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EDITOR’S PREFACE.

The publication of the present reprint of De Morgan’s El-
ementary Illustrations of the Differential and Integral Calcu-
lus forms, quite independently of its interest to professional
students of mathematics, an integral portion of the general
educational plan which the Open Court Publishing Company
has been systematically pursuing since its inception,—which
is the dissemination among the public at large of sound views
of science and of an adequate and correct appreciation of the
methods by which truth generally is reached. Of these meth-
ods, mathematics, by its simplicity, has always formed the
type and ideal, and it is nothing less than imperative that its
ways of procedure, both in the discovery of new truth and
in the demonstration of the necessity and universality of old
truth, should be laid at the foundation of every philosoph-
ical education. The greatest achievements in the history of
thought—Plato, Descartes, Kant—are associated with the
recognition of this principle.

But it is precisely mathematics, and the pure sciences
generally, from which the general educated public and inde-
pendent students have been debarred, and into which they
have only rarely attained more than a very meagre insight.
The reason of this is twofold. In the first place, the ascen-
dant and consecutive character of mathematical knowledge
renders its results absolutely unsusceptible of presentation
to persons who are unacquainted with what has gone before,
and so necessitates on the part of its devotees a thorough



and patient exploration of the field from the very beginning,
as distinguished from those sciences which may, so to speak,
be begun at the end, and which are consequently cultivated
with the greatest zeal. The second reason is that, partly
through the exigencies of academic instruction, but mainly
through the martinet traditions of antiquity and the influ-
ence of mediæval logic-mongers, the great bulk of the elemen-
tary text-books of mathematics have unconsciously assumed
a very repellent form,—something similar to what is termed
in the theory of protective mimicry in biology “the terrifying
form.” And it is mainly to this formidableness and touch-me-
not character of exterior, concealing withal a harmless body,
that the undue neglect of typical mathematical studies is to
be attributed.

To this class of books the present work forms a notable
exception. It was originally issued as numbers 135 and 140 of
the Library of Useful Knowledge (1832), and is usually bound
up with De Morgan’s large Treatise on the Differential and
Integral Calculus (1842). Its style is fluent and familiar; the
treatment continuous and undogmatic. The main difficulties
which encompass the early study of the Calculus are anal-
ysed and discussed in connexion with practical and historical
illustrations which in point of simplicity and clearness leave
little to be desired. No one who will read the book through,
pencil in hand, will rise from its perusal without a clear per-
ception of the aim and the simpler fundamental principles of
the Calculus, or without finding that the profounder study
of the science in the more advanced and more methodical



treatises has been greatly facilitated.
The book has been reprinted substantially as it stood

in its original form; but the typography has been greatly
improved, and in order to render the subject-matter more
synoptic in form and more capable of survey, the text has
been re-paragraphed and a great number of descriptive sub-
headings have been introduced, a list of which will be found
in the Contents of the book. An index also has been added.

Persons desirous of continuing their studies in this branch
of mathematics, will find at the end of the text a bibliography
of the principal English, French, and German works on the
subject, as well as of the main Collections of Examples. From
the information there given, they may be able to select what
will suit their special needs.

Thomas J. McCormack.
La Salle, Ill., August, 1899.
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DIFFERENTIAL AND INTEGRAL
CALCULUS.

ELEMENTARY ILLUSTRATIONS.

The Differential and Integral Calculus, or, as it was for-
merly called in this country [England], the Doctrine of Flux-
ions, has always been supposed to present remarkable obsta-
cles to the beginner. It is matter of common observation,
that any one who commences this study, even with the best
elementary works, finds himself in the dark as to the real
meaning of the processes which he learns, until, at a certain
stage of his progress, depending upon his capacity, some ac-
cidental combination of his own ideas throws light upon the
subject. The reason of this may be, that it is usual to intro-
duce him at the same time to new principles, processes, and
symbols, thus preventing his attention from being exclusively
directed to one new thing at a time. It is our belief that this
should be avoided; and we propose, therefore, to try the ex-
periment, whether by undertaking the solution of some prob-
lems by common algebraical methods, without calling for the
reception of more than one new symbol at once, or lessening
the immediate evidence of each investigation by reference to
general rules, the study of more methodical treatises may not
be somewhat facilitated. We would not, nevertheless, that
the student should imagine we can remove all obstacles; we
must introduce notions, the consideration of which has not
hitherto occupied his mind; and shall therefore consider our
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object as gained, if we can succeed in so placing the sub-
ject before him, that two independent difficulties shall never
occupy his mind at once.

ON THE RATIO OR PROPORTION OF TWO MAGNITUDES.

The ratio or proportion of two magnitudes is best con-
ceived by expressing them in numbers of some unit when they
are commensurable; or, when this is not the case, the same
may still be done as nearly as we please by means of numbers.
Thus, the ratio of the diagonal of a square to its side is that
of
√

2 to 1, which is very nearly that of 14142 to 10000, and
is certainly between this and that of 14143 to 10000. Again,
any ratio, whatever numbers express it, may be the ratio of
two magnitudes, each of which is as small as we please; by
which we mean, that if we take any given magnitude, how-
ever small, such as the line A, we may find two other lines
B and C, each less than A, whose ratio shall be whatever we
please. Let the given ratio be that of the numbers m and n.
Then, P being a line, mP and nP are in the proportion of
m to n; and it is evident, that let m, n, and A be what they
may, P can be so taken that mP shall be less than A. This is
only saying that P can be taken less than the mth part of A,
which is obvious, since A, however small it may be, has its
tenth, its hundredth, its thousandth part, etc., as certainly
as if it were larger. We are not, therefore, entitled to say
that because two magnitudes are diminished, their ratio is
diminished; it is possible that B, which we will suppose to
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be at first a hundredth part of C, may, after a diminution
of both, be its tenth or thousandth, or may still remain its
hundredth, as the following example will show:

C 3600 1800 36 90

B 36 1 8
10

36
100

9

B =
1

100
C B =

1

1000
C B =

1

100
C B =

1

10
C.

Here the values of B and C in the second, third, and fourth
column are less than those in the first; nevertheless, the ratio
of B to C is less in the second column than it was in the first,
remains the same in the third, and is greater in the fourth.

In estimating the approach to, or departure from equality,
which two magnitudes undergo in consequence of a change
in their values, we must not look at their differences, but
at the proportions which those differences bear to the whole
magnitudes. For example, if a geometrical figure, two of
whose sides are 3 and 4 inches now, be altered in dimensions,
so that the corresponding sides are 100 and 101 inches, they
are nearer to equality in the second case than in the first;
because, though the difference is the same in both, namely
one inch, it is one third of the least side in the first case, and
only one hundredth in the second. This corresponds to the
common usage, which rejects quantities, not merely because
they are small, but because they are small in proportion to
those of which they are considered as parts. Thus, twenty
miles would be a material error in talking of a day’s journey,
but would not be considered worth mentioning in one of three
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months, and would be called totally insensible in stating the
distance between the earth and sun. More generally, if in the
two quantities x and x + a, an increase of m be given to x,
the two resulting quantities x+m and x+m+ a are nearer
to equality as to their ratio than x and x + a, though they

continue the same as to their difference; for
x+ a

x
= 1 +

a

x

and
x+m+ a

x+m
= 1 +

a

x+m
of which

a

x+m
is less than

a

x
,

and therefore 1 +
a

x+m
is nearer to unity than 1 +

a

x
. In

future, when we talk of an approach towards equality, we
mean that the ratio is made more nearly equal to unity, not
that the difference is more nearly equal to nothing. The
second may follow from the first, but not necessarily; still
less does the first follow from the second.

ON THE RATIO OF MAGNITUDES THAT VANISH TOGETHER.

It is conceivable that two magnitudes should decrease
simultaneously,∗ so as to vanish or become nothing, to-
gether. For example, let a point A move on a circle towards
a fixed point B. The arc AB will then diminish, as also
the chord AB, and by bringing the point A sufficiently
near to B, we may obtain an arc and its chord, both of
which shall be smaller than a given line, however small this

∗In introducing the notion of time, we consult only simplicity. It
would do equally well to write any number of successive values of the
two quantities, and place them in two columns.
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last may be. But while the magnitudes diminish, we may
not assume either that their ratio increases, diminishes, or
remains the same, for we have shown that a diminution of
two magnitudes is consistent with either of these. We must,
therefore, look to each particular case for the change, if any,
which is made in the ratio by the diminution of its terms.

Now two suppositions are possible in every increase or
diminution of the ratio, as follows: Let M and N be two
quantities which we suppose in a state of decrease. The
first possible case is that the ratio of M to N may decrease
without limit, that is, M may be a smaller fraction of N
after a decrease than it was before, and a still smaller after
a further decrease, and so on; in such a way, that there is no

fraction so small, to which
M

N
shall not be equal or inferior,

if the decrease of M and N be carried sufficiently far. As an
instance, form two sets of numbers as in the adjoining table:

M 1
1

20

1

400

1

8000

1

160000
etc.

N 1
1

2

1

4

1

8

1

16
etc.

Ratio of M to N 1
1

10

1

100

1

1000

1

10000
etc.

Here both M and N decrease at every step, but M loses at
each step a larger fraction of itself than N, and their ratio
continually diminishes. To show that this decrease is without
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limit, observe that M is at first equal to N, next it is one
tenth, then one hundredth, then one thousandth of N, and
so on; by continuing the values of M and N according to
the same law, we should arrive at a value of M which is
a smaller part of N than any which we choose to name; for
example, .000003. The second value of M beyond our table is
only one millionth of the corresponding value of N; the ratio
is therefore expressed by .000001 which is less than .000003.
In the same law of formation, the ratio of N to M is also
increased without limit.

The second possible case is that in which the ratio of
M to N, though it increases or decreases, does not increase
or decrease without limit, that is, continually approaches to
some ratio, which it never will exactly reach, however far the
diminution of M and N may be carried. The following is an
example:

M 1
1

3

1

6

1

10

1

15

1

21

1

28
etc.

N 1
1

4

1

9

1

16

1

25

1

36

1

49
etc.

Ratio of M to N 1
4

3

9

6

16

10

25

15

36

21

49

28
etc.

The ratio here increases at each step, for
4

3
is greater than 1,

9

6
than

4

3
, and so on. The difference between this case and
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the last is, that the ratio of M to N, though perpetually
increasing, does not increase without limit; it is never so
great as 2, though it may be brought as near to 2 as we
please.

To show this, observe that in the successive values of M,
the denominator of the second is 1 + 2, that of the third
1+2+3, and so on; whence the denominator of the xth value
of M is

1 + 2 + 3 + · · ·+ x, or
x(x+ 1)

2
.

