary, allow separate
infinities to coalesce in the limit in order to produce infinities
of higher order. Everything proceeds exactly as on the sphere
and we have the following proposition in any case:

If the infinities are limited to those discussed in § 2, and
if moreover the condition that the sum of all the logarithmic
residues must vanish is satisfied, then there exist on the surface
complex functions of position which become infinite at arbi-
trarily assigned points and moreover in an arbitrarily specified
manner and are continuous elsewhere over the whole surface.

But for p > 0 the possibilities are by no means exhausted
by these functions. For there can now be found an experimen-
tal construction which was impossible on the sphere. There are
closed curves on these surfaces along which they may be cut
without being resolved into distinct pieces. There is nothing
to prevent the electricity flowing on the surface from one side
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of such a curve to the other. We have then as much justifica-
tion for considering one or more of these consecutive curves as
seats of constant electromotive force as we had in the case of
the curves of § 4 which were drawn from one end to the other.

The streamings so obtained have no discontinuities; they
may be denoted as streamings which are finite everywhere
and the associated complex functions of position as functions
finite everywhere. These functions are necessarily infinitely
multiform, for they acquire a real modulus of periodicity, pro-
portional to the assumed electromotive force, as often as the
given curve is crossed in the same direction.∗

We next enquire how many independent streamings there
may be, so defined as finite everywhere. Obviously any two
curves on the surface, seats of equal electromotive forces, are
equivalent for our purpose when by continuous deformation
on the surface one can be brought to coincidence with the
other. If after the process of deformation parts of the curve
are traversed twice in opposite directions, these may be simply
neglected. Consequently it is shown that every closed curve is
equivalent to an integral combination of the cross-cuts Ai, Bi

defined as in the previous section.
For let us trace the course of any closed curve on a normal

∗But this is not to imply that any disposition has herewith been made
of the periodicity of the imaginary part of the function. For if u is given,
v is completely determined, to an additive constant près, by the differ-
ential equations (1) of p. 1, and hence the moduli of periodicity which
v may possess at the cross-cuts Ai, Bi cannot be arbitrarily assigned.
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surface;∗ for p = 1 the correctness of the statement follows
immediately; we need but consider an example as given in
the above figures. The curve drawn on the anchor-ring in
Fig. 17 can be brought to coincidence with that in Fig. 18 by
deformation alone; it is thus equivalent to a triple description
of the meridian A (cf. Fig. 15) and a single description of the
curve of latitude B.

Further, let p > 1. Then whenever a curve passes through
one of the handles a portion can be cut off, consisting of de-
formations of an integral combination of the meridians and
corresponding curves of latitude belonging to the handle in
question. When all such portions have been removed there
remains a closed curve, which can either be reduced at once to

∗For another proof see C. Jordan, “Des contours tracés sur les sur-
faces,” Liouville’s Journal, ser. 2, t. xi. (1866).
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a single point on the surface—and then has certainly no effect
on the electric streaming—or it may completely surround one
or more of the handles as in Fig. 19. Fig. 20 shows how such
a curve can be altered by deformation; by continuation of the
process here indicated, it is changed into a curve consisting

of the inner rim of the handle and one of its meridians, but
every portion is traversed twice in opposite directions. Thus
this curve also contributes nothing to the streaming. This con-
clusion might indeed have been reached before, from the fact
that this curve, herein resembling a curve which reduces to a
point, resolves the surface into distinct portions.

Nothing more is therefore to be gained by the consideration
of arbitrary closed curves than by suitable use of the 2p curves
Ai, Bi. The most general streaming we can produce which is
finite everywhere is obtained by making the 2p cross-cuts seats
of a constant electromotive force. Or, otherwise expressed:
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The most general function we have to construct, which is fi-
nite everywhere, is the one whose real part has, at the 2p cross-
cuts, arbitrarily assigned moduli of periodicity.

§ 10. The most general steady Streaming. Proof of the
Impossibility of other Streamings.

If we combine additively the different complex functions
of position constructed in the preceding section, we obtain a
function whose arbitrary character we can take in at a glance.
Without explicitly restating the conditions which we assumed
once and for all respecting the infinities, we may say that this
function becomes infinite in arbitrarily specified ways at arbi-
trarily assigned points, the real part having moreover arbitrar-
ily assigned moduli of periodicity at the 2p cross-cuts.

I now say, that this is the most general function to which a
one-valued streaming on the surface corresponds. For proof we
may reduce this statement to a simpler one. If any complex
function of this kind is given on the surface, we have, by what
precedes, the means of constructing another function, which
becomes infinite in the same manner at the same points and
whose real part has at the cross-cuts Ai, Bi the same mod-
uli of periodicity as the real part of the given function. The
difference of these two functions is a new function, nowhere
infinite, whose real part has vanishing moduli of periodicity at
the cross-cuts—this function, of course, again defines a one-
valued streaming. It is obvious we must prove that such a
function does not exist, or rather, that it reduces to a constant
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The proof is not difficult. As regards the strict demonstra-
tion, I confine myself to the remark that it depends on the
most general statement of Green’s Theorem;∗ the following is
intended to make the impossibility of the existence of such a
function immediately obvious. Even if, on account of its in-
definite form, the argument may possibly not be regarded as
a rigorous proof,† it would still seem profitable to examine, by
this method as well, the principles on which that theorem is
based.

Firstly, then, in the particular case p = 0, let us enquire
why a one-valued streaming, finite everywhere, cannot exist on
the sphere. This is most easily shown by tracing the stream-
lines. Since no infinities are to arise, a stream-line cannot have
an abrupt termination, as would be the case at a source or at
an algebraic discontinuity. Moreover it must be remembered
that the flow along adjacent stream-lines is necessarily in the
same direction. It is thus seen that only two kinds of non-
terminating stream-lines are possible; either the curve winds
closer and closer round an asymptotic point—but this gives
rise to an infinity—or the curve is closed. But if one stream-
line is closed, so is the next. They thus surround a smaller and
smaller part of the surface of the sphere; consequently we are
unavoidably led to a vortex-point, i.e. once more to an infinity,
and a streaming finite everywhere is an impossibility. It is

∗For this proposition see Beltrami, l.c., p. 354.
†I may remind the reader that Green’s theorem itself may be proved

intuitively; cf. Tait, “On Green’s and other allied Theorems,” Edin.
Trans. 1869–70, pp. 69 et seq.
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true that we have here not taken into account the possibilities
involved when cross-points present themselves. But since these
points are always finite in number, as was pointed out above,
there can be but a finite number of stream-lines through them.
Let the sphere be divided by these curves into regions, and in
each individual region apply the foregoing argument, then the
same result will be obtained.

Next, if p > 0, let us again make use of the normal sur-
faces of § 8. By what we have just said, the existence on these
surfaces of one-valued streamings which are finite everywhere,
is due to the presence of the handles. A stream-line cannot be
represented on a normal surface, any more than on a sphere,
by a closed curve which can be reduced to a point. But further,
a curve of the form shown in Fig. 19 is not admissible. For
with this curve there would be associated others of the form
shown in Fig. 20, so that ultimately a curve would be obtained
with its parts described twice in opposite directions. A stream-
line must therefore necessarily wind round one or other of the
handles, that is, it may simply pass once through a handle or
it may wind round it several times along the meridians and
curves of latitude. In all cases then a portion of a stream-line
can be separated from the remainder, equivalent in the sense
of the last section to an integral combination of the appropri-
ate meridians and curves of latitude. Now the value of u, the
real part of the complex function defined by the streaming,
increases constantly along a stream-line. Further, the descrip-
tion of two curves, equivalent in the sense of the last section,
necessarily produces the same increment in u. There exists
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then a combination of at least one meridian and one curve of
latitude the description of which yields a non-vanishing incre-
ment of u. This is also necessarily true for the meridian or the
curve of latitude alone. But the increment which u receives by
the description of the meridian corresponds to the crossing of
the curve of latitude and vice versa. Hence at one meridian
or curve of latitude, at least, u has a non-vanishing modulus
of periodicity, and a one-valued streaming, finite everywhere,
having all its moduli of periodicity equal to zero, is impossible.
q.e.d.

§ 11. Illustration of the Streamings by means of Examples.

It would appear advisable to gain, by means of examples,
a clear view of the general course of the streamings thus de-
fined, in order that our propositions may not be mere abstract
statements, but may be connected with concrete illustrations.∗

This is comparatively easy in the given cases so long as we
confine ourselves to qualitative relations; exact quantitative
determinations would of course require entirely different ap-
pliances. For simplicity I confine myself to surfaces with a
plane of symmetry coinciding with the plane of the drawing,
and on these I consider only those streamings for which the
apparent boundary of the surface (i.e. the curve of section of
the surface by the plane of the paper) is either a stream-line
or an equipotential curve. There is a considerable advantage

∗Such a means of orientation, it may be presumed, in also of consid-
erable value for the practical physicist.
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in this, for the stream-lines need only be drawn for the upper
side of the surface, since on the under side they are identically

repeated.∗

Let us begin with streamings, finite everywhere, on the
anchor-ring p = 1; let a curve of latitude (or several such
curves) be the seat of electromotive force. Then Fig. 21 is ob-
tained in which all the stream-lines are meridians and no cross-
points present themselves; the meridians are there shown as
portions of radii; the arrows give the direction of the streaming
on the upper side, on the lower side the direction is exactly
reversed.

∗Drawings similar to these were given in my memoir “Ueber den
Verlauf der Abel’schen Integrale bei den Curven vierten Grades,” Math.
Ann. t. x., though indeed a somewhat different meaning is attached there
to the Riemann’s surfaces, so that in connection with them the term fluid-
motion can only be used in a transferred sense; cf. the remarks in § 18.
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In the conjugate streaming, the curves of latitude play the
part of the meridians in the first example; this is shown in the
following drawing:

The direction of motion in this case is the same on the upper
and lower sides.