Therefore the xth value of M is
2

x(x+ 1)
, and it is evident

that the xth value of N is
1

x2
, which gives the xth value of the

ratio
M

N
=

2x2

x(x+ 1)
, or

2x

x+ 1
, or

x

x+ 1
× 2. If x be made

sufficiently great,
x

x+ 1
may be brought as near as we please

to 1, since, being 1− 1

x+ 1
, it differs from 1 by

1

x+ 1
, which

may be made as small as we please. But as
x

x+ 1
, however

great x may be, is always less than 1,
2x

x+ 1
is always less

than 2. Therefore (1)
M

N
continually increases; (2) may be

brought as near to 2 as we please; (3) can never be greater

than 2. This is what we mean by saying that
M

N
is an in-
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creasing ratio, the limit of which is 2. Similarly of
N

M
, which

is the reciprocal of
M

N
, we may show (1) that it continually

decreases; (2) that it can be brought as near as we please
to 1

2
; (3) that it can never be less than 1

2
. This we express

by saying that
N

M
is a decreasing ratio, whose limit is 1

2
.

ON THE RATIOS OF CONTINUOUSLY INCREASING OR
DECREASING QUANTITIES.

To the fractions here introduced, there are intermedi-
ate fractions, which we have not considered. Thus, in the
last instance, M passed from 1 to 1

2
without any intermedi-

ate change. In geometry and mechanics, it is necessary to
consider quantities as increasing or decreasing continuously ;
that is, a magnitude does not pass from one value to another
without passing through every intermediate value. Thus if
one point move towards another on a circle, both the arc
and its chord decrease continuously. Let AB (Fig. 1) be an
arc of a circle, the centre of which is O. Let A remain fixed,
but let B, and with it the radius OB, move towards A, the
point B always remaining on the circle. At every position
of B, suppose the following figure. Draw AT touching the
circle at A, produce OB to meet AT in T, draw BM and BN
perpendicular and parallel to OA, and join BA. Bisect the
arc AB in C, and draw OC meeting the chord in D and bi-
secting it. The right-angled triangles ODA and BMA having
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a common angle, and also right angles, are similar, as are also
BOM and TBN. If now we suppose B to move towards A,
before B reaches A, we shall have the following results: The

arc and chord BA, the lines BM, MA, BT, TN, the angles
BOA, COA, MBA, and TBN, will diminish without limit;
that is, assign a line and an angle, however small, B can be
placed so near to A that the lines and angles above alluded
to shall be severally less than the assigned line and angle.
Again, OT diminishes and OM increases, but neither with-
out limit, for the first is never less, nor the second greater,
than the radius. The angles OBM, MAB, and BTN, increase,
but not without limit, each being always less than the right
angle, but capable of being made as near to it as we please,
by bringing B sufficiently near to A.

So much for the magnitudes which compose the figure: we
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proceed to consider their ratios, premising that the arc AB is
greater than the chord AB, and less than BN+NA. The tri-
angle BMA being always similar to ODA, their sides change
always in the same proportion; and the sides of the first de-
crease without limit, which is the case with only one side
of the second. And since OA and OD differ by DC, which
diminishes without limit as compared with OA, the ratio
OD÷OA is an increasing ratio whose limit is 1. But OD÷
OA = BM ÷ BA. We can therefore bring B so near to A
that BM and BA shall differ by as small a fraction of either
of them as we please.

To illustrate this result from the trigonometrical ta-
bles, observe that if the radius OA be the linear unit, and
∠BOA = θ, BM and BA are respectively sin θ and 2 sin 1

2
θ.

Let θ = 1◦; then sin θ = .0174524 and 2 sin 1
2
θ = .0174530;

whence 2 sin 1
2
θ÷sin θ = 1.00003 very nearly, so that BM dif-

fers from BA by less than four of its own hundred-thousandth
parts. If ∠BOA = 4′, the same ratio is 1.0000002, differing
from unity by less than the hundredth part of the difference
in the last example.

Again, since DA diminishes continually and without
limit, which is not the case either with OD or OA, the ratios
OD ÷ DA and OA ÷ DA increase without limit. These are
respectively equal to BM÷MA and BA÷MA; whence it ap-
pears that, let a number be ever so great, B can be brought
so near to A, that BM and BA shall each contain MA
more times than there are units in that number. Thus if
∠BOA = 1◦, BM÷MA = 114.589 and BA÷MA = 114.593
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very nearly; that is, BM and BA both contain MA more
than 114 times. If ∠BOA = 4′, BM÷MA = 1718.8732, and
BA ÷ MA = 1718.8375 very nearly; or BM and BA both
contain MA more than 1718 times.

No difficulty can arise in conceiving this result, if the
student recollect that the degree of greatness or smallness of
two magnitudes determines nothing as to their ratio; since
every quantity N, however small, can be divided into as many
parts as we please, and has therefore another small quantity
which is its millionth or hundred-millionth part, as certainly

as if it had been greater. There is another instance in the
line TN, which, since TBN is similar to BOM, decreases
continually with respect to TB, in the same manner as does
BM with respect to OB.

The arc BA always lies between BA and BN + NA, or



elementary illustrations of 12

BM + MA; hence
arc BA

chord BA
lies between 1 and

BM

BA
+

MA

BA
.

But
BM

BA
has been shown to approach continually towards 1,

and
MA

BA
to decrease without limit; hence

arc BA

chord BA
contin-

ually approaches towards 1. If ∠BOA = 1◦,
arc BA

chord BA
=

.0174533 ÷ .0174530 = 1.00002, very nearly. If ∠BOA = 4′,
it is less than 1.0000001.

We now proceed to illustrate the various phrases which
have been used in enunciating these and similar propositions.

THE NOTION OF INFINITELY SMALL QUANTITIES.

It appears that it is possible for two quantities m and
m+n to decrease together in such a way, that n continually
decreases with respect to m, that is, becomes a less and less

part of m, so that
n

m
also decreases when n and m decrease.

Leibnitz,∗ in introducing the Differential Calculus, presumed

∗Leibnitz was a native of Leipsic, and died in 1716, aged 70. His
dispute with Newton, or rather with the English mathematicians in
general, about the invention of Fluxions, and the virulence with which
it was carried on, are well known. The decision of modern times appears
to be that both Newton and Leibnitz were independent inventors of this
method. It has, perhaps, not been sufficiently remarked how nearly
several of their predecessors approached the same ground; and it is a
question worthy of discussion, whether either Newton or Leibnitz might
not have found broader hints in writings accessible to both, than the
latter was ever asserted to have received from the former.
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that in such a case, n might be taken so small as to be utterly
inconsiderable when compared with m, so that m+ n might
be put for m, or vice versa, without any error at all. In this
case he used the phrase that n is infinitely small with respect
to m.

The following example will illustrate this term. Since
(a + h)2 = a2 + 2ah + h2, it appears that if a be increased
by h, a2 is increased by 2ah+h2. But if h be taken very small,
h2 is very small with respect to h, for since 1 : h :: h : h2, as
many times as 1 contains h, so many times does h contain h2;
so that by taking h sufficiently small, h may be made to
be as many times h2 as we please. Hence, in the words of
Leibnitz, if h be taken infinitely small, h2 is infinitely small
with respect to h, and therefore 2ah+h2 is the same as 2ah;
or if a be increased by an infinitely small quantity h, a2 is
increased by another infinitely small quantity 2ah, which is
to h in the proportion of 2a to 1.

In this reasoning there is evidently an absolute error; for
it is impossible that h can be so small, that 2ah+h2 and 2ah
shall be the same. The word small itself has no precise mean-
ing; though the word smaller, or less, as applied in comparing
one of two magnitudes with another, is perfectly intelligible.
Nothing is either small or great in itself, these terms only
implying a relation to some other magnitude of the same
kind, and even then varying their meaning with the subject
in talking of which the magnitude occurs, so that both terms
may be applied to the same magnitude: thus a large field is
a very small part of the earth. Even in such cases there is
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no natural point at which smallness or greatness commences.
The thousandth part of an inch may be called a small dis-
tance, a mile moderate, and a thousand leagues great, but
no one can fix, even for himself, the precise mean between
any of these two, at which the one quality ceases and the
other begins. These terms are not therefore a fit subject for
mathematical discussion, until some more precise sense can
be given to them, which shall prevent the danger of carry-
ing away with the words, some of the confusion attending
their use in ordinary language. It has been usual to say
that when h decreases from any given value towards noth-
ing, h2 will become small as compared with h, because, let a
number be ever so great, h will, before it becomes nothing,
contain h2 more than that number of times. Here all dispute
about a standard of smallness is avoided, because, be the
standard whatever it may, the proportion of h2 to h may be
brought under it. It is indifferent whether the thousandth,
ten-thousandth, or hundred-millionth part of a quantity is
to be considered small enough to be rejected by the side of

the whole, for let h be
1

1000
,

1

10,000
, or

1

100,000,000
of the

unit, and h will contain h2, 1000, 10,000, or 100,000,000 of
times.

The proposition, therefore, that h can be taken so small
that 2ah+h2 and 2ah are rigorously equal, though not true,
and therefore entailing error upon all its subsequent conse-
quences, yet is of this character, that, by taking h sufficiently
small, all errors may be made as small as we please. The de-
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sire of combining simplicity with the appearance of rigorous
demonstration, probably introduced the notion of infinitely
small quantities; which was further established by observing
that their careful use never led to any error. The method of
stating the above-mentioned proposition in strict and ratio-
nal terms is as follows: If a be increased by h, a2 is increased
by 2ah+ h2, which, whatever may be the value of h, is to h
in the proportion of 2a+ h to 1. The smaller h is made, the
more near does this proportion diminish towards that of 2a
to 1, to which it may be made to approach within any quan-
tity, if it be allowable to take h as small as we please. Hence
the ratio, increment of a2 ÷ increment of a, is a decreasing
ratio, whose limit is 2a.

In further illustration of the language of Leibnitz, we ob-
serve, that according to his phraseology, if AB be an infinitely
small arc, the chord and arc AB are equal, or the circle is
a polygon of an infinite number of infinitely small rectilin-
ear sides. This should be considered as an abbreviation of
the proposition proved (page 11), and of the following: If a
polygon be inscribed in a circle, the greater the number of its
sides, and the smaller their lengths, the more nearly will the
perimeters of the polygon and circle be equal to one another;
and further, if any straight line be given, however small, the
difference between the perimeters of the polygon and circle
may be made less than that line, by sufficient increase of the
number of sides and diminution of their lengths. Again, it
would be said (Fig. 1) that if AB be infinitely small, MA is
infinitely less than BM. What we have proved is, that MA
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may be made as small a part of BM as we please, by suffi-
ciently diminishing the arc BA.