Let us now deform the anchor-ring, p = 1, by causing two
excrescences to the right of the figure, roughly speaking, to
grow from it, which gradually bend towards each other and
finally coalesce. We then have a surface p = 2 and on it a pair
of conjugate streamings as illustrated by Figures 23 and 24.

Here, as we may see, two cross-points have presented them-
selves on the right (of which of course only one is on the upper
side and therefore visible). An analogous result is obtained
when we study streamings which are finite everywhere on a
surface for which p > 1. In place of further explanations I give
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two more figures with four cross-points in each, relating to the
case p = 3.

These arise, if on all “handles” of the surface the curves
of latitude or the meridians respectively are seats of electro-
motive force. On the two lower handles the directions are the
same, and opposed to that on the upper handle. Of the cross-



[sect xi.] riemann’s theory. 47

points, two are at a and b, the third at c, and the fourth at the
corresponding point on the under side. It is difficult to see the
cross-points at a and b (Fig. 25) merely because foreshortening
due to perspective takes place at the boundary of the figure,
and hence both stream-lines which meet at the cross-point ap-
pear to touch the edge. If the streamings on the under side of
the surface (along which the flow is in the opposite direction)
are taken into account, any obscurity of the figure at this point
will disappear.

Let us now return to the anchor-ring, p = 1, and let two
logarithmic discontinuities be given on it. The appropriate
figures are obtained if Figs. 23, 24 are subjected to a process
of deformation, which may also be applied, with interesting
as well as profitable results, to more general cases. We draw
together the parts to the left of each figure and stretch out
the parts to the right, so that we obtain, in the first place, the
following figures:
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and then we reduce the handle on the left, which has already
become very narrow, until it is merely a curve, when we reject
it altogether. Hence, from the streaming, finite everywhere,
on the surface p = 2, we have obtained on the surface p = 1
a streaming with two logarithmic discontinuities. The figures
are now of this form,

The two cross-points of Figs. 23, 24 remain, m and n are
the two logarithmic discontinuities; and these moreover, in
Fig. 29, are vortex-points of equal and opposite intensity, and,
in Fig. 30, sources of equal and opposite strength. Here, again,
it results from our method of projection that in the second case
all the stream-lines except one seem to touch the boundary at
m and n.

If we finally allow m and n to coalesce, giving rise to a
simple algebraic discontinuity, we obtain the following figures,
in which, as may be perceived, the cross-points retain their
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original positions.

There is no occasion to multiply these figures, as it is easy
to construct other examples on the same models. But one
more point must be mentioned. The number of cross-points
obviously increases with the p of the surface and with the
number of infinities; algebraic infinities of multiplicity r may
be counted as r+ 1 logarithmic infinities; then, on the sphere,
with µ logarithmic infinities, the number of proper cross-points
is, in general, µ − 2. Moreover unit increase in p is accompa-
nied, in accordance with our examples, by an increase of two
in the number of cross-points. Hence it may be surmised that
the number of cross-points is, in every case, µ + 2p − 2. A
strict proof of this theorem, based on the preceding methods,
would present no especial difficulty;∗ but it would lead us too

∗It would seem above all necessary for such a proof to be perfectly
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far afield. The only particular case of the theorem of which
use will be subsequently made, is known to hold by the usual
proofs of analysis situs; it deals (§ 14) with streamings present-
ing m simple algebraic discontinuities, giving rise therefore to
2m+ 2p− 2 cross-points.

§ 12. On the Composition of the most general Function of
Position from single Summands.

The results of § 10 enable us to obtain a more concrete
illustration of the most general complex function of position
existing on a surface by adding together single summands of
the simplest types.

Let us first consider functions finite everywhere. Let
u1, u2, . . . , uµ be potentials, finite everywhere. These may be
called linearly dependent if they satisfy a relation

a1u1 + a2u2 + . . .+ aµuµ = A

with constant coefficients. Such a relation leads to correspond-
ing equations for the 2p series of µ moduli of periodicity pos-
sessed by u1, u2, . . . , uµ at the 2p cross-cuts of the surface.
Conversely, by the theorem of § 10, such equations for the
moduli of periodicity would of themselves give rise to a linear
relation in the u’s. It then follows that 2p linearly independent
potentials finite everywhere, u1, u2, . . . , u2p, can be found in

clear about the various possibilities connected with the deformation of a
given surface into the normal surface, cf. § 8.
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an indefinite number of ways, but from these every other po-
tential, finite everywhere, can be linearly constructed :

u = a1u1 + . . . . . .+ a2pu2p + A.

For u1, u2, . . . , u2p can e.g. be so chosen that each has
a non-vanishing modulus of periodicity at one only of the
2p cross-cuts (where, of course, to each cross-cut, one, and only
one, potential is assigned). And in

∑
aiui the constants ai can

be so chosen that this expression has at each cross-cut the same
modulus of periodicity as u. Then u −

∑
aiui is a constant

and we have the formula just given.
Passing now from the potentials u to the functions u +

iv, finite everywhere, suppose, for simplicity, that coordinates
x, y, employed on the surface (§ 6), are such that u and v are
connected by the equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Now let u1 be an arbitrary potential, finite everywhere. Con-
struct the corresponding v1; then u1 and v1 are linearly inde-
pendent. For if between u1 and v1 there were an equation

a1u1 + b1v1 = const.

with constant coefficients, this would entail the following equa-
tions:

a1
∂u1

∂x
+ b1

∂v1

∂x
= 0, a1

∂u1

∂y
+ b1

∂v1

∂y
= 0,
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whence, by means of the given relations, the following contra-
dictory result would be obtained:

∂u1

∂x
= 0,

∂u1

∂y
= 0.

Further, let u2 be linearly independent of u1, v1. Then we
may take the corresponding v2 and obtain the more general
theorem: The four functions u1, u2, v1, v2, are likewise linearly
independent. For from any linear relation

a1u1 + a2u2 + b1v1 + b2v2 = const.,

by means of the relations among the u’s and the v’s, we should
obtain the following equations:

(a1a2 + b1b2)
∂u1

∂x
− (a1b2 − a2b1)

∂v1

∂x
+ (a2

2 + b22)
∂u2

∂x
= 0,

(a1a2 + b1b2)
∂u1

∂y
− (a1b2 − a2b1)

∂v1

∂y
+ (a2

2 + b22)
∂u2

∂y
= 0,

from which by integration a linear relation among u1, v1, u2

would follow.
Proceeding thus we obtain finally 2p linearly independent

potentials,

u1, v1, u2, v2, . . . . . . , up, vp,

where each v is associated with the u having the same suffix.
Writing uα+ivα = wα and calling the functions w1, w2, . . . , wµ,
which are finite everywhere, linearly independent if no relation

c1w1 + c2w2 + . . . . . .+ cµwµ = C
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exists among them, where c1, . . . , cµ, C are arbitrary complex
constants, we have at once: The p functions w1, . . . , wp, finite
everywhere, are linearly independent. For if there were a linear
relation we could separate the real and imaginary parts and
thus obtain linear relations among the u’s and v’s.

But, further, it follows that every arbitrary function, finite
everywhere, can be made up from w1, w2, . . . , wp in the fol-
lowing form:

w = c1w1 + c2w2 + . . .+ cpwp + C.

For by proper choice of the complex constants c1, c2, . . . , cp,
since u1, . . . , up, v1, . . . , vp are linearly independent, we can as-
sign to the real part of the function w defined by this formula,
arbitrary moduli of periodicity at the 2p cross-cuts.

This is the theorem we were to prove in the present section,
in so far as it relates to the construction of functions finite
everywhere. The transition to functions with infinities is now
easily effected.

Let ξ1, ξ2, . . . , ξµ be the points at which the function is to
become infinite in any specified manner. Introduce an auxil-
iary point η and construct a series of single functions

F1, F2, . . . , Fµ,

each of which becomes infinite, and that in the specified man-
ner, at one only of the points ξ, and in addition has, at η, a
logarithmic discontinuity whose residue is equal and opposite
to the logarithmic residue of the ξ in question. The sum

F1 + F2 + . . .+ Fµ
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is then continuous at η, for the sum of all the residues of the
discontinuities ξ is known to be zero. Moreover, this sum
only becomes infinite at the ξ’s, and there in the specified
manner. It therefore differs from the required function only by
a function which is finite everywhere. The required function
may thus be written in the form

F1 + F2 + . . .+ Fµ + c1w1 + c2w2 + . . .+ cpwp + C,

whereby the theorem in question has been established for the
general case.

This result obviously corresponds to the dismemberment
of complex functions on a sphere considered in § 4, and there
deduced in the usual way from the reduction of rational func-
tions to partial fractions.

§ 13. On the Multiformity of the Functions. Special Treat-
ment of uniform Functions.

The functions u + iv, under investigation on the surfaces
in question, are in general infinitely multiform, for on the one
hand a modulus of periodicity is associated with every loga-
rithmic infinity, and on the other hand we have the moduli of
periodicity at the 2p cross-cuts Ai, Bi, whose real parts may
be arbitrarily chosen. I assert that in no other manner can
u + iv become multiform. To prove this we must go back to
the conception of the equivalence of two curves on a given
surface which was brought forward in § 9, primarily for other
purposes. Since the differential coefficients of u and v (or,



[sect xiii.] riemann’s theory. 55

what is the same thing, the components of the velocity of the
corresponding streaming) are one-valued at every point of the
surface, two equivalent closed curves not separated by a loga-
rithmic discontinuity yield the same increment in u, and also
in v. But we found that every closed curve was equivalent to
an integral combination of the cross-cuts Ai, Bi. We further
remarked (§ 10) that the description of Ai produced the same
modulus of periodicity as the crossing of Bi it and vice versa.
And from this the above theorem follows by known methods.

It will now be of special interest to consider uniform func-
tions of position; from the foregoing all such functions can be
obtained by admitting only purely algebraical infinities and
by causing all the 2p moduli of periodicity at the cross-cuts
Ai, Bi to vanish. To simplify the discussion, simple algebraic
discontinuities alone need be considered. For we know from
§ 3 that the ν-fold algebraic discontinuity can be derived from
the coalescence of ν simple ones, in which case, it should be
borne in mind, cross-points are absorbed whose total multi-
plicity is ν − 1. Let m points then be given as the simple
algebraic infinities of the required function. We first construct
any m functions of position Z1, . . . , Zm each of which has a
simple algebraic infinity at one only of the given points but
is otherwise arbitrarily multiform. From these Z’s the most
general complex function of position with simple algebraic in-
finities at the given points can be compounded by the last
section in the form

a1Z1 + a2Z2 + . . .+ amZm + c1w1 + c2w2 + . . .+ cpwp + C,
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where a1, . . . , am are arbitrary constant coefficients. To make
this function uniform the modulus of periodicity for each of
the 2p cross-cuts must be equated to zero; but these moduli
of periodicity are linearly compounded, by means of the a’s
and c’s, of the moduli of periodicity of the z’s and w’s; there
are thus 2p linear homogeneous equations for the m + p con-
stants a and c. Assume that these equations are linearly inde-
pendent,∗ this important proposition follows:

Subject to this condition, uniform functions of position
with m arbitrarily assigned simple algebraic discontinuities
exist only if m = p+ 1; and these functions contain m− p+ 1
arbitrary constants which enter linearly.

Now let the m infinities be moveable, then m new degrees
of freedom are introduced. Moreover it is clear that m arbi-
trary points on the surface can be changed by continuous dis-
placement into m others equally arbitrary. It may therefore
be stated—bearing in mind, however, under what conditions—
that the totality of uniform functions with m simple algebraic

∗If they are not so, the consequence will be that the number of uni-
form functions which are infinite at the m given points will be greater
than that given in the text. The investigations of this possibility, espe-
cially Roch’s (Crelle, t. lxiv.), are well known; cf. also for the algebraical
formulation, Brill and Nöther: “Ueber die algebraischen Functionen und
ihre Verwendung in der Geometrie,” Math. Ann. t. vii. I cannot pursue
these investigations in the text, although they are easily connected with
Abel’s Theorem as given by Riemann in No. 14 of the Abelian Functions,
and will merely point out with reference to later developments in the text
(cf. § 19) that the 2p equations are certainly not linearly independent if
m surpasses the limit 2p− 2.



[sect xiii.] riemann’s theory. 57

discontinuities existing on a given surface forms a continuum
of 2m− p+ 1 dimensions.

Having now proved the existence and ascertained the de-
grees of freedom of the uniform functions, we will, as simply
and directly as possible, enunciate and prove another impor-
tant property that they possess. The number of their infini-
ties m is of far greater import than has yet appeared, for I now
state that the function u+ iv assumes any arbitrarily assigned
value u0 + iv0 at precisely m points.

To prove this, follow the course of the curves u = u0, v = v0

on the surface. It is clear from § 2 that each of these curves
passes once through every one of the m infinities. On the other
hand it follows by the reasoning of § 10 that every circuit of
each of these curves must have at least one infinity on it. Hence
the statement is at once proved for very great values of u0, v0;
for it was shewn in § 2 that the corresponding curves u = u0,
v = v0 assume in the vicinity of each infinity the form of small
circles through these points, which necessarily intersect in one
point other than the discontinuity (which last is hereafter to
be left out of account).

But from this the theorem follows universally, since, by
continuous variation of u0, v0, an intersection of the curves
u = u0, v = v0 can never be lost ; for, from the foregoing,
this could only occur if several points of intersection were to
coalesce, separating afterwards in diminished numbers. Now
the systems of curves u, v are orthogonal; real points of inter-
section can then only coalesce at cross-points (at which points
coalescence does actually take place); but these cross-points
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are finite in number and therefore cannot divide the surface
into different regions. Thus the possibility of a coalescence
need not be considered and the statement is proved.

It is valuable in what follows to have a clear conception
of the distribution of the values of u + iv near a cross-point.
A careful study of Fig. 1 will suffice for this purpose. For
instance, it will be observed that of the m moveable points of
intersection of the curves u = u0, v = v0, ν + 1 coalesce at the
ν-fold cross-point.

Considerations similar to those here applied to uniform
functions apply also to multiform functions; I do not enlarge
on them, simply because the limitations of the subject-matter
render them unnecessary; moreover it is only in the very sim-
plest case that a comprehensible result can be obtained. Suffice
it to refer in passing to the fact that a complex function with
more than two incommensurable moduli of periodicity can be
made to approach infinitely near every arbitrary value at every
point.
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§ 14. The ordinary Riemann’s Surfaces over the x + iy
Plane.

Instead of considering the distribution of the values of the
function u + iv over the original surface, the process may, so
to speak, be reversed. We may represent the values of the
function—which for this reason is now denoted by x + iy—
in the usual way on the plane (or on the sphere)∗ and we
may study the conformal representation of the original sur-
face which (by § 5) is thus obtained. For simplicity, we again
confine our attention to uniform functions, although the con-
sideration of conformal representation by means of multiform
functions is of particular interest.†

A moment’s thought shows that we are thus led to the very
surface, many-sheeted, connected by branch-points, extending
over the xy plane, which is commonly known as a Riemann’s
surface.

For let m be the number of simple infinities of x+iy on the
original surface; then x+iy, as we have seen, takes every value
m times on the given surface. Hence the conformal represen-
tation of the original surface on the x + iy plane covers that
plane, in general, with m sheets. The only exceptional posi-
tions are taken by those values of x+ iy for which some of the

∗I speak throughout the following discussion of the plane rather than
of the sphere in order to adhere as far as possible to the usual point of
view.

†Cf. Riemann’s remarks on representation by means of functions
which are finite everywhere, in No. 12 of his Abelian Functions.
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m associated points on the original surface coalesce, positions
therefore which correspond to cross-points. To be perfectly
clear let us once more make use of Fig. 1. It follows from this
figure that the vicinity of a ν-fold cross-point can be divided
into ν + 1 sectors in such a way that x+ iy assumes the same
system of values in each sector. Hence, above the correspond-
ing point of the x + iy plane, ν + 1 sheets of the conformal
representation are connected in such a way that in describing
a circuit round the point the variable passes from one sheet to
the next, from this to a third and so on, a (ν + 1)-fold circuit
being required to bring it back to the starting-point. But this
is exactly what is usually called a branch-point.∗ The repre-
sentation at this point is of course not conformal; it is easily
shown that the angle between any two curves which meet at
the cross-point on the original surface is multiplied by precisely
ν + 1 on the Riemann’s surface over the x+ iy plane.

But at the same time we recognize the importance of this
many-sheeted surface for the present purpose. All surfaces
which can be derived from one another by a conformal repre-
sentation with a uniform correspondence of points are equiv-
alent for our purposes (§ 8). We may therefore adopt the m-
sheeted surface over the plane as the basis of our operations

∗In § 11 the number of cross-points of x+ iy was stated without proof
to be 2m+2p−2. We now see that this statement was a simple inversion
of the known relation among the number of branch-points (or rather their
total multiplicity), the number of sheets m, and the p of a many-sheeted
surface (where p is the maximum number of loop-cuts which can be drawn
on this many-sheeted surface without resolving it into distinct portions).
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instead of the surface hitherto employed, which was supposed
without singularities, anywhere in space. And the difficulty
which might be feared owing to the introduction of branch-
points is avoided from the first; for we consider on the m-
sheeted surface only those streamings whose behaviour near a
branch-point is such that when they are traced on the origi-
nal surface by a reversal of the process, the only singularities
produced are those included in the foregoing discussion. To
this end it is not even necessary to know of a correspond-
ing surface in space; for we are only concerned with ratios in
the immediate vicinity of the branch-points, i.e. with differ-
ential relations to be satisfied by the streamings.∗ And there
is no longer any reason, in speaking of arbitrarily curved sur-
faces, for postulating them as free from singularities; they may
even consist of several sheets connected by branch-points and
along branch-lines. But whichever of the unlimited number of
equivalent surfaces may be selected as basis, we must distin-
guish between essential properties common to all equivalent
surfaces, and non-essential associated with particular individ-
uals. To the former belongs the integer p; and the “moduli,”
which are discussed more fully in § 18, also belong to them;—
to the latter belong the kind and position of the branch-points
of many-sheeted surfaces. If we take an ideal surface possess-
ing only the essential properties, then the branch-points of a

∗For the explicit statement of these relations cf. the usual text-books,
also in particular C. Neumann: Das Dirichlet’sche Princip in seiner An-
wendung auf die Riemann’schen Flächen. Leipzig, 1865.
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many-sheeted surface correspond on this simply to ordinary
points which, generally speaking, are not distinguished from
the other points and which are only noticeable from the fact
that, in the conformal representation leading from the ideal to
the particular surface, they give rise to cross-points.

We have then as a final result that a greater freedom of
choice has been obtained among the surfaces on which it is
possible to operate and the accidental properties involved by
the consideration of any particular surface can be at once rec-
ognized. Consequently, many-sheeted surfaces over the x +
iy plane are henceforward employed whenever convenient, but
this in no measure detracts from the generality of the results.∗

§ 15. The Anchor-ring, p = 1, and the two-sheeted Surface
over the Plane with four Branch-points.