ON FUNCTIONS.

An algebraical expression which contains x in any way,

is called a function of x. Such are x2 +a2,
a+ x

a− x
, log(x+ y),

sin 2x. An expression may be a function of more quantities
than one, but it is usual only to name those quantities of
which it is necessary to consider a change in the value. Thus
if in x2 + a2 x only is considered as changing its value, this
is called a function of x; if x and a both change, it is called
a function of x and a. Quantities which change their values
during a process, are called variables, and those which re-
main the same, constants ; and variables which we change at
pleasure are called independent, while those whose changes
necessarily follow from the changes of others are called de-
pendent. Thus in Fig. 1, the length of the radius OB is
a constant, the arc AB is the independent variable, while
BM, MA, the chord AB, etc., are dependent. And, as in
algebra we reason on numbers by means of general symbols,
each of which may afterwards be particularised as standing
for any number we please, unless specially prevented by the
conditions of the problem, so, in treating of functions, we
use general symbols, which may, under the restrictions of
the problem, stand for any function whatever. The sym-
bols used are the letters F, f , Φ, ϕ, ψ; ϕ(x) and ψ(x), or
ϕx and ψx, may represent any functions of x, just as x may
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represent any number. Here it must be borne in mind that
ϕ and ψ do not represent numbers which multiply x, but are
the abbreviated directions to perform certain operations with
x and constant quantities. Thus, if ϕx = x+ x2, ϕ is equiv-
alent to a direction to add x to its square, and the whole ϕx
stands for the result of this operation. Thus, in this case,
ϕ(1) = 2; ϕ(2) = 6; ϕa = a+a2; ϕ(x+h) = x+h+(x+h)2;
ϕ sinx = sinx + (sinx)2. It may be easily conceived that
this notion is useless, unless there are propositions which are
generally true of all functions, and which may be made the
foundation of general reasoning.

INFINITE SERIES.

To exercise the student in this notation, we proceed to
explain one of these functions which is of most extensive
application and is known by the name of Taylor’s Theorem.
If in ϕx, any function of x, the value of x be increased by h,
or x + h be substituted instead of x, the result is denoted
by ϕ(x + h). It will generally∗ happen that this is either
greater or less than ϕx, and h is called the increment of x,
and ϕ(x + h) − ϕx is called the increment of ϕx, which is
negative when ϕ(x+h) < ϕx. It may be proved that ϕ(x+h)

∗This word is used in making assertions which are for the most part
true, but admit of exceptions, few in number when compared with the
other cases. Thus it generally happens that x2 − 10x + 40 is greater
than 15, with the exception only of the case where x = 5. It is generally
true that a line which meets a circle in a given point meets it again,
with the exception only of the tangent.
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can generally be expanded in a series of the form

ϕx+ ph+ qh2 + rh3 + etc., ad infinitum,

which contains none but whole and positive powers of h. It
will happen, however, in many functions, that one or more
values can be given to x for which it is impossible to expand
f(x + h) without introducing negative or fractional powers.
These cases are considered by themselves, and the values of x
which produce them are called singular values.

As the notion of a series which has no end of its terms,
may be new to the student, we will now proceed to show
that there may be series so constructed, that the addition of
any number of their terms, however great, will always give a
result less than some determinate quantity. Take the series

1 + x+ x2 + x3 + x4 + etc.,

in which x is supposed to be less than unity. The first two
terms of this series may be obtained by dividing 1 − x2 by
1−x; the first three by dividing 1−x3 by 1−x; and the first
n terms by dividing 1− xn by 1− x. If x be less than unity,
its successive powers decrease without limit;∗ that is, there
is no quantity so small, that a power of x cannot be found

∗This may be proved by means of the proposition established in
Study of Mathematics (Chicago: The Open Court Publishing Co.,

Reprint Edition), page 247. For
m

n
× n

m
is formed (if m be less than n)

by dividing
m

n
into n parts, and taking away n−m of them.
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which shall be smaller. Hence by taking n sufficiently great,
1− xn

1− x
or

1

1− x
− xn

1− x
may be brought as near to

1

1− x
as we please, than which, however, it must always be less,

since
xn

1− x
can never entirely vanish, whatever value n may

have, and therefore there is always something subtracted

from
1

1− x
. It follows, nevertheless, that 1 + x + x2 + etc.,

if we are at liberty to take as many terms as we please, can

be brought as near as we please to
1

1− x
, and in this sense

we say that

1

1− x
= 1 + x+ x2 + x3 + etc., ad infinitum.

CONVERGENT AND DIVERGENT SERIES.

A series is said to be convergent when the sum of its
terms tends towards some limit; that is, when, by taking
any number of terms, however great, we shall never exceed
some certain quantity. On the other hand, a series is said
to be divergent when the sum of a number of terms may be
made to surpass any quantity, however great. Thus of the
two series,

1 +
1

2
+

1

4
+

1

8
+ etc.

and
1 + 2 + 4 + 8 + etc.,
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the first is convergent, by what has been shown, and the sec-
ond is evidently divergent. A series cannot be convergent,
unless its separate terms decrease, so as, at last, to become
less than any given quantity. And the terms of a series may
at first increase and afterwards decrease, being apparently
divergent for a finite number of terms, and convergent after-
wards. It will only be necessary to consider the latter part
of the series.

Let the following series consist of terms decreasing with-
out limit:

a+ b+ c+ d+ · · ·+ k + l +m+ . . . ,

which may be put under the form

a

(
1 +

b

a
+
c

b

b

a
+
d

c

c

b

b

a
+ etc.

)
;

the same change of form may be made, beginning from any
term of the series, thus:

k + l +m+ etc. = k

(
1 +

l

k
+
m

l

l

k
+ etc.

)
.

We have introduced the new terms,
b

a
,
c

b
, etc., or the ratios

which the several terms of the original series bear to those
immediately preceding. It may be shown (1) that if the

terms of the series
b

a
,
c

b
,
d

c
, etc., come at last to be less
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than unity, and afterwards either continue to approximate
to a limit which is less than unity, or decrease without limit,
the series a + b + c + etc., is convergent; (2) if the limit of

the terms
b

a
,
c

b
, etc., is either greater than unity, or if they

increase without limit, the series is divergent.

(1a). Let
l

k
be the first which is less than unity, and

let the succeeding ratios
m

l
, etc., decrease, either with or

without limit, so that
l

k
>
m

l
>

n

m
, etc.; whence it follows,

that of the two series,

k

(
1 +

l

k
+
l

k

l

k
+
l

k

l

k

l

k
+ etc.

)
,

k

(
1 +

l

k
+
l

k

m

l
+
l

k

m

l

n

m
+ etc.

)
,

the first is greater than the second. But since
l

k
is less than

unity, the first can never surpass k × 1

1− l

k

, or
k2

k − l
, and

is convergent; the second is therefore convergent. But the
second is no other than k+ l+m+ etc.; therefore the series
a+ b+ c+ etc., is convergent from the term k.

(1b). Let
l

k
be less than unity, and let the successive

ratios
l

k
,
m

l
, etc., increase, never surpassing a limit A, which
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is less than unity. Hence of the two series,

k(1 + A + A A + A A A + etc.),

k

(
1 +

l

k
+
l

k

m

l
+
l

k

m

l

n

m
+ etc.

)
,

the first is the greater. But since A is less than unity, the first
is convergent; whence, as before, a + b + c + etc., converges
from the term k.

(2) The second theorem on the divergence of series we
leave to the student’s consideration, as it is not immediately
connected with our object.

TAYLOR’S THEOREM. DERIVED FUNCTIONS.

We now proceed to the series

ph+ qh2 + rh3 + sh4 + etc.,

in which we are at liberty to suppose h as small as we please.
The successive ratios of the terms to those immediately pre-

ceding are
qh2

ph
or
q

p
h,
rh3

qh2
or
r

q
h,
sh4

rh3
or
s

r
h, etc. If, then, the

terms
q

p
,
r

q
,
s

r
, etc., are always less than a finite limit A, or

become so after a definite number of terms,
q

p
h,
r

q
h, etc., will

always be, or will at length become, less than Ah. And since
h may be what we please, it may be so chosen that Ah shall

be less than unity, for which h must be less than
1

A
. In this



the differential and integral calculus. 23

case, by theorem (1b), the series is convergent; it follows,
therefore, that a value of h can always be found so small
that ph + qh2 + rh3 + etc., shall be convergent, at least un-
less the coefficients p, q, r, etc., be such that the ratio of
any one to the preceding increases without limit, as we take
more distant terms of the series. This never happens in the
developments which we shall be required to consider in the
Differential Calculus.

We now return to ϕ(x + h), which we have asserted
(page 17) can be expanded (with the exception of some par-
ticular values of x) in a series of the form ϕx+ph+qh2 +etc.
The following are some instances of this development derived
from the Differential Calculus, most of which are also to be
found in treatises on algebra:

(x + h)n = xn +nxn−1h+n(n− 1)xn−2 h
2

2
+n(n− 1)(n− 2)xn−3 h3

2 · 3
etc.,

ax+h = ax +kaxh
∗

+k2ax
h2

2
+k3ax

h3

2 · 3
etc.,

log(x + h) = log x +
1

x
h −

1

x2

h2

2
+

2

x3

h3

2 · 3
etc.,

sin(x + h) = sinx + cosxh − sinx
h2

2

† − cosx
h3

2 · 3
etc.,

cos(x + h) = cosx − sinxh − cosx
h2

2
+ sinx

h3

2 · 3
etc.

∗Here k is the Naperian or hyperbolic logarithm of a; that is, the
common logarithm of a divided by .434294482.

†In the last two series the terms are positive and negative in pairs.
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It appears, then, that the development of ϕ(x + h) con-
sists of certain functions of x, the first of which is ϕx itself,

and the remainder of which are multiplied by h,
h2

2
,
h3

2 · 3
,

h4

2 · 3 · 4
, and so on. It is usual to denote the coefficients of

these divided powers of h by ϕ′x, ϕ′′x, ϕ′′′x,∗ etc., where
ϕ′, ϕ′′, etc., are merely functional symbols, as is ϕ itself;
but it must be recollected that ϕ′x, ϕ′′x, etc., are rarely,
if ever, employed to signify anything except the coefficients

of h,
h2

2
, etc., in the development of ϕ(x + h). Hence this

development is usually expressed as follows:

ϕ(x+ h) = ϕx+ ϕ′xh+ ϕ′′x
h2

2
+ ϕ′′′x

h3

2 · 3
+ etc.