It was possible in the preceding section to make our ex-
planation comparatively brief as a knowledge of the ordinary
Riemann’s surface over the plane with its branch-points could
be assumed. But it may nevertheless be useful to illustrate

∗The interesting question here arises whether it is always possible
to transform many-sheeted surfaces, with arbitrary branch-points, by a
conformal process into surfaces with no singular points. This question
transcends the limits of the subject under discussion in the text, but
nevertheless I wish to bring it forward. Even if this transformation is
impossible in individual cases, still the preceding discussion in the text is
of importance, in that it led to general ideas by means of the simplest ex-
amples and thus rendered the treatment of more complicated occurrences
possible.
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these results by means of an example. Consider an anchor-
ring, p = 1; on it there exist, by § 13, ∞4 uniform functions
with two infinities only; each of these, by the general formula
of § 11, has four cross-points. The anchor-ring can therefore be
mapped in an indefinite number of ways upon a two-sheeted
plane surface with four branch-points. With a view to those
readers who are not very familiar with purely intuitive op-
erations, I give explicit formulæ for the special case of this
representation which I am about to consider, even though, in
so doing, I partly anticipate the work of the next section.

Imagine the anchor-ring as an ordinary
tore generated by the rotation of a circle
about a non-intersecting axis in its plane.
Let ρ be the radius of this circle, R the dis-
tance of the centre from the axis, α the polar-
angle.

Take the axis of rotation for axis of Z, the
point O in the figure as origin for a system of
rectangular coordinates, and distinguish the
planes through OZ by means of the angle φ
which they make with the positive direction
of the axis of X. Then, for any point on the
anchor-ring, we have,

(1)


X = (R− ρ cosα) cosφ,

Y = (R− ρ cosα) sinφ,

Z = ρ sinα.
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Hence the element of arc is

ds =
√
dX2 + dY 2 + dZ2(2)

=
√

(R− ρ cosα)2 dφ2 + ρ2 dα2,

or,

ds = (R− ρ cosα)
√
dξ2 + dη2,(3)

where ξ, η are written for φ,

∫ α

0

ρ dα

R− ρ cosα
.

By (3) we have a conformal representation of the surface of
the anchor-ring on the ξη plane. The whole surface is obviously
covered once when φ and α

(
in (1)

)
each range from −π to +π.

The conformal representation of the surface of the anchor-ring
therefore covers a rectangle of the plane, as in the following
figure,
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where p stands for ∫ π

0

ρ dα

R− ρ cosα
.

To make the relation between the rectangle and the anchor-
ring intuitively clear, imagine the former made of some mate-
rial which is capable of being stretched and let the opposite
edges of the rectangle be brought together without twisting.
Or the anchor-ring may be made of a similar material, and af-
ter cutting along a curve of latitude and a meridian it can be
stretched out over the ξη plane. Instead of further explanation
I subjoin in a figure the projection of the anchor-ring from the
positive end of the axis of Z upon the xy plane, and in this
figure I have marked the relation to the ξη plane.
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The upper surface of the anchor-ring is, of course, alone
visible, the quadrants 3 and 4 on the under side are covered
by 2 and 1 respectively.

Again, let a two-sheeted surface with four branch-points

z = ±1, ±1

κ
be given, where κ is real and < 1, and imagine

the two positive half-sheets of the plane to be shaded as in the
figure. Let the branch-lines coincide with the straight lines

between +1 and
1

κ
, and between −1 and −1

κ
respectively.

This two-sheeted surface is known to represent the branching
of w =

√
(1− z2) · (1− κ2z2) and by proper choice of branch-

lines we can arrange that the real part of w shall be positive
throughout the upper sheet. Now consider the integral

W =

∫ z

0

dz

w
.

This also, as is well-known, gives a representation of the
two-sheeted surface upon a rectangle, the relation between the
two being given in detail in the following figure, where the
shading and other divisions of Fig. 37 are reproduced. To the
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upper sheet of Fig. 37 corresponds the left side of this figure.
The representation near the branch-points of the two-sheeted
surface should be specially noticed.

It would perhaps be simplest to proceed first from Fig. 37
by stereographic projection to a doubly-covered sphere with
four branch-points on a meridian—then to cut this surface
along the meridian into four hemispheres, which by proper
bending and stretching in the vicinity of the branch-points are
then to be changed into plane rectangles—and lastly to place
these four rectangles, in accordance with the relation among
the four hemispheres, side by side as in Fig. 38. Moreover
it is thus made evident that in Fig. 38 to one and the same
point on the original surface correspond exactly two (associ-
ated) points on the edge. And now to arrive at the required
relation between the anchor-ring and the two-sheeted surface
we have only to ensure by proper choice of κ that the rectangle
of Fig. 38 shall be similar to that of Fig. 35. A proportional
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magnification of the one rectangle (which again is effected by
a conformal deformation) will then make it exactly cover the
other and the result is a uniform conformal representation of
the two-sheeted surface upon the anchor-ring or vice versa.
Here again it is sufficient to give a figure corresponding ex-
actly to Fig. 36. The shading in this figure is confined to the

upper part of the anchor-ring; on the remainder, the lower half
should be shaded while the upper half is blank.

The required conformal representation has thus been actu-
ally effected. Now, conversely, we will determine on the surface
of the anchor-ring the streamings by means of which (accord-
ing to § 14) the representation is brought about. There are

cross-points at ±1, ±1

κ
, and algebraic infinities of unit multi-

plicity at the two points at ∞. The equipotential curves and
the stream-lines are most easily found by using the rectangle
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as an intermediate figure. The curves x = const., y = const.
of the z-plane, Fig. 37, obviously correspond on the rectangle
of Fig. 38 to those shown in Fig. 40 and Fig. 41. The arrows
are confined to the curves y = const. to distinguish them as
stream-lines.

We have now only to treat these figures in the manner
described for Fig. 35 and we obtain an anchor-ring and the
required system of curves on its surface. The result is the
following.
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In Fig. 42, by reason of the method of projection, the four
cross-points of the streaming appear as points of contact of the
equipotential curves with the apparent rim of the anchor-ring.

§ 16. Functions of x+ iy which correspond to the Stream-
ings already investigated.

Let x + iy, as in § 14, be a uniform complex function of
position on the surface, with m simple algebraic infinities; let
us transform the surface by the methods there given into an m-
sheeted surface over the x+ iy plane∗ and let us then ask into
what functions of the argument x + iy the complex functions
of position we have hitherto investigated have been changed?
The results of § 6 should here be borne in mind.

First, let w be a complex function of position which, like x+
iy, is uniform on the surface. From the assumptions respecting
the infinities of the functions, and particularly those of uniform
functions, it follows at once that w, as a function of x+ iy, has
no essential singularity. Again, w, on the m-sheeted surface as
on the original surface, is uniform. Hence it follows by known
propositions that w is an algebraic function of z.

We have here not excluded the possibility of the m values
of w which correspond to the same z coinciding everywhere
ν at a time (where ν must of course be a divisor of m). But
it must be possible to choose functions w such that this may
not be the case. We have already (§ 13) determined uniform

∗This geometrical transformation is of course not essential; it merely
preserves the connection with the usual presentations of the subject.



[sect xvi.] riemann’s theory. 71

functions with arbitrarily assigned infinities; thus, to avoid the
above contingency, we need only choose the infinities of w in
such a way that no ν of them lead to the same z. Then we
have:

The irreducible equation between w and z

f(w, z) = 0

is of the mth degree in w.
Similarly, it will be of the nth degree in z, if n is the sum

of the orders of the infinities of w.
But the connection between the equation f = 0 and the

surface is still closer than is shown by the mere agreement of
the degree with the number of the sheets. To every point of the
surface there belongs only one pair of values w, z, which satisfy
the equation; and conversely, to every such pair of values there
belongs, in general,∗ only one point of the surface. Equation
and surface are, so to speak, connected by a uniform relation.

Now let w1 be another uniform function on the surface; it
is therefore certainly an algebraic function of z. Then, when
once the equation f(w, z) = 0 has been formed, with the above
assumption, the character of this algebraic function can be ex-
pressed in half a dozen words. For it can be shown that w1 is
a rational function of w and z, and, conversely, that every
rational function of w and z is a function with the character-
istics of w1. This last is self-evident. For a rational function

∗In special cases this may not be so. If we regard w, z, as coordinates
and interpret the equation between them by a curve, the double-points
of this curve, as we know, correspond to these exceptional cases.
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of w and z is uniform on the surface; moreover, as an ana-
lytical function of z, it is a complex function of position on
the surface. The first part is easily proved. Let the m values
of w belonging to a special value of z be w(1), w(2), . . . , w(m)

(in general, w(α)) and the corresponding values of w1 (which

are not all necessarily distinct) w
(1)
1 , w

(2)
1 , . . . , w

(m)
1 . Then the

sum,
w

(1)
1 w(1)ν + w

(2)
1 w(2)ν + . . .+ w

(m)
1 w(m)ν

(where ν is an arbitrary integer, positive or negative), being

a symmetric function of the various values w
(α)
1 w(α)ν , is a uni-

form function of z, and therefore, being an algebraic function,
is a rational function of z. From any m of such equations

w
(1)
1 , w

(2)
1 , . . . , w

(m)
1 ,

being linearly involved, can be found, and it can easily be
shown that each w

(α)
1 is, as it should be, a rational function of

the corresponding w(α) and of z.
With the help of this proposition we can at once deter-

mine the character of those functions of z which arise from
the multiform functions of position of which we have been
treating. Let W be such a function. Then W must certainly
be an analytical function of z; we may therefore speak of a

differential coefficient
dW

dz
, and this again is a complex func-

tion of position on the surface. Quà function of position it is
necessarily uniform; for the multiformity of W is confined to
constant moduli of periodicity, any multiples of which may be
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additively associated with the initial value. Hence
dW

dz
is, by

what has just been proved, a rational function of w and z, and
W is therefore the integral of such a function, viz.:

W =
∫
R(w, z) dz.

The converse proposition, that every such integral gives
rise to a complex function of position on the surface belonging
to the class of functions hitherto discussed, is self-evident on
the grounds of a known argument which considers, on the one
hand, the infinities of the integrals, on the other, the changes
in the values of the integrals caused by alterations in the path
of integration. It is not necessary to discuss this here at greater
length.

We have now arrived at a well-defined result. Having once
determined the algebraical equation which defines the relation
between z and w, where w is highly arbitrary, all other func-
tions of position are given in kind; they are co-extensive in
their totality with the rational functions of w and z and the
integrals of such functions.

A convenient example is the repeatedly considered case of
the anchor-ring, p = 1, with, for z and w, the functions dis-
cussed in the last section, the function z being the one il-
lustrated by Figs. 42, 43. The equation between these being
simply

w2 = (1− z2) · (1− κ2z2),

the integrals
∫
R(w, z) dz are those generally known as elliptic

integrals. Among them, by § 12, there is one single integral,
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“finite everywhere.” From the representation given in Fig. 38

it follows that this is no other than

∫
dz

w
there considered, the

so-called integral of the first kind. The equipotential curves
and stream-lines are shown in Figs. 21, 22. But the functions
corresponding to Figs. 29, 30 and to Figs. 31, 32 are also famil-
iar in ordinary analysis. In one case we have a function with
two logarithmic discontinuities, in the other case one with one
algebraic discontinuity. Regarded as functions of z these are
the elliptic integrals usually called integrals of the third kind,
and integrals of the second kind respectively.

§ 17. Scope and Significance of the previous Investigations.

The last section has actually accomplished the solution of
the general problem indicated in § 7. The most general of the
complex functions of position here treated of have been de-
termined on an arbitrary surface, and the analytical relations
among these have been defined by observation of the fact that
all are dependent, in the sense of ordinary analysis, on a single,
uniform, but otherwise arbitrarily chosen function of position.
To complete the discussion, therefore, a synoptic review of the
subject alone is wanting, to ascertain the total result of the
investigation. We have obtained, though not the whole con-
tent, yet at least the principles of Riemann’s theory, and for
further deductions Riemann’s original work as well as other
presentations of the theory may be referred to.

First, to establish that these investigations do actually
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comprehend the totality of algebraic functions and their inte-
grals. For if any algebraical equation f(w, z) = 0 is given, we
can construct, as usual, the proper many-sheeted surface over
the z-plane, and on this we can then study the one-valued
streamings and complex functions of position (cf. § 15).

We then enquire, is the knowledge of these functions really
furthered by these investigations? In this connection we must
remember that it was chiefly the multiplicity of value of the in-
tegrals which for so long hindered any advance in their theory.
That integrals acquire a multiplicity of value when logarith-
mic discontinuities make their appearance had been already
observed by Cauchy. But it was only through Riemann’s sur-
faces that the other kind of periodicity was clearly brought to
light,—that, namely, which has its origin in the connectivity of
the surface, and is measured along the cross-cuts of that sur-
face. Another point is this:—transformation by substitutions
had long been employed in the examination of integrals, but
without much more result than their mere empirical evalua-
tion. In Riemann’s theory an extensive class of substitutions
presents itself automatically, and is to be critically examined
in operation. The variables w, z, are merely any two indepen-
dent, uniform functions of position; any other two, w1, z1, can
be equally well assumed as fundamental, whereby w1, z1 prove
to be any rational, but otherwise arbitrary functions of w, z,
and these in their turn to be rational functions of w1, z1. The
Riemann’s surface is not necessarily affected by this change.
Hence among the numerous accidental properties of the func-
tions, we distinguish certain essential ones which are unaltered
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by uniform transformations. And in the number p especially
such an invariantive element presents itself from the outset.
Thus Riemann’s theory, avoiding these two difficulties which
had hampered former investigations, proceeds at once to de-
termine in what way the functions in question are arbitrary.
This was accomplished in § 10 by the proposition: the infini-
ties of the functions (with the restrictions we have assumed
throughout) and the moduli of periodicity of its real part at the
cross-cuts, are arbitrary and sufficient data for the determina-
tion of the function.

This fairly represents the advantage gained by this treat-
ment if, with most mathematicians, we place the interests of
the theory of functions foremost. But it must be borne in
mind that the opposite point of view is as fundamentally jus-
tifiable. The knowledge of one-valued streamings on given
surfaces may with good reason be regarded as an end in it-
self, since in numerous physical problems it leads directly to a
solution. Among the infinite possible varieties of these stream-
ings Riemann’s theory is a valuable guide for it indicates the
connection between the streamings and the algebraic functions
of analysis.

Finally, we may bring forward the geometrical side of the
subject and consider Riemann’s theory as a means of making
the theory of the conformal representation of one closed surface
upon another accessible to analytical treatment. The third
part of this pamphlet is devoted to this view of the subject; it
is unnecessary to dwell on it at present at greater length.
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§ 18. Extension of the Theory.

In Riemann’s own train of thought, as I have here at-
tempted to show, the Riemann’s surface not only provides an
intuitive illustration of the functions in question, but it ac-
tually defines them. It seems possible to separate these two
parts, to take the definition of the function from elsewhere and
to retain the surface only as a means of intuitive illustration.
This is, in fact, what has been done by most mathematicians,
the more readily that Riemann’s definition of a function in-
volves considerable difficulties∗ when subjected to more exact
scrutiny. They therefore usually begin with the algebraical
equation and the definition of the integral and then construct
the appropriate Riemann’s surface.

But this method produces ipso facto a considerable gen-
eralisation of the original conception. Hitherto, two surfaces
were only held to be equivalent when one could be derived
from the other by a conformal representation with a uniform
correspondence of points. Now there is no longer any reason
for retaining the conformal character of the representation.
Every surface which by a continuous uniform transformation
can be changed into the given surface, in fact any geometrical
configuration whose elements can be projected upon the origi-
nal surface by a continuous uniform projection, serves equally
well to give a graphic representation of the functions in ques-
tion. I have, in former papers, followed out this idea in two
different ways, to which I should like to refer.

∗Cf. the remarks on this subject in the Preface.
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On one occasion I used the conception of a normal surface
(cf. § 8) which, although representative, was open to various
modifications, and on this I attempted to illustrate the course
of the functions in question by various graphical means.∗ The
nets of polygons which I have repeatedly used† fall also under
this head; these I constructed by means of an appropriate dis-
section of the Riemann’s surface afterwards spread out over
the plane. It need not here be discussed whether these figures,
which in the first place are susceptible of continuous deforma-
tion, may not hereafter, for the sake of further investigations in
the theory of functions, be restricted by a law of form whereby
it may be possible to define the functions graphically repre-
sented by each figure.

On another occasion‡ I undertook to bring out as intu-
itively as possible the connection between the conceptions of
the theory of functions and those of ordinary analytical geom-
etry, in which last an equation in two variables means a curve.
Starting from the proposition that every imaginary straight
line on the plane, and therefore also every imaginary tangent
to a curve, has one and only one real point, I obtained a Rie-
mann’s surface depending essentially on the course of the curve

∗Cf. my papers on Elliptic Modular-functions in Math. Ann., t. xiv.,
xv., xvii.

†Cf. especially the diagrams in Math. Ann., t. xiv. (“Zur Trans-
formation siebenter Ordnung der elliptischen Functionen”), and Dyck’s
paper, to be cited presently, ib., t. xvii.

‡“Ueber eine neue Art Riemann’scher Flächen,” Math. Ann.,
t. vii., x.
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at every point. These surfaces I have hitherto employed, fol-
lowing my original purpose, only to illustrate intuitively the
behaviour of certain simple integrals.∗ But a remark similar
to that on the nets of polygons may here be made. In so far
as the surface is subjected to a law of form, it must be possi-
ble to use it as a definition of the functions which exist on it.
And it is actually possible to form a partial differential equa-
tion for these functions somewhat analogous to the differential
equation of the second order considered in §§ 1 and 5; except
that the differential expression on which this equation depends
cannot be directly interpreted by the element of arc.

These few remarks must suffice to indicate developments
which appear to me worthy of consideration.

∗See Harnack (“Ueber die Verwerthung der elliptischen Functionen
für die Geometrie der Curven dritten Grades”), Math. Ann., t. ix.; and
my paper referred to above, “Ueber den Verlauf der Abel’schen Integrale
bei den Curven vierten Grades,” Math. Ann., t. x.



PART III.

Conclusions.

§ 19. On the Moduli of Algebraical Equations.

In one important point, Riemann’s theory of algebraic
functions surpasses in results as well as in methods the usual
presentations of this theory. It tells us that, given graphi-
cally a many-sheeted surface over the z plane, it is possible
to construct associated algebraic functions, where it must be
observed that these functions if they exist at all are of a
highly arbitrary character, R(w, z) having in general the same
branchings as w. This theorem is the more remarkable, in that
it implies a statement about an interesting equation of higher
order. For if the branch-points of an m-sheeted surface are
given, there is a finite number of essentially different possible
ways of arranging these among the sheets; this number can
be found by considerations belonging entirely to pure anal-
ysis situs.∗ But, by the above proposition this number has
its algebraical meaning. Let us with Riemann speak of all
algebraic functions of z as belonging to the same class when
by means of z they can be rationally expressed in terms of
one another. Then the number in question† is the number of

∗This number has been determined by Herr Kasten, for instance, in
his Inaugural Dissertation: Zur Theorie der dreiblättrigen Riemann’schen
Fläche. Bremen, 1876.