Thus, when ϕx = xn, ϕ′x = nxn−1, ϕ′′x = n(n− 1)xn−2,
etc.; when ϕx = sinx, ϕ′x = cosx, ϕ′′x = − sinx, etc.
In the first case ϕ′(x + h) = n(x + h)n−1, ϕ′′(x + h) =
n(n−1)(x+h)n−2; and in the second ϕ′(x+h) = cos(x+h),
ϕ′′(x+ h) = − sin(x+ h).

The following relation exists between ϕx, ϕ′x, ϕ′′x, etc.
In the same manner as ϕ′x is the coefficient of h in the de-
velopment of ϕ(x + h), so ϕ′′x is the coefficient of h in the
development of ϕ′(x + h), and ϕ′′′x is the coefficient of h in
the development of ϕ′′(x + h); ϕivx is the coefficient of h in
the development of ϕ′′′(x+ h), and so on.

∗Called derived functions or derivatives.—Ed.
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The proof of this is equivalent to Taylor’s Theorem al-
ready alluded to (page 16); and the fact may be verified in
the examples already given. When ϕx = ax, ϕ′x = kax, and
ϕ′(x+h) = kax+h = k(ax +kax h+etc.). The coefficient of h
is here k2ax, which is the same as ϕ′′x. (See the second ex-
ample of the preceding table.) Again, ϕ′′(x+ h) = k2ax+h =
k2(ax +kax h+etc.), in which the coefficient of h is k3ax, the

same as ϕ′′′x. Again, if ϕx = log x, ϕ′x =
1

x
, and ϕ′(x+h) =

1

x+ h
=

1

x
− h

x2
+etc., as appears by common division. Here

the coefficient of h is − 1

x2
, which is the same as ϕ′′x in the

third example. Also ϕ′′(x + h) = − 1

(x+ h)2
= −(x + h)−2,

which by the Binomial Theorem is −(x−2 − 2x−3 h + etc.).

The coefficient of h is 2x−3 or
2

x3
, which is ϕ′′′x in the same

example.

DIFFERENTIAL COEFFICIENTS.

It appears, then, that if we are able to obtain the co-
efficient of h in the development of any function whatever
of x + h, we can obtain all the other coefficients, since we
can thus deduce ϕ′x from ϕx, ϕ′′x from ϕ′x, and so on. It is
usual to call ϕ′x the first differential coefficient of ϕx, ϕ′′x the
second differential coefficient of ϕx, or the first differential
coefficient of ϕ′x; ϕ′′′x the third differential coefficient of ϕx,
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or the second of ϕ′x, or the first of ϕ′′x; and so on.∗ The
name is derived from a method of obtaining ϕ′x, etc., which
we now proceed to explain.

Let there be any function of x, which we call ϕx, in which
x is increased by an increment h; the function then becomes

ϕx+ ϕ′xh+ ϕ′′x
h2

2
+ ϕ′′′x

h3

2 · 3
+ etc.

The original value ϕx is increased by the increment

ϕ′xh+ ϕ′′x
h2

2
x+ ϕ′′′x

h3

2 · 3
+ etc.;

whence (h being the increment of x)

increment of ϕx

increment of x
= ϕ′x+ ϕ′′x

h

2
x+ ϕ′′′x

h2

2 · 3
+ etc.,

which is an expression for the ratio which the increment of
a function bears to the increment of its variable. It consists
of two parts. The one, ϕ′x, into which h does not enter,
depends on x only; the remainder is a series, every term of
which is multiplied by some power of h, and which therefore
diminishes as h diminishes, and may be made as small as we
please by making h sufficiently small.

To make this last assertion clear, observe that all the
ratio, except its first term ϕ′x, may be written as follows:

h

(
ϕ′′x

1

2
+ ϕ′′′x

h

2 · 3
+ etc.

)
;

∗The first, second, third, etc., differential coefficients, as thus ob-
tained, are also called the first, second, third, etc., derivatives.—Ed.
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the second factor of which (page 21) is a convergent series

whenever h is taken less than
1

A
, where A is the limit towards

which we approximate by taking the coefficients ϕ′′x × 1

2
,

ϕ′′′x × 1

2 · 3
, etc., and forming the ratio of each to the one

immediately preceding. This limit, as has been observed,
is finite in every series which we have occasion to use; and
therefore a value for h can be chosen so small, that for it
the series in the last-named formula is convergent; still more
will it be so for every smaller value of h. Let the series be
called P. If P be a finite quantity, which decreases when
h decreases, Ph can be made as small as we please by suf-
ficiently diminishing h; whence ϕ′x + Ph can be brought as
near as we please to ϕ′x. Hence the ratio of the increments
of ϕx and x, produced by changing x into x + h, though
never equal to ϕ′x, approaches towards it as h is diminished,
and may be brought as near as we please to it, by sufficiently
diminishing h. Therefore to find the coefficient of h in the
development of ϕ(x+ h), find ϕ(x+ h)−ϕx, divide it by h,
and find the limit towards which it tends as h is diminished.

In any series such as

a+ bh+ ch2 + · · ·+ khn + lhn+1 +mhn+2 + etc.

which is such that some given value of h will make it con-
vergent, it may be shown that h can be taken so small that
any one term shall contain all the succeeding ones as often
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as we please. Take any one term, as khn. It is evident that,
be h what it may,

khn : lhn+1 +mhn+2 + etc., :: k : lh+mh2 + etc.,

the last term of which is h(l+mh+etc.). By reasoning similar
to that in the last paragraph, we can show that this may be
made as small as we please, since one factor is a series which

is always finite when h is less than
1

A
, and the other factor h

can be made as small as we please. Hence, since k is a given
quantity, independent of h, and which therefore remains the
same during all the changes of h, the series h(l+mh+ etc.)
can be made as small a part of k as we please, since the
first diminishes without limit, and the second remains the
same. By the proportion above established, it follows then
that lhn+1 + mhn+2 + etc., can be made as small a part as
we please of khn. It follows, therefore, that if, instead of the
full development of ϕ(x+ h), we use only its two first terms
ϕx + ϕ′xh, the error thereby introduced may, by taking h
sufficiently small, be made as small a portion as we please of
the small term ϕ′xh.

THE NOTATION OF THE DIFFERENTIAL CALCULUS.

The first step usually made in the Differential Calculus
is the determination of ϕ′x for all possible values of ϕx, and
the construction of general rules for that purpose. Without
entering into these we proceed to explain the notation which
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is used, and to apply the principles already established to
the solution of some of those problems which are the peculiar
province of the Differential Calculus.

When any quantity is increased by an increment, which,
consistently with the conditions of the problem, may be sup-
posed as small as we please, this increment is denoted, not
by a separate letter, but by prefixing the letter d, either fol-
lowed by a full stop or not, to that already used to signify the
quantity. For example, the increment of x is denoted under
these circumstances by dx; that of ϕx by d.ϕx; that of xn

by d.xn. If instead of an increment a decrement be used, the
sign of dx, etc., must be changed in all expressions which
have been obtained on the supposition of an increment; and
if an increment obtained by calculation proves to be negative,
it is a sign that a quantity which we imagined was increased
by our previous changes, was in fact diminished. Thus, if
x becomes x + dx, x2 becomes x2 + d.x2. But this is also
(x+dx)2 or x2 + 2x dx+ (dx)2; whence d.x2 = 2x dx+ (dx)2.
Care must be taken not to confound d.x2, the increment
of x2, with (dx)2, or, as it is often written, dx2, the square of

the increment of x. Again, if x becomes x + dx,
1

x
becomes

1

x
+ d.

1

x
and the change of

1

x
is

1

x+ dx
− 1

x
or − dx

x2 + x dx
;

showing that an increment of x produces a decrement in
1

x
.

It must not be imagined that because x occurs in the
symbol dx, the value of the latter in any way depends upon
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that of the former: both the first value of x, and the quantity
by which it is made to differ from its first value, are at our
pleasure, and the letter d must merely be regarded as an ab-
breviation of the words “difference of.” In the first example,
if we divide both sides of the resulting equation by dx, we

have
d.x2

dx
= 2x+ dx. The smaller dx is supposed to be, the

more nearly will this equation assume the form
d.x2

dx
= 2x,

and the ratio of 2x to 1 is the limit of the ratio of the incre-
ment of x2 to that of x; to which this ratio may be made to
approximate as nearly as we please, but which it can never
actually reach. In the Differential Calculus, the limit of the
ratio only is retained, to the exclusion of the rest, which may
be explained in either of the two following ways:

(1) The fraction
d.x2

dx
may be considered as standing, not

for any value which it can actually have as long as dx has
a real value, but for the limit of all those values which it
assumes while dx diminishes. In this sense the equation
d.x2

dx
= 2x is strictly true. But here it must be observed that

the algebraical meaning of the sign of division is altered, in
such a way that it is no longer allowable to use the numerator
and denominator separately, or even at all to consider them

as quantities. If
dy

dx
stands, not for the ratio of two quanti-

ties, but for the limit of that ratio, which cannot be obtained

by taking any real value of dx, however small, the whole
dy

dx
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may, by convention, have a meaning, but the separate parts
dy and dx have none, and can no more be considered as sep-

arate quantities whose ratio is
dy

dx
, than the two loops of the

figure 8 can be considered as separate numbers whose sum
is eight. This would be productive of no great inconvenience
if it were never required to separate the two; but since all
books on the Differential Calculus and its applications are
full of examples in which deductions equivalent to assuming

dy = 2x dx are drawn from such an equation as
dy

dx
= 2x, it

becomes necessary that the first should be explained, inde-
pendently of the meaning first given to the second. It may

be said, indeed, that if y = x2, it follows that
dy

dx
= 2x+ dx,

in which, if we make dx = 0, the result is
dy

dx
= 2x. But

if dx = 0, dy also = 0, and this equation should be writ-

ten
0

0
= 2x, as is actually done in some treatises on the

Differential Calculus,∗ to the great confusion of the learner.

Passing over the difficulties† of the fraction
0

0
, still the for-

mer objection recurs, that the equation dy = 2x dx cannot

∗This practice was far more common in the early part of the century
than now, and was due to the precedent of Euler (1755). For the sense
in which Euler’s view was correct, see the Encyclopedia Britannica, art.
Infinitesimal Calculus, Vol. XII, p. 14, 2nd column.—Ed.