†If I may be allowed to refer once more to my own writings, let me
do so with respect to a passage in Math. Ann., t. xii. (p. 173), which
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different classes of algebraic functions which, with respect to z,
have the given branch-values.

In the present and following sections various consequences
are drawn from this preliminary proposition and among these
we may consider in the first place the question of the moduli
of the algebraic functions, i.e. of those constants which play
the part of the invariants in a uniform transformation of the
equation f(w, z) = 0.

For this purpose let ρ be a number initially unknown, ex-
pressing the number of degrees of freedom in any one-one
transformation of a surface into itself, i.e. in a conformal rep-
resentation of the surface upon itself. Then let us recall the
number of available constants in uniform functions on given
surfaces (§ 13). We found that there were in general ∞2m−p+1

uniform functions with m infinities and that this, as we stated
without proof, is the exact number when m > 2p−2. Now each
of these functions maps the given surface by a uniform trans-
formation upon an m-sheeted surface over the plane. Hence
the totality of the m-sheeted surfaces upon which a given sur-
face can be conformally mapped by a uniform transformation,
and therefore also the number of m-sheeted surfaces with which
an equation f(w, z) = 0 can be associated, is ∞2m−p+1−ρ; for
∞ρ representations give the same m-sheeted surface, by hy-
pothesis.

establishes the result that certain rational functions are fully determined
by the number of their branchings, and again to ib., t. xv., p. 533, where
a detailed discussion shows that there are ten rational functions of the
eleventh degree with certain branch-points.
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But there are in all∞w m-sheeted surfaces, where w is the
number of branch-points, i.e. 2m+2p−2. For, as we observed
above, the surface is given by the branch-points to within a fi-
nite number of degrees of freedom, and branch-points of higher
multiplicity arise from coalescence of simple branch-points as
we have already explained in connection with the correspond-
ing cross-points in § 1 (cf. Figs. 2, 3). With each of these
surfaces there are, as we know, algebraic functions associated.
The number of moduli is therefore

w − (2m+ 1− p− ρ) = 3p− 3 + ρ.

It should be noticed here that the totality of m-sheeted sur-
faces with w branch-points form a continuum,∗ corresponding
to the same fact, pointed out in § 13 with respect to uniform
functions with m infinities on a given surface. Hence we con-
clude that all algebraical equations with a given p form a single
continuous manifoldness, in which all equations derivable from
one another by a uniform transformation constitute an indi-
vidual element. Thus, for the first time, a precise meaning
attaches itself to the number of the moduli; it determines the
dimensions of this continuous manifoldness.

The number ρ has still to be determined and this is done
by means of the following propositions.

1. Every equation for which p = 0 can by means of a one-
one relation be transformed into itself ∞3 times. For on the

∗This follows e.g. from the theorems of Lüroth and of Clebsch, Math.
Ann., t. iv., v.
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corresponding Riemann’s surface uniform functions with one
infinity only are triply infinite in number (§ 13), and in order
that the transformation of the surface into itself may be uni-
form, it is sufficient to make any two of these correspond to
each other. Or the proof may be more fully given as follows.
If one function is called z, all the rest are (by § 16) algebraic
and uniform, i.e. rational functions of z, and since the relation
must be reciprocal, linear functions of z. Conversely every
linear function of z is a uniform function of position on the
surface having one infinity only. Hence the most general uni-
form transformation of the equation into itself is obtained by
transforming every point of the Riemann’s surface by means
of the formula

z1 =
αz + β

γz + δ
,

α : β : γ : δ being arbitrary.
2. Every equation for which p = 1 can be transformed into

itself in a singly infinite number of ways. For proof consider
the integral W finite over the whole surface, and in particular
the representation upon the W -plane of the Riemann’s surface
when properly dissected. This has already been done in a
particular case (§ 15, Fig. 38) and a minute investigation of the
general case is hardly necessary as the considerations involved
are usually fully worked out in the theory of elliptic functions.
The result is that to every value of W belongs one and only
one point of the Riemann’s surface, while the infinitely many
values of W corresponding to the same point of the Riemann’s
surface can be constructed from one of these values in the form
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W +m1ω1 +m2ω2, where m1, m2 are any integers and ω1, ω2

are the periods of the integral. For a uniform deformation a
point W1 must be associated with each point W in such a way
that every increase of W by a period gives rise to a similar
increase of W1 and vice versa. This is certainly possible, but
in general only by writing W1 = ±W + C; in special cases

(when the ratio of the periods
ω1

ω2

possesses certain properties

belonging to the theory of numbers) W1 may also = ±iW +C
or±ρW+C (ρ being a third root of unity).∗ However that may
be we have in each case in the formulæ of transformation only
one arbitrary constant and hence corresponding to its different
values we have a singly infinite number of transformations, as
stated above.

3. Equations for which p > 1 cannot be changed into them-
selves in an infinite number of ways.† For the analytical proof
of this statement I refer to Schwarz (Crelle, t. lxxxvii.) and
to Hettner (Gött. Nachr., 1880, p. 386). By intuitive methods
the correctness of the statement may be shown as follows. If
there were an infinite number of uniform transformations of
the equation into itself, it would be possible to displace the
Riemann’s surface continuously over itself in such a way that

∗This result, which is well known from the theory of elliptic functions,
is stated in the text without proof.

†This theorem refers to a continuous group of transformations, those
with arbitrarily variable parameters. It is not discussed in the text
whether, under certain circumstances, a surface for which p > 1 may
not be transformed into itself by an infinite number of discrete transfor-
mations; though when p is finite in value this also seems to be impossible.
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every smallest part should remain similar to itself. The curves
of displacement must plainly cover the surface completely and
at the same time simply; there can be no cross-point in this
system, for such a point would have to be regarded as a station-
ary point in order to avoid multiformity in the transformation
and the rate of displacement would there necessarily be zero.
But then an infinitesimal element of surface approaching the
cross-point in the course of the displacement would necessarily
be compressed in the direction of motion and perpendicular to
that direction it would be stretched; it could therefore not re-
main similar to itself, contrary to the conception of conformal
representation. But on the other hand all systems of curves
covering a surface for which p > 1 completely and simply must
have cross-points; this is the proposition proved in somewhat
less general form in § 11. The continuous displacement of the
surface over itself is thus impossible, as was to be proved.

By these propositions, ρ = 3 for p = 0, ρ = 1 for p = 1,
and for all greater values of p, ρ = 0. The number of moduli is
therefore, for p = 0 zero, for p = 1 one, and for p > 1 3p− 3.

It may be worth while to add the following remarks. To
determine a point in a space of 3p − 3 dimensions we do not
generally confine ourselves to 3p−3 coordinates; more are em-
ployed connected by algebraical, or transcendental relations.
But moreover it is occasionally convenient to introduce pa-
rameters, of which different series denote the same point of
the manifoldness. The relations which then hold among the
3p − 3 moduli necessarily existing for p > 1 have been but
little investigated. On the other hand the theory of elliptic
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functions has given us an exact knowledge of the subject for
the case p = 1. I mention the results for this case in order
to be able to express myself precisely and yet briefly in what
follows. Above all let me point out that for p = 1 the al-
gebraical element (to use the expression employed above) is
actually distinguished by one and only one quantity: the abso-

lute invariant J =
g2
2

∆
.∗ Whenever, in what follows, it is said

that in order to transform two equations for which p = 1 into
each other it is not only sufficient but also necessary that the
moduli should be equal, the invariant J is always meant. In
its place, as we know, it is usual to put Legendre’s κ2, which,
given J , is six-valued, so that by its use a certain clumsiness
in the formulation of general propositions is inevitable. And

it is even worse if the ratio of the periods
ω1

ω2

of the elliptic

integral of the first kind is taken for the modulus, though this
is convenient in other ways; for an infinite number of values of
the modulus then denote the same algebraical element.

§ 20. Conformed Representation of closed Surfaces upon
themselves.

In accordance with our original plan we now develop the
geometrical side of the subject, in order to obtain at least the
foundations of the theory of conformal representation of sur-

∗Cf. Math. Ann., t. xiv., pp. 112 et seq.
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faces upon each other,∗ so following up the indications which,
as we have already remarked in the Preface, were given by
Riemann at the close of his Dissertation. For the cases p = 0,
p = 1, I shall for the most part, to avoid diffuseness, confine
myself to mere statements of results or indications of proofs.
And first, in treating of the conformal representations of a
closed surface upon itself, a distinction which has been hith-
erto ignored must be introduced: the representation may be
accomplished without or with reversal of angles. We have an
example of the first case when a sphere is made to coincide
with itself by rotation about its centre; of the second case
when it is reflected across a diametral plane with the same re-
sult. The analytical treatment hitherto employed corresponds
to representations of the first kind only. If u+ iv and u1 + iv1

are two complex functions of position on the same surface,
u = u1, v = v1 gives the most general representation of the
first kind (cf. § 6). But it is easy to see how to extend the
formula in order to include representations of the second kind
as well. We have simply to write u = u1, v = −v1 in order to
obtain a representation of the second kind.

∗The theorems to be established in the text are, for the most part,
not explicitly given in the literature of the subject. For the surfaces for
which p = 0, compare Schwarz’s memoir (Berl. Monatsber., 1870), al-
ready cited. And, further, a paper by Schottky: Ueber die conforme Ab-
bildung mehrfach zusammenhängender Flächen, which appeared in 1875
as a Berlin Inaugural Dissertation and was reprinted in a modified form
in Crelle, t. lxxxiii. It treats of those plane surfaces of connectivity p
which have p+ 1 boundaries.
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Let us first take from the theorems of the last section those
parts which refer to representations of the first kind; in the
most geometrical language possible we have then the following
theorems:

It is always possible to transform into themselves in an
infinite number of ways by a representation of the first kind
surfaces for which p = 0, p = 1, but never surfaces for which
p > 1.

For the surfaces for which p = 0 the only representation
of the first kind is determined if three arbitrary points of the
surface are associated with three other arbitrary points of the
same.

If p = 1, to any arbitrary point of the surface a second
point may be arbitrarily assigned, and there is then in general
a two-fold possibility of determination of the representation of
the first kind, though in special cases there may be a four-fold
or six-fold possibility.

These propositions of course do not exclude the possibility
that special surfaces for which p > 1 may be transformed into
themselves by discontinuous transformations of the first kind.
If this occurs it constitutes an invariantive property for any
conformal deformation of the surface and by its existence and
modality specially interesting classes of surfaces may be dis-
tinguished from the remainder.∗ This point of view, however,

∗Algebraical equations with a group of uniform transformations into
themselves correspond to these surfaces. The observations in the text
thus refer to investigations such as those lately undertaken by Herr Dyck
(cf. Math. Ann., t. xvii., “Aufstellung und Untersuchung von Gruppe
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need not be discussed more fully here.
With respect to the transformations of the second kind we

may first say that every such transformation, combined with
one of the first kind, produces a new transformation of the
second kind. Now by the above theorems we have complete
knowledge of the transformations of the first kind for surfaces
for which p = 0, p = 1; in these cases therefore it suffices to
enquire whether one transformation of the second kind exists.
For the surfaces for which p = 0 this is at once answered
in the affirmative. For it is sufficient to take any one of the
uniform functions of position with only one infinity, x + iy,
and then to write x1 = x, y1 = −y. For the surfaces for
which p = 1 the case is different. We find that in general no
transformation of the second kind exists. The easiest way to
prove this is to consider the values which the integral W , finite
over the whole surface, assumes on the anchor-ring, p = 1.
Let the points W = m1ω1 +m2ω2 be marked on the W plane,
m1, m2 being as before arbitrary positive or negative integers.
It is then easily shown that a transformation of the second
kind can change the surface for which p = 1 into itself only
if this system of points has an axis of symmetry. This case
occurs when the invariant J , defined above, is real ; according
as J is < 1 or > 1, these points in the W plane are corners of
a rhomboidal or rectangular system.

Now let p > 1. If one transformation of the second kind
exists for this surface, there will in general be no other of

und Irrationalität regulärer Riemann’scher Flächen”).
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the same kind.∗ For otherwise the repetition or combination
of these transformations would produce a transformation of
the first kind distinct from the identical transformation. The
transformation must then necessarily be symmetrical, i.e. it
must connect the points of the surface in pairs. The surface
itself will for this reason be called symmetrical. Moreover un-
der this name I shall in future include all those surfaces for
which there exists a transformation of the second kind lead-
ing, when repeated, to identity. To this class belong evidently
all surfaces for which p = 0, and such surfaces for which p = 1
as have real invariants.

§ 21. Special Treatment of symmetrical Surfaces.

Among the symmetrical surfaces now to be considered, di-
visions at once present themselves according to the number
and kind of the “curves of transition” on the surfaces; i.e. of
those curves whose points remain unchanged during the sym-
metrical transformation in question.

The number of these curves can in no case exceed p + 1.
For if a surface is cut along all its curves of transition with the
exception of one, it will still remain an undivided whole, the
symmetrical halves hanging together along the one remaining
curve of transition. Thus if there were more than p + 1 of

∗There are, of course, surfaces capable of a certain number of trans-
formations of the first kind, together with an equal number of transfor-
mations of the second kind; these correspond to the regular symmetrical
surfaces of Dyck’s work.
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these, more than p loop-cuts in the surface could be effected
without resolving it into distinct portions, thus contradicting
the definition of p.

On the other hand there may be any number of curves of
transition below this limit. It will be sufficient here to discuss
the cases p = 0, p = 1; for the higher p’s examples will present
themselves naturally.

(1) When a sphere is made to coincide with itself by re-
flection in a diametral plane, the great circle by which the
diametral plane cuts it, is the one curve of transition. An ex-
ample of the other kind is obtained by making every point of
the sphere correspond to the point at the opposite end of its
diameter. Both examples can be easily generalised; the anal-
ysis is as follows. If one curve of transition exists, there are
uniform functions of position with only one infinity, which as-
sume real values at all points of the curve of transition. If one
of these functions is x + iy the transformation, already given
as an example above, is x1 = x, y1 = −y. For the second
case, a function x + iy can be so chosen that ∞ and 0, and
+1 and −1, are corresponding points. Then

x1 − iy1 =
−1

x+ iy

is the analytical formula for the corresponding transformation.
(2) In the case p = 1, the invariant J must in the first

place, as we know, be assumed to be real. First, let it be > 1.
Then the integral W , which is finite over the whole surface,
can be reduced to a normal form by the introduction of an
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appropriate constant factor in such a manner that one period
becomes real = a and the other purely imaginary = ib. If we
then write

U1 = U, V1 = V, in W = U + iV,

we obtain a symmetrical transformation of the surface for
which p = 1, with the two curves of transition,

V = 0, V =
b

2
,

but if we write

U1 = U +
a

2
, V1 = −V,

which again is a symmetrical transformation of the original
surface, we have the case in which there is no curve of transi-
tion. The case with only one curve of transition occurs when
J < 1. W can then be so chosen that its two periods are
conjugately complex. We write, as before,

U1 = U, V1 = −V,

and obtain a symmetrical transformation with the one curve
of transition, V = 0.

Besides this first division of symmetrical surfaces according
to the number of the curves of transition there is yet a second.
The cases of no curves of transition and of p + 1 curves of
transition are to be excluded for one moment. Then a two-fold
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possibility presents itself: Dissection of the surface along all
the curves of transition may or may not resolve it into distinct
portions. Let π be the number of curves of transition. It is
easily shown that p−π must be uneven if the surface is resolved
into distinct portions; that there is no further limitation may
be shown by examples. We shall therefore distinguish between
symmetrical surfaces of one kind or of the other and count the
surfaces with p+ 1 curves of transition among the first kind—
those that are resolved into distinct portions—and the surfaces
with no curves of transition among the second kind.

These propositions have a certain analogy with the results
obtained in analytical geometry by investigating the forms of
curves with a given p.∗ And in fact we see that this analogy
is justified. Analytical geometry is (primarily) concerned only
with equations, f(w, z) = 0, with real coefficients. Let us first
observe that every such equation determines a symmetrical
Riemann’s surface over the z-plane, inasmuch as the equation,
and therefore the surface, remains unchanged if w and z are
simultaneously replaced by their conjugate values, and that
the curves of transition on this surface correspond to the real
series of values of w, z, which satisfy f = 0, i.e. to the various
circuits of the curve f = 0, in the sense of analytical geometry.

But the converse is also easily obtained. Let a symmetrical

∗Cf. Harnack, “Ueber die Vieltheiligkeit der ebenen algebraischen
Curven,” Math. Ann., t. x., pp. 189 et seq.; cf. also pp. 415, 416, ib.
where I have given the two divisions of those curves. It is perhaps as
well in these investigations to start from the symmetrical surfaces and
Riemann’s Theory as presented in the text.
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surface, and on it any arbitrary complex function of position,
u + iv, be given. The symmetrical deformation causes a re-
versal of angles on the surface. If then to every point of the
surface values u1, v1, are ascribed equal to those u, v, given by
the symmetrical point, u1− iv1 will be a new complex function
of position. Now construct

U + iV = (u+ u1) + i(v − v1),

so obtaining an expression which in general does not vanish
identically; to ensure this, it is sufficient to assume that the
infinities of u+ iv are unsymmetrically placed. We have then
a complex function of position with equal real parts, but equal
and opposite imaginary parts at symmetrically placed points.
Of such functions, U + iV , let any two, W , Z, be taken, these
being moreover uniform functions of position. The algebraical
equation existing between these two has then the characteristic
of remaining unaltered if W , Z are simultaneously replaced by
their conjugate values. It is therefore an equation with real
coefficients and the required proof has been obtained.

I supplement this discussion with a few remarks on the real
uniform transformations of real equations f(w, z) = 0 into
themselves, or, what amounts to the same thing, on confor-
mal representations, of the first kind, of symmetrical surfaces
upon themselves, in which symmetrical points pass over into
other symmetrical points. Such transformations, by the gen-
eral proposition of § 19, can occur in infinite number only for
p = 0, p = 1; we therefore confine ourselves to these cases. Let
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us first take p = 1. Then we see at once that among the trans-
formations already established, we need now only consider the
one

W1 = ±W + C,

where C is a real constant. Similarly when p = 0, for the first
case. The relations x1 = x, y1 = −y remain unaltered if

x+ iy = z and x1 + iy1 = z1

are simultaneously transformed by the substitution

z′ =
αz + β

γz + δ
,

where the ratios α : β : γ : δ are real. When p = 0, for
the second case, the matter is rather more complicated. Sim-
ilar transformations with three real parameters are again pos-
sible; but these assume the following form, z being the same
as above,

z′ =
(a+ ib)z + (c+ id)

−(c− id)z + (a− ib)
,

where a : b : c : d are the three real parameters. This result
is implicitly contained in the investigations referring to the
analytical representation of the rotations of the x+ iy sphere
about its centre.∗

∗Cf. Cayley, “On the correspondence between homographies and ro-
tations,” Math. Ann., t. xv., pp. 238–240.
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§ 22. Conformal Representation of different closed Sur-
faces upon each other.