†See Study of Mathematics (Reprint Edition, Chicago: The Open
Court Publishing Co., 1898), page 126.
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be used (and it is used even by those who adopt this expla-
nation) without supposing that 0, which merely implies an
absence of all magnitude, can be used in different senses, so
that one 0 may be contained in another a certain number of
times. This, even if it can be considered as intelligible, is a
notion of much too refined a nature for a beginner.

(2) The presence of the letter d is an indication, not only
of an increment, but of an increment which we are at lib-
erty to suppose as small as we please. The processes of the
Differential Calculus are intended to deduce relations, not
between the ratios of different increments, but between the
limits to which those ratios approximate, when the incre-
ments are decreased. And it may be true of some parts of an
equation, that though the taking of them away would alter
the relation between dy and dx, it would not alter the limit
towards which their ratio approximates, when dx and dy are
diminished. For example, dy = 2x dx + (dx)2. If x = 4 and

dx = .01, then dy = .0801 and
dy

dx
= 8.01. If dx = .0001,

dy = .00080001 and
dy

dx
= 8.0001. The limit of this ratio, to

which we shall come still nearer by making dx still smaller,
is 8. The term (dx)2, though its presence affects the value

of dy and the ratio
dy

dx
, does not affect the limit of the latter,

for in
dy

dx
or 2x + dx, the latter term dx, which arose from

the term (dx)2, diminishes continually and without limit. If,
then, we throw away the term (dx)2, the consequence is that,



the differential and integral calculus. 33

make dx what we may, we never obtain dy as it would be if
correctly deduced from the equation y = x2, but we obtain
the limit of the ratio of dy to dx. If we throw away all pow-
ers of dx above the first, and use the equations so obtained,
all ratios formed from these last, or their consequences, are
themselves the limiting ratios of which we are in search. The
equations which we thus use are not absolutely true in any
case, but may be brought as near as we please to the truth,
by making dy and dx sufficiently small. If the student at
first, instead of using dy = 2x dx, were to write it thus,
dy = 2x dx+ etc., the etc. would remind him that there are
other terms; necessary, if the value of dy corresponding to
any value of dx is to be obtained; unnecessary, if the limit
of the ratio of dy to dx is all that is required.

We must adopt the first of these explanations when dy
and dx appear in a fraction, and the second when they are
on opposite sides of an equation.

ALGEBRAICAL GEOMETRY.

If two straight lines be drawn at right angles to each
other, dividing the whole of their plane into four parts, one
lying in each right angle, the situation of any point is de-
termined when we know, (1) in which angle it lies, and
(2) its perpendicular distances from the two right lines. Thus
(Fig. 2) the point P lying in the angle AOB, is known when
PM and PN, or when OM and PM are known; for, though
there is an infinite number of points whose distance from OA
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only is the same as that of P, and an infinite number of oth-
ers, whose distance from OB is the same as that of P, there is
no other point whose distances from both lines are the same
as those of P. The line OA is called the axis of x, because
it is usual to denote any variable distance measured on or
parallel to OA by the letter x. For a similar reason, OB is
called the axis of y. The co-ordinates∗ or perpendicular dis-
tances of a point P which is supposed to vary its position,
are thus denoted by x and y; hence OM or PN is x, and PM
or ON is y. Let a linear unit be chosen, so that any num-
ber may be represented by a straight line. Let the point M,
setting out from O, move in the direction OA, always carry-
ing with it the indefinitely extended line MP perpendicular
to OA. While this goes on, let P move upon the line MP in
such a way, that MP or y is always equal to a given function
of OM or x; for example, let y = x2, or let the number of
units in PM be the square of the number of units in OM. As
O moves towards A, the point P will, by its motion on MP,
compounded with the motion of the line MP itself, describe
a curve OP, in which PM is less than, equal to, or greater
than, OM, according as OM is less than, equal to, or greater
than the linear unit. It only remains to show how the other
branch of this curve is deduced from the equation y = x2.
And to this end we shall first have to interpolate a few re-

∗The distances OM and MP are called the co-ordinates of the
point P. It is moreover usual to call the co-ordinate OM, the abscissa,
and MP, the ordinate, of the point P.
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marks.

ON THE CONNEXION OF THE SIGNS OF ALGEBRAICAL AND
THE DIRECTIONS OF GEOMETRICAL MAGNITUDES.

It is shown in algebra, that if, through misapprehension
of a problem, we measure in one direction, a line which ought
to lie in the exactly opposite direction, or if such a mistake be
a consequence of some previous misconstruction of the figure,
any attempt to deduce the length of that line by algebraical
reasoning, will give a negative quantity as the result. And
conversely it may be proved by any number of examples,
that when an equation in which a occurs has been deduced
strictly on the supposition that a is a line measured in one
direction, a change of sign in a will turn the equation into
that which would have been deduced by the same reasoning,
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had we begun by measuring the line a in the contrary direc-
tion. Hence the change of +a into −a, or of −a into +a,
corresponds in geometry to a change of direction of the line
represented by a, and vice versa.

In illustration of this general fact, the following problem
may be useful. Having a circle of given radius, whose centre
is in the intersection of the axes of x and y, and also a straight
line cutting the axes in two given points, required the co-
ordinates of the points (if any) in which the straight line
cuts the circle. Let OA, the radius of the circle = r, OE = a,
OF = b, and let the co-ordinates of P, one of the points of
intersection required, be OM = x, MP = y. (Fig. 3.) The
point P being in the circle whose radius is r, we have from
the right-angled triangle OMP, x2 +y2 = r2, which equation
belongs to the co-ordinates of every point in the circle, and is
called the equation of the circle. Again, EM : MP :: EO : OF
by similar triangles; or a−x : y :: a : b, whence ay+bx = ab,
which is true, by similar reasoning, for every point of the
line EF. But for a point P′ lying in EF produced, we have
EM′ : M′P′ :: EO : OF, or x+ a : y :: a : b, whence ay− bx =
ab, an equation which may be obtained from the former by
changing the sign of x; and it is evident that the direction
of x, in the second case, is opposite to that in the first. Again,
for a point P′′ in FE produced, we have EM′′ : M′′P′′ :: EO :
OF, or x− a : y :: a : b, whence bx− ay = ab, which may be
deduced from the first by changing the sign of y; and it is
evident that y is measured in different directions in the first
and third cases. Hence the equation ay+ bx = ab belongs to



the differential and integral calculus. 37

all parts of the straight line EF, if we agree to consider M′′P′′

as negative, when MP is positive, and OM′ as negative when
OM is positive. Thus, if OE = 4, and OF = 5, and OM = 1,
we can determine MP from the equation ay + bx = ab, or
4y + 5 = 20, which gives y or MP = 33

4
. But if OM′ be 1

in length, we can determine M′P′ either by calling OM′, 1,
and using the equation ay − bx = ab, or calling OM′, −1,
and using the equation ay+ bx = ab, as before. Either gives
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M′P′ = 61
4
. The latter method is preferable, inasmuch as it

enables us to contain, in one investigation, all the different
cases of a problem.

We shall proceed to show that this may be done in the
present instance. We have to determine the co-ordinates of
the point P, from the following equations:

ay + bx = ab,

x2 + y2 = r2.

Substituting in the second the value of y derived from the

first, or b

(
a− x
b

)
, we have

x2 + b2 (a− x)2

a2
= r2,

or
(a2 + b2)x2 − 2ab2x+ a2(b2 − r2) = 0;

and proceeding in a similar manner to find y, we have

(a2 + b2)y2 − 2a2by + b2(a2 − r2) = 0,

which gives

x = a
b2 ±

√
(a2 + b2)r2 − a2b2

a2 + b2
,

y = b
a2 ∓

√
(a2 + b2)r2 − a2b2

a2 + b2
;
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the upper or the lower sign to be taken in both. Hence
when (a2 + b2)r2 > a2b2, that is, when r is greater than the
perpendicular let fall from O upon EF, which perpendicular
is

ab√
a2 + b2

,

there are two points of intersection. When (a2+b2)r2 = a2b2,
the two values of x become equal, and also those of y, and
there is only one point in which the straight line meets the
circle; in this case EF is a tangent to the circle. And if
(a2 + b2)r2 < a2b2, the values of x and y are impossible, and
the straight line does not meet the circle.

Of these three cases, we confine ourselves to the first, in
which there are two points of intersection. The product of
the values of x, with their proper sign, is∗

a2 b
2 − r2

a2 + b2
,

and of y,

b2 a
2 − r2

a2 + b2
,

the signs of which are the same as those of b2 − r2, and
a2 − r2. If b and a be both > r, the two values of x have
the same sign; and it will appear from the figure, that the
lines they represent are measured in the same direction. And

∗See Study of Mathematics (Chicago: The Open Court Pub. Co.),
page 136.
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this whether b and a be positive or negative, since b2 − r2

and a2 − r2 are both positive when a and b are numerically
greater than r, whatever their signs may be. That is, if our
rule, connecting the signs of algebraical and the directions
of geometrical magnitudes, be true, let the directions of OE
and OF be altered in any way, so long as OE and OF are
both greater than OA, the two values of OM will have the
same direction, and also those of MP. This result may easily
be verified from the figure.

Again, the values of x and y having the same sign, that
sign will be (see the equations) the same as that of 2ab2

for x, and of 2a2b for y, or the same as that of a for x and of
b for y. That is, when OE and OF are both greater than OA,
the direction of each set of co-ordinates will be the same as
those of OE and OF, which may also be readily verified from
the figure.

Many other verifications might thus be obtained of the
same principle, viz., that any equation which corresponds
to, and is true for, all points in the angle AOB, may be used
without error for all points lying in the other three angles,
by substituting the proper numerical values, with a negative
sign, for those co-ordinates whose directions are opposite to
those of the co-ordinates in the angle AOB. In this manner,
if four points be taken similarly situated in the four angles,
the numerical values of whose co-ordinates are x = 4 and
y = 6, and if the co-ordinates of that point which lies in the
angle AOB, are called +4 and +6; those of the points lying
in the angle BOC will be −4 and +6; in the angle COD
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−4 and −6; and in the angle DOE +4 and −6.
To return to Fig. 2, if, after having completed the branch

of the curve which lies on the right of BC, and whose equa-
tion is y = x2, we seek that which lies on the left of BC, we
must, by the principles established, substitute −x instead
of x, when the numerical value obtained for (−x)2 will be
that of y, and the sign will show whether y is to be mea-
sured in a similar or contrary direction to that of MP. Since
(−x)2 = x2, the direction and value of y, for a given value
of x, remains the same as on the right of BC; whence the
remaining branch of the curve is similar and equal in all re-
spects to OP, only lying in the angle BOD. And thus, if
y be any function of x, we can obtain a geometrical repre-
sentation of the same, by making y the ordinate, and x the
abscissa of a curve, every ordinate of which shall be the linear
representation of the numerical value of the given function
corresponding to the numerical value of the abscissa, the lin-
ear unit being a given line.

THE DRAWING OF A TANGENT TO A CURVE.

If the point P (Fig. 2), setting out from O, move along
the branch OP, it will continually change the direction of its
motion, never moving, at one point, in the direction which
it had at any previous point. Let the moving point have
reached P, and let OM = x, MP = y. Let x receive the
increment MM′ = dx, in consequence of which y or MP be-
comes M′P′, and receives the increment QP′ = dy; so that
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x+dx and y+dy are the co-ordinates of the moving point P,
when it arrives at P′. Join PP′, which makes, with PQ

or OM, an angle, whose tangent is
P′Q

PQ
or

dy

dx
. Since the

relation y = x2 is true for the co-ordinates of every point in
the curve, we have y + dy = (x + dx)2, the subtraction of
the former equation from which gives dy = 2x dx + (dx)2,

or
dy

dx
= 2x + dx. If the point P′ be now supposed to move

backwards towards P, the chord PP′ will diminish without
limit, and the inclination of PP′ to PQ will also diminish,
but not without limit, since the tangent of the angle P′PQ,

or
dy

dx
, is always greater than the limit 2x. If, therefore,

a line PV be drawn through P, making with PQ an angle
whose tangent is 2x, the chord PP′ will, as P′ approaches
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towards P, or as dx is diminished, continually approximate
towards PV, so that the angle P′PV may be made smaller
than any given angle, by sufficiently diminishing dx. And
the line PV cannot again meet the curve on the side of PP′,
nor can any straight line be drawn between it and the curve,
the proof of which we leave to the student.

Again, if P′ be placed on the other side of P, so that its
co-ordinates are x−dx and y−dy, we have y−dy = (x−dx)2,
which, subtracted from y = x2, gives dy = 2x dx− (dx)2, or
dy

dx
= 2x− dx. By similar reasoning, if the straight line PT

be drawn in continuation of PV, making with PN an angle,
whose tangent is 2x, the chord PP′ will continually approach
to this line, as before.

The line TPV indicates the direction in which the point P
is proceeding, and is called the tangent of the curve at the
point P. If the curve were the interior of a small solid tube,
in which an atom of matter were made to move, being pro-
jected into it at O, and if all the tube above P were removed,
the line PV is in the direction which the atom would take
on emerging at P, and is the line which it would describe.
The angle which the tangent makes with the axis of x in
any curve, may be found by giving x an increment, find-
ing the ratio which the corresponding increment of y bears
to that of x, and determining the limit of that ratio, or
the differential coefficient. This limit is the trigonometrical
tangent∗ of the angle which the geometrical tangent makes

∗There is some confusion between these different uses of the word
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with the axis of x. If y = ϕx, ϕ′x is this trigonometrical
tangent. Thus, if the curve be such that the ordinates are
the Naperian logarithms∗ of the abscissæ, or y = log x, and

y + dy = log x +
1

x
dx − 1

2x2
dx2, etc., the geometrical tan-

gent of any point whose abscissa is x, makes with the axis

an angle whose trigonometrical tangent is
1

x
.

This problem, of drawing a tangent to any curve, was
one, the consideration of which gave rise to the methods of
the Differential Calculus.

RATIONAL EXPLANATION OF THE LANGUAGE OF LEIBNITZ.

As the peculiar language of the theory of infinitely small
quantities is extensively used, especially in works of natural
philosophy, it has appeared right to us to introduce it, in
order to show how the terms which are used may be made
to refer to some natural and rational mode of explanation.
In applying this language to Fig. 2, it would be said that
the curve OP is a polygon consisting of an infinite number
of infinitely small sides, each of which produced is a tan-

tangent. The geometrical tangent is, as already defined, the line be-
tween which and a curve no straight line can be drawn; the trigonomet-
rical tangent has reference to an angle, and is the ratio which, in any
right-angled triangle, the side opposite the angle bears to that which is
adjacent.

∗It may be well to notice that in analysis the Naperian logarithms
are the only ones used; while in practice the common, or Briggs’s log-
arithms, are always preferred.
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gent to the curve; also that if MM′ be taken infinitely small,
the chord and arc PP′ coincide with one of these rectilin-
ear elements; and that an infinitely small arc coincides with
its chord. All which must be interpreted to mean that, the
chord and arc being diminished, approach more and more
nearly to a ratio of equality as to their lengths; and also that
the greatest separation between an arc and its chord may be
made as small a part as we please of the whole chord or arc,
by sufficiently diminishing the chord.

We shall proceed to a strict proof of this; but in the
meanwhile, as a familiar illustration, imagine a small arc
to be cut off from a curve, and its extremities joined by a
chord, thus forming an arch, of which the chord is the base.
From the middle point of the chord, erect a perpendicular
to it, meeting the arc, which will thus represent the height
of the arch. Imagine this figure to be magnified, without
distortion or alteration of its proportions, so that the larger
figure may be, as it is expressed, a true picture of the smaller
one. However the original arc may be diminished, let the
magnified base continue of a given length. This is possible,
since on any line a figure may be constructed similar to a
given figure. If the original curve could be such that the
height of the arch could never be reduced below a certain part
of the chord, say one thousandth, the height of the magnified
arch could never be reduced below one thousandth of the
magnified chord, since the proportions of the two figures are
the same. But if, in the original curve, an arc can be taken
so small that the height of the arch is as small a part as we
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please of the chord, it will follow that in the magnified figure
where the chord is always of one length, the height of the
arch can be made as small as we please, seeing that it can
be made as small a part as we please of a given line. It is
possible in this way to conceive a whole curve so magnified,
that a given arc, however small, shall be represented by an
arc of any given length, however great; and the proposition
amounts to this, that let the dimensions of the magnified
curve be any given number of times the original, however
great, an arch can be taken upon the original curve so small,
that the height of the corresponding arch in the magnified
figure shall be as small as we please.

Let PP′ (Fig. 4) be a part of a curve, whose equation is
y = ϕ(x), that is, PM may always be found by substituting
the numerical value of OM in a given function of x. Let
OM = x receive the increment MM′ = dx, which we may
afterwards suppose as small as we please, but which, in order
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to render the figure more distinct, is here considerable. The
value of PM or y is ϕx, and that of P′M′ or y+dy is ϕ(x+dx).

Draw PV, the tangent at P, which, as has been shown,
makes, with PQ, an angle, whose trigonometrical tangent is

the limit of the ratio
dy

dx
, when x is decreased, or ϕ′x. Draw

the chord PP′, and from any point in it, for example, its
middle point p, draw pv parallel to PM, cutting the curve
in a. The value of P′Q, or dy, or ϕ(x+ dx)− ϕx is

P′Q = ϕ′x dx+ ϕ′′x
(dx)2

2
+ ϕ′′′x

(dx)3

2 · 3
+ etc.

But ϕ′x dx is tan VPQ · PQ = VQ. Hence VQ is the first
term of this series, and P′V the aggregate of the rest. But
it has been shown that dx can be taken so small, that any
one term of the above series shall contain the rest, as often
as we please. Hence PQ can be taken so small that VQ shall
contain VP′ as often as we please, or the ratio of VQ to VP′

shall be as great as we please. And the ratio VQ to PQ
continues finite, being always ϕ′x; hence P′V also decreases
without limit as compared with PQ.

Next, the chord PP′ or
√

(dx)2 + (dy)2, or

dx

√
1 +

(
dy

dx

)2

is to PQ or dx in the ratio of

√
1 +

(
dy

dx

)2

: 1, which,

as PQ is diminished, continually approximates to that of
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√
1 + (ϕ′x)2 : 1, which is the ratio of PV : PQ. Hence the

ratio of PP′ : PV continually approaches to unity, or PQ may
be taken so small that the difference of PP′ and PV shall be
as small a part of either of them as we please.

Finally, the arc PP′ is greater than the chord PP′ and

less than PV + VP′. Hence
arc PP′

chord PP′
lies between 1 and

PV

PP′
+

VP′

PP′
, the former of which two fractions can be brought

as near as we please to unity, and the latter can be made as
small as we please; for since P′V can be made as small a part
of PQ as we please, still more can it be made as small a part
as we please of PP′, which is greater than PQ. Therefore the
arc and chord PP′ may be made to have a ratio as nearly
equal to unity as we please. And because pa is less than pv,
and therefore less than P′V, it follows that pa may be made
as small a part as we please of PQ, and still more of PP′.

In these propositions is contained the rational explana-
tion of the proposition of Leibnitz, that “an infinitely small
arc is equal to, and coincides with, its chord.”

ORDERS OF INFINITY.

Let there be any number of series, arranged in powers
of h, so that the lowest power is first; let them contain none
but whole powers, and let them all be such, that each will
be convergent, on giving to h a sufficiently small value: as
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follows,

Ah+ Bh2 + Ch3 + Dh4 + Eh5 + etc. (1)

B′h2 + C′h3 + D′h4 + E′h5 + etc. (2)

C′′h3 + D′′h4 + E′′h5 + etc. (3)

D′′′h4 + E′′′h5 + etc. (4)

etc. etc.

As h is diminished, all these expressions decrease without
limit; but the first increases with respect to the second, that
is, contains it more times after a decrease of h than it did
before. For the ratio of (1) to (2) is that of A+Bh+Ch2+etc.
to B′h+ C′h2 + etc., the ratio of the two not being changed
by dividing both by h. The first term of the latter ratio
approximates continually to A, as h is diminished, and the
second can be made as small as we please, and therefore
can be contained in the first as often as we please. Hence
the ratio (1) to (2) can be made as great as we please. By
similar reasoning, the ratio (2) to (3), of (3) to (4), etc., can
be made as great as we please. We have, then, a series of
quantities, each of which, by making h sufficiently small, can
be made as small as we please. Nevertheless this decrease
increases the ratio of the first to the second, of the second to
the third, and so on, and the increase is without limit.