If we now wish to map different closed surfaces upon each
other, the foregoing investigation of the conformal representa-
tion of closed surfaces upon themselves will give us the means
of determining how often such a representation can occur, if
it is once possible. Surfaces which can be conformally repre-
sented upon each other certainly possess (as has been already
pointed out) transformations into themselves, consistent with
these. Thus all representations of the one surface upon the
other are obtained by combining one arbitrary representation
with all those which change one of the given surfaces into itself.
To this I need not return.

Let us first consider general, i.e. non-symmetrical surfaces.
Then the enumerations of the moduli of algebraical equations
given in § 19 are at once applicable.

We have first: Surfaces for which p = 0 can always be con-
formally represented upon each other, and we find besides that
surfaces for which p = 1 have one modulus, surfaces for which
p > 1, 3p − 3 moduli, unaltered by conformal representation.
Every such modulus is in general a complex constant. Since in
the case of symmetrical surfaces real parameters alone must be
considered, we shall suppose the modulus to be separated into
its real and imaginary parts. Then we have: If two surfaces
for which p > 0 can be represented upon each other there must
exist equations among the real constants of the surface, 2 for
p = 1, and 6p− 6 for p > 1.
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Turning now to the symmetrical surfaces, we must make
one preliminary remark. It is evident that two such surfaces
can be “symmetrically” projected upon one another only if
they have, as well as the same p, the same number π of curves
of transition, and moreover if they both belong either to the
first or to the second kind. The enumeration in § 13 of the
number of constants in uniform functions is now to be made
over again, with the special condition required for symmetrical
surfaces that those functions only are to be considered whose
values at symmetrical places are conjugately imaginary. And
then, as in § 19, we must combine with this the number of
those many-sheeted surfaces which can be spread over the z-
plane and are symmetrical with respect to the axis of real
quantities. To avoid an infinite number of transformations
into themselves, I will here assume p > 1. The work is then so
simple that I do not need to reproduce it for this special case.
The only difference is that those constants which were before
perfectly free from conditions must now be either every one
real or else conjugately complex in pairs. Hence all the arbi-
trary quantities are reduced to half the number. This may be
stated as follows: In order that it may be possible to represent
two symmetrical surfaces for which p > 1 upon one another, it
is necessary that, over and above the agreement of attributes,
3p−3 equations should subsist among the real constants of the
surface.

The cases p = 0, p = 1, which were here excluded, are
implicitly considered in the preceding section. Of course two
symmetrical surfaces for which p = 1 which are to be rep-
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resented upon one another must have the same invariant J ,
giving one condition for the constants of the surface, inas-
much as J is certainly real. But besides this we find at once
that the representation is always possible, so long as the sym-
metrical surfaces agree in the number of curves of transition,
a condition which is obviously always necessary.

§ 23. Surfaces with Boundaries and unifacial Surfaces.

By means of the results just obtained an apparently im-
portant generalisation may be made in the investigation of the
representations of closed surfaces, and it was for the sake of
this generalisation that symmetrical surfaces were discussed in
so much detail. For surfaces with boundaries and unifacial sur-
faces (which may or may not be bounded) may now be taken
into account and the problems referring to them all solved at
once. With reference to the introduction of boundaries here,
a certain limitation hitherto implicitly accepted must be re-
moved. The surfaces employed have been all assumed to be
of continuous curvature or at least to have discontinuities at
isolated points only (the branch-points). But there is now no
reason against the admission of other discontinuities. For in-
stance, we may suppose that the surface is made up of a finite
number of different pieces (in general, of various curvatures)
which meet at finite angles after the manner of a polyhedron;
for there is nothing to prevent the conception of electric cur-
rents on these surfaces as well as on those of continuous curva-
ture. Now surfaces with boundaries are included among such
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surfaces.∗ For let the two sides of the bounded surface be con-
ceived to be two faces of a polyhedron meeting along a boundary
(and therefore everywhere at an angle of 360◦), and employ the
total surface composed of these two faces instead of the original
bounded surface.†

This total surface is then in fact a closed surface; but it is
moreover symmetrical, for if the points which lie one above the
other are interchanged, the total surface undergoes a confor-
mal transformation into itself, the angles being reversed; the
boundaries are here the curves of transition. But at the same
time the division of symmetrical surfaces into two kinds ob-
tains an important significance. The usual bounded surfaces,
in which the two sides are distinguishable, evidently corre-
spond to the first kind; but unifacial surfaces, in which it is
possible to pass continuously from one side to the other on the
surface itself, belong to the second kind. The case, above men-
tioned, in which the unifacial surface has no boundary has also
to be considered. It is a symmetrical surface without a curve
of transition.

Let us now consider in order the various cases to be distin-
guished.

∗I owe this idea to an opportune conversation with Herr Schwarz
(Easter, 1881). Compare Schottky’s paper, already cited, Crelle,
t. lxxxiii., and Schwarz’s original investigations in the representations
of closed polyhedral surfaces upon the sphere. (Berl. Monatsber., 1865,
pp. 150 et seq. Crelle, t. lxx., pp. 121–136, t. lxxv., p. 330.)

†I express myself in the text, for brevity, as if the original surface
were bifacial, but the case of unifacial surfaces is not to be excluded.
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(1) First, let a simply-connected surface with one boundary
be given. This surface now appears as a closed surface for
which p = 0, which, since there is a curve of transition, can
be symmetrically represented upon itself. We find therefore
that two such surfaces can always be conformally represented
upon one another by transformations of either kind, and that
there are always three real disposable constants. These can
be employed to make an arbitrary interior point on the one
surface correspond to an arbitrary interior point on the other
surface and also an arbitrary point on the boundary of one to
an arbitrary point on the boundary of the other. This method
of determination corresponds to the well-known proposition
concerning the conformal representation of a simply-connected
plane surface with one boundary upon the surface of a circle,
given by Riemann, and explained at length in No. 21 of his
Dissertation as an example of the application of his theory to
problems of conformal representation.

(2) Further we consider unifacial surfaces for which p = 0,
with no boundaries. From §§ 21, 22 it follows at once that two
such surfaces can always be conformally represented upon one
another and that there still remain (by the formulæ at the end
of § 21) three real disposable constants.

(3) The different cases arising from a total surface for
which p = 1, may be considered together. These include, first,
the doubly-connected surfaces with two boundaries, that is, sur-
faces which in the simplest form may be thought of as closed
ribbons; and, next, the well-known unifacial surfaces with only
one boundary, obtained by bringing together the two ends of
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a rectangular strip of paper after twisting it through an angle
of 180◦. Finally, certain unifacial surfaces with no boundaries
belong to this class. An idea of these may be formed by turn-
ing one end of a piece of india-rubber tubing inside out and
then making it pass through itself so that the outer surface of
one end meets the inner surface of the other. With reference
to all these surfaces it has been established by former propo-
sitions that the representation of one surface upon another of
the same kind is possible if one, but only one, equation exists
among the real constants of the surface; and that the repre-
sentation, if possible at all, is possible in an infinite number
of ways, since a double sign and a real constant remain at our
disposal.

(4) We now take the general case of a bifacial surface. The
surface has π boundaries and admits moreover of p′ loop-cuts
which do not resolve it into distinct portions, where either
p′ must be > 0, or π > 2. Then the total surface composed of
the upper and under sides admits of 2p′+π−1 loop-cuts which
leave it still connected; for first the p′ possible loop-cuts can be
effected twice over (on the upper, as well as on the under side),
and then cuts may be made along π−1 of the boundaries, and
the total surface is still simply-connected. We will therefore
write p = 2p′ + π − 1 in the theorems of the foregoing section
and we have the following theorem: Two surfaces of the kind
in question can be represented upon each other, if at all, only
in a finite number of ways. The transformation depends on
6p′+ 3π− 6 equations among the real constants of the surface.

(5) We have, finally, the general case of unifacial surfaces
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with π boundaries and P other possible loop-cuts when the
surface is considered as a bifacial total surface. Leaving aside
the three cases given in (1), (2), and (3) (P = 0, π = 0 or 1,
and P = 1, π = 0) we have the same proposition as in (4) only
that for 2p′+π−1 we must write P+π, where p may be odd or
even. In particular, the number of real constants of a unifacial
surface which are unchanged by conformal transformation is

3P + 3π − 3.

The general theorems and discussions given by Herr Schot-
tky in the paper we have repeatedly cited, are all included in
these results as special cases.

§ 24. Conclusion.

The discussion in this last section now drawing to its con-
clusion is, as we have repeatedly mentioned, intended to cor-
respond to the indications given by Riemann at the close of
his Dissertation. It is true we have here confined ourselves
to uniform correspondence between two surfaces by means of
conformal representation, whereas Riemann, as he explicitly
states, was also thinking of multiform correspondence. For
this case it would be necessary to imagine each of the surfaces
covered by several sheets and to find then a conformal rela-
tion establishing uniform correspondence between the many-
sheeted surfaces so obtained. For every branch-point which
these surfaces might possess a new complex constant would be
at our disposal.
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It may here be remarked that we have already considered
in detail at least one case of such a relation. When an arbi-
trary surface is spread over the plane in several sheets (§ 15),
there is established between the surface and plane a correspon-
dence which is multiform on one side. Further we may point
out that by means of this special case two arbitrary surfaces
are in fact connected by a relation establishing a multiform
correspondence. For if the two surfaces are each represented
on the plane, then, by means of the plane, there is a relation
between them. The subject of multiform correspondence is of
course by no means exhausted by these remarks. But we have
laid a foundation for its treatment by showing its connection
with Riemann’s other speculations in the Theory of Functions,
to an account of which these pages have been devoted.
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