Again, if we take (1) and h, the ratio of (1) to h is that
of A + Bh + Ch2 + etc. to 1, which, by a sufficient decrease
of h, may be brought as near as we please to that of A to 1.
But if we take (1) and h2, the ratio of (1) to h2 is that of
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A + Bh + etc. to h, which, by previous reasoning, may be
increased without limit; and the same for any higher power
of h. Hence (1) is said to be comparable to the first power
of h, or of the first order, since this is the only power of h
whose ratio to (1) tends towards a finite limit. By the same
reasoning, the ratio of (2) to h2, which is that of B′+C′h+etc.
to 1, continually approaches that of B′ to 1; but the ratio
(2) to h, which is that of B′h + C′h2 + etc. to 1, diminishes
without limit, as h is decreased, while the ratio of (2) to h2,
or of B′ + C′h + etc. to h, increases without limit. Hence
(2) is said to be comparable to the second power of h, or of
the second order, since this is the only power of h whose ratio
to (2) tends towards a finite limit. In the language of Leibnitz
if h be an infinitely small quantity, (1) is an infinitely small
quantity of the first order, (2) is an infinitely small quantity
of the second order, and so on.

We may also add that the ratio of two series of the same
order continually approximates to the ratio of their lowest
terms. For example, the ratio of Ah3 + Bh4 + etc. to A′h3 +
B′h4 + etc. is that of A + Bh+ etc. to A′+ B′h+ etc., which,
as h is diminished, continually approximates to the ratio of
A to A′, which is also that of Ah3 to A′h3, or the ratio of
the lowest terms. In Fig. 4, PQ or dx being put in place

of h, QP′, or ϕ′x dx+ϕ′′x
(dx)2

2
, etc., is of the first order, as

are PV, and the chord PP′; while P′V, or ϕ′′x
(dx)2

2
+ etc.,

is of the second order.
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The converse proposition is readily shown, that if the
ratio of two series arranged in powers of h continually ap-
proaches to some finite limit as h is diminished, the two series
are of the same order, or the exponent of the lowest power
of h is the same in both. Let Aha and Bhb be the lowest
powers of h, whose ratio, as has just been shown, continu-
ally approximates to the actual ratio of the two series, as
h is diminished. The hypothesis is that the ratio of the two
series, and therefore that of Aha to Bhb, has a finite limit.
This cannot be if a > b, for then the ratio of Aha to Bhb is
that of Aha−b to B, which diminishes without limit; neither
can it be when a < b, for then the same ratio is that of A
to Bhb−a, which increases without limit; hence a must be
equal to b.

We leave it to the student to prove strictly a proposition
assumed in the preceding; viz., that if the ratio of P to Q has
unity for its limit, when h is diminished, the limiting ratio
of P to R will be the same as the limiting ratio of Q to R.
We proceed further to illustrate the Differential Calculus as
applied to Geometry.

A GEOMETRICAL ILLUSTRATION.

Let OC and OD (Fig. 5) be two axes at right angles to
one another, and let a line AB of given length be placed with
one extremity in each axis. Let this line move from its first
position into that of A′B′ on one side, and afterwards into
that of A′′B′′ on the other side, always preserving its first
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length. The motion of a ladder, one end of which is against
a wall, and the other on the ground, is an instance.

Let A′B′ and A′′B′′ intersect AB in P′ and P′′. If
A′′B′′ were gradually moved from its present position into
that of A′B′, the point P′′ would also move gradually from

its present position into that of P′, passing, in its course,
through every point in the line P′P′′. But here it is necessary
to remark that AB is itself one of the positions intermediate
between A′B′ and A′′B′′, and when two lines are, by the mo-
tion of one of them, brought into one and the same straight
line, they intersect one another (if this phrase can be here
applied at all) in every point, and all idea of one distinct
point of intersection is lost. Nevertheless P′′ describes one
part of P′′P′ before A′′B′′ has come into the position AB,
and the rest afterwards, when it is between AB and A′B′.

Let P be the point of separation; then every point of P′P′′,
except P, is a real point of intersection of AB, with one of
the positions of A′′B′′, and when A′′B′′ has moved very near
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to AB, the point P′′ will be very near to P; and there is
no point so near to P, that it may not be made the inter-
section of A′′B′′ and AB, by bringing the former sufficiently
near to the latter. This point P is, therefore, the limit of
the intersections of A′′B′′ and AB, and cannot be found by
the ordinary application of algebra to geometry, but may be
made the subject of an inquiry similar to those which have

hitherto occupied us, in the following manner:
Let OA = a, OB = b, AB = A′B′ = A′′B′′ = l. Let

AA′ = da, BB′ = db, whence OA′ = a + da, OB′ = b − db.
We have then a2 + b2 = l2, and (a + da)2 + (b − db)2 = l2;
subtracting the former of which from the development of the
latter, we have

2a da+ (da)2 − 2b db+ (db)2 = 0,

or
db

da
=

2a+ da

2b− db
. (1)
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As A′B′ moves towards AB, da and db are diminished with-
out limit, a and b remaining the same; hence the limit of the

ratio
db

da
is

2a

2b
or

a

b
.

Let the co-ordinates∗ of P′ be OM′ = x and M′P = y.
Then (page 36) the co-ordinates of any point in AB have the
equation

ay + bx = ab. (2)

The point P′ is in this line, and also in the one which cuts
off a+ da and b− db from the axes, whence

(a+ da)y + (b− db)x = (a+ da)(b− db); (3)

subtract (2) from (3) after developing the latter, which gives

y da− x db = b da− a db− da db. (4)

If we now suppose A′B′ to move towards AB, equation (4)
gives no result, since each of its terms diminishes without
limit. If, however, we divide (4) by da, and substitute in the

result the value of
db

da
obtained from (1) we have

y − x 2a+ da

2b− db
= b− a 2a+ da

2b− db
− db. (5)

From this and (2) we might deduce the values of y and x, for
the point P′, as the figure actually stands. Then by diminish-
ing db and da without limit, and observing the limit towards

∗The lines OM′ and M′P′ are omitted, to avoid crowding the figure.
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which x and y tend, we might deduce the co-ordinates of P,
the limit of the intersections.

The same result may be more simply obtained, by dimin-
ishing da and db in equation (5), before obtaining the values
of y and x. This gives

y − a

b
x = b− a2

b
or by − ax = b2 − a2. (6)

From (6) and (2) we find (Fig. 6)

x = OM =
a3

a2 + b2
=
a3

l2
and y = MP =

b3

a2 + b2
=
b3

l2
.

This limit of the intersections is different for every differ-
ent position of the line AB, but may be determined, in every
case, by the following simple construction.

Since (Fig. 6) BP : PN, or OM :: BA : AO, we have

BP = OM
BA

AO
=
a3

l2
l

a
=
a2

l
; and, similarly, PA =

b2

l
. Let

OQ be drawn perpendicular to BA; then since OA is a mean

proportional between AQ and AB, we have AQ =
a2

l
, and

similarly BQ =
b2

l
. Hence BP = AQ and AP = BQ, or the

point P is as far from either extremity of AB as Q is from
the other.
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THE SAME PROBLEM SOLVED BY THE PRINCIPLES OF
LEIBNITZ.

We proceed to solve the same problem, using the princi-
ples of Leibnitz, that is, supposing magnitudes can be taken
so small, that those proportions may be regarded as abso-
lutely correct, which are not so in reality, but which only ap-
proach more nearly to the truth, the smaller the magnitudes
are taken. The inaccuracy of this supposition has been al-
ready pointed out; yet it must be confessed that this once got
over, the results are deduced with a degree of simplicity and
consequent clearness, not to be found in any other method.
The following cannot be regarded as a demonstration, except
by a mind so accustomed to the subject that it can read-
ily convert the various inaccuracies into their corresponding
truths, and see, at one glance, how far any proposition will
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affect the final result. The beginner will be struck with the
extraordinary assertions which follow, given in their most
naked form, without any attempt at a less startling mode of
expression.

Let A′B′ (Fig. 7) be a position of AB infinitely near to it;
that is, let A′PA be an infinitely small angle. With the cen-
tre P, and the radii PA′ and PB, describe the infinitely small
arcs A′a, Bb. An infinitely small arc of a circle is a straight
line perpendicular to its radius; hence A′aA and BbB′ are
right-angled triangles, the first similar to BOA, the two hav-
ing the angle A in common, and the second similar to B′OA′.
Again, since the angles of BOA, which are finite, only dif-
fer from those of B′OA′ by the infinitely small angle A′PA,
they may be regarded as equal; whence A′aA and B′bB are
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similar to BOA, and to one another. Also P is the point
of which we are in search, or infinitely near to it; and since
BA = B′A′, of which BP = bP and aP = A′P, the remain-
ders B′b and Aa are equal. Moreover, Bb and A′a being arcs
of circles subtending equal angles, are in the proportion of
the radii BP and PA′.

Hence we have the following proportions:

Aa : A′a :: OA : OB :: a : b

Bb : B′b :: OA : OB :: a : b.

The composition of which gives, since Aa = B′b:

Bb : A′a :: a2 : b2.

Also
Bb : A′a :: BP : Pa,

whence
BP : Pa :: a2 : b2,

and
BP + Pa : Pa :: a2 + b2 : b2.

But Pa only differs from PA by the infinitely small quan-
tity Aa, and BP + PA = l, and a2 + b2 = l2; whence

l : PA :: l2 : b2, or PA =
b2

l
,

which is the result already obtained.
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In this reasoning we observe four independent errors,
from which others follow: (1) that Bb and A′a are straight
lines at right-angles to Pa; (2) that BOA, B′OA′ are similar
triangles; (3) that P is really the point of which we are in
search; (4) that PA and Pa are equal. But at the same time
we observe that every one of these assumptions approaches
the truth, as we diminish the angle A′PA, so that there is no
magnitude, line or angle, so small that the linear or angular
errors, arising from the above-mentioned suppositions, may
not be made smaller.

We now proceed to put the same demonstration in a
stricter form, so as to neglect no quantity during the pro-
cess. This should always be done by the beginner, until he
is so far master of the subject as to be able to annex to the
inaccurate terms the ideas necessary for their rational ex-
planation. To the former figure add Bβ and Aα, the real
perpendiculars, with which the arcs have been confounded.
Let ∠A′PA = dθ, PA = p, Aa = dp, BP = q, B′b = dq; and
OA = a, OB = b, and AB = l. Then∗ A′a = (p − dp) dθ,
Bb = q dθ, and the triangles A′Aα and B′Bβ are similar to
BOA and B′OA′. The perpendiculars A′α and Bβ are equal
to PA′ sin dθ and PB sin dθ, or (p − dp) sin dθ and q sin dθ.
Let aα = µ and bβ = ν. These (p. 9) will diminish without
limit as compared with A′α and Bβ; and since the ratios of
A′α to αA and Bβ to βB′ continue finite (these being sides of

∗For the unit employed in measuring an angle, see Study of Math-
ematics (Chicago, 1898), pages 273–277.
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triangles similar to AOB and A′OB′), aα and bβ will dimin-
ish indefinitely with respect to αA and βB′. Hence the ratio
Aα to βB′ or dp+ µ to dq + ν will continually approximate
to that of dp to dq, or a ratio of equality.

The exact proportions, to which those in the last page
are approximations, are as follows:

dp+ µ : (p− dp) sin dθ :: a : b,

q sin dθ : dq + ν :: a− da : b+ db;

by composition of which, recollecting that dp = dq (which
is rigorously true) and dividing the two first terms of the
resulting proportion by dp, we have

q

(
1 +

µ

dp

)
: (p− dp)

(
1 +

ν

dp

)
:: a(a− da) : b(b+ db).
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If dθ be diminished without limit, the quantities da, db,

and dp, and also the ratios
µ

dp
and

ν

dp
, as above-mentioned,

are diminished without limit, so that the limit of the propor-
tion just obtained, or the proportion which gives the limits
of the lines into which P divides AB, is

q : p :: a2 : b2,

hence

q + p = l : p :: a2 + b2 = l2 : b2,

the same as before.

AN ILLUSTRATION FROM DYNAMICS.

We proceed to apply the preceding principles to dynam-
ics, or the theory of motion.

Suppose a point moving along a straight line uniformly;
that is, if the whole length described be divided into any
number of equal parts, however great, each of those parts
is described in the same time. Thus, whatever length is
described in the first second of time, or in any part of the
first second, the same is described in any other second, or
in the same part of any other second. The number of units
of length described in a unit of time is called the velocity ;
thus a velocity of 3.01 feet in a second means that the point
describes three feet and one hundredth in each second, and a
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proportional part of the same in any part of a second. Hence,
if v be the velocity, and t the units of time elapsed from the
beginning of the motion, vt is the length described; and if any
length described be known, the velocity can be determined
by dividing that length by the time of describing it. Thus,
a point which moves uniformly through 3 feet in 11

2
second,

moves with a velocity of 3÷ 11
2
, or 2 feet per second.

Let the point not move uniformly; that is, let different
parts of the line, having the same length, be described in
different times; at the same time let the motion be continu-
ous, that is, not suddenly increased or decreased, as it would
be if the point were composed of some hard matter, and re-
ceived a blow while it was moving. This will be the case
if its motion be represented by some algebraical function of
the time, or if, t being the number of units of time during
which the point has moved, the number of units of length
described can be represented by ϕt. This, for example, we
will suppose to be t+ t2, the unit of time being one second,
and the unit of length one inch; so that 1

2
+ 1

4
, or 3

4
of an inch,

is described in the first half second; 1 + 1, or two inches, in
the first second; 2 + 4, or six inches, in the first two seconds,
and so on.

Here we have no longer an evident measure of the veloc-
ity of the point; we can only say that it obviously increases
from the beginning of the motion to the end, and is different
at every two different points. Let the time t elapse, during
which the point will describe the distance t + t2; let a fur-
ther time dt elapse, during which the point will increase its
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distance to t + dt + (t + dt)2, which, diminished by t + t2,
gives dt + 2t dt + (dt)2 for the length described during the
increment of time dt. This varies with the value of t; thus,
in the interval dt after the first second, the length described
is 3 dt+dt2; after the second second, it is 5 dt+ (dt)2, and so
on. Nor can we, as in the case of uniform motion, divide the
length described, by the time, and call the result the velocity
with which that length is described; for no length, however
small, is here uniformly described. If we were to divide a
length by the time in which it is described, and also its first
and second halves by the times in which they are respectively
described, the three results would be all different from one
another.

Here a difficulty arises, similar to that already noticed,
when a point moves along a curve; in which, as we have seen,
it is improper to say that it is moving in any one direction
through an arc, however small. Nevertheless a straight line
was found at every point, which did, more nearly than any
other straight line, represent the direction of the motion. So,
in this case, though it is incorrect to say that there is any
uniform velocity with which the point continues to move for
any portion of time, however small, we can, at the end of
every time, assign a uniform velocity, which shall represent,
more nearly than any other, the rate at which the point is
moving. If we say that, at the end of the time t, the point
is moving with a velocity v, we must not now say that the
length v dt is described in the succeeding interval of time dt;
but we mean that dt may be taken so small, that v dt shall
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bear to the distance actually described a ratio as near to
equality as we please.

Let the point have moved during the time t, after which
let successive intervals of time elapse, each equal to dt. At
the end of the times, t, t + dt, t + 2 dt, t + 3 dt, etc., the
whole lengths described will be t + t2, t + dt + (t + dt)2,
t+2 dt+(t+2 dt)2, t+3 dt+(t+3 dt)2, etc.; the differences of
which, or dt+2t dt+(dt)2, dt+2t dt+3(dt)2, dt+2t dt+5(dt)2,
etc., are the lengths described in the first, second, third,
etc., intervals dt. These are not equal to one another, as
would be the case if the velocity were uniform; but by making
dt sufficiently small, their ratio may be brought as near to
equality as we please, since the terms (dt)2, 3(dt)2, etc., by
which they all differ from the common part (1 + 2t) dt, may
be made as small as we please, in comparison of this common
part. If we divide the above-mentioned lengths by dt, which
does not alter their ratio, they become 1+2t+dt, 1+2t+3 dt,
1+2t+5 dt, etc., which may be brought as near as we please
to equality, by sufficient diminution of dt. Hence 1 + 2t is
said to be the velocity of the point after the time t; and if we
take a succession of equal intervals of time, each equal to dt,
and sufficiently small, the lengths described in those intervals
will bear to (1 + 2t) dt, the length which would be described
in the same interval with the uniform velocity 1 + 2t, a ratio
as near to equality as we please. And observe, that if ϕt is
t+ t2, ϕ′t is 1 + 2t, or the coefficient of h in (t+h) + (t+h)2.

In the same way it may be shown, that if the point moves
so that ϕt always represents the length described in the
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time t, the differential coefficient of ϕt, or ϕ′t, is the velocity
with which the point is moving at the end of the time t. For
the time t having elapsed, the whole lengths described at the
end of the times t and t + dt are ϕt and ϕ(t + dt); whence
the length described during the time dt is

ϕ(t+ dt)− ϕt, or ϕ′t dt+ ϕ′′t
(dt)2

2
+ etc.

Similarly, the length described in the next interval dt is

ϕ(t+ 2 dt)− ϕ(t+ dt); or,

ϕt+ ϕ′t 2 dt+ ϕ′′t
(2 dt)2

2
+ etc.

−(ϕt+ ϕ′t dt+ ϕ′′t
(dt)2

2
+ etc.),

which is

ϕ′t dt+ 3ϕ′′t
(dt)2

2
+ etc.;

the length described in the third interval dt is ϕ′t dt +

5ϕ′′t
(dt)2

2
+ etc., etc.

Now, it has been shown for each of these, that the first
term can be made to contain the aggregate of all the rest as
often as we please, by making dt sufficiently small; this first
term is ϕ′t dt in all, or the length which would be described
in the time dt by the velocity ϕ′t continued uniformly: it is
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possible, therefore, to take dt so small, that the lengths ac-
tually described in a succession of intervals equal to dt, shall
be as nearly as we please in a ratio of equality with those de-
scribed in the same intervals of time by the velocity ϕ′t. For
example, it is observed in bodies which fall to the earth from
a height above it, when the resistance of the air is removed,
that if the time be taken in seconds, and the distance in feet,
the number of feet fallen through in t seconds is always at2,
where a = 16 1

12
very nearly; what is the velocity of a body

which has fallen in vacuo for four seconds? Here ϕt being at2,
we find, by substituting t + h, or t + dt, instead of t, that
ϕ′t is 2at, or 2× 16 1

12
× t; which, at the end of four seconds,

is 321
6
× 4, or 1282

3
feet. That is, at the end of four seconds

a falling body moves at the rate of 1282
3

feet per second. By
which we do not mean that it continues to move with this
velocity for any appreciable time, since the rate is always
varying; but that the length described in the interval dt af-
ter the fourth second, may be made as nearly as we please
in a ratio of equality with 1282

3
×dt, by taking dt sufficiently

small. This velocity 2at is said to be uniformly accelerated;
since in each second the same velocity 2a is gained. And

since, when x is the space described, ϕ′t is the limit of
dx

dt
,

the velocity is also this limit; that is, when a point does not
move uniformly, the velocity is not represented by any incre-
ment of length divided by its increment of time, but by the
limit to which that ratio continually tends, as the increment
of time is diminished.
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SIMPLE HARMONIC MOTION.

We now propose the following problem: A point moves
uniformly round a circle; with what velocities do the ab-
scissa and ordinate increase or decrease, at any given point?
(Fig. 8.)

Let the point P, setting out from A, describe the arc AP,
etc., with the uniform velocity of a inches per second. Let
OA = r, ∠A0P = θ, ∠POP′ = dθ, 0M = x, MP = y,
MM′ = dx, QP′ = dy.

From the first principles of trigonometry

x = r cos θ,

x− dx = r cos(θ + dθ) = r cos θ cos dθ − r sin θ sin dθ,

y = r sin θ,

y + dy = r sin(θ + dθ) = r sin θ cos dθ + r cos θ sin dθ.

Subtracting the second from the first, and the third from the
fourth, we have

dx = r sin θ sin dθ + r cos θ(1− cos dθ), (1)

dy = r cos θ sin dθ + r sin θ(1− cos dθ). (2)

But if dθ be taken sufficiently small, sin dθ, and dθ, may
be made as nearly in a ratio of equality as we please, and
1−cos dθ may be made as small a part as we please, either of
dθ or sin dθ. These follow from Fig. 1, in which it was shown
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that BM and the arc BA, or (if OA = r and AOB = dθ),
r sin dθ and r dθ, may be brought as near to a ratio of equality
as we please, which is therefore true of sin dθ and dθ. Again,

it was shown that AM, or r−r cos dθ, can be made as small a
part as we please, either of BM or the arc BA, that is, either
of r sin dθ, or r dθ; the same is therefore true of 1−cos dθ, and
either sin dθ or dθ. Hence, if we write equations (1) and (2)
thus,

dx = r sin θ dθ (1) dy = r cos θ dθ (2),

we have equations, which, though never exactly true, are
such that by making dθ sufficiently small, the errors may be
made as small parts of dθ as we please. Again, since the
arc AP is uniformly described, so also is the angle POA;

and since an arc a is described in one second, the angle
a

r
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is described in the same time; this is, therefore, the angular
velocity.∗ If we divide equations (1) and (2) by dt, we have

dx

dt
= r sin θ

dθ

dt

dy

dt
= r cos θ

dθ

dt
;

these become more nearly true as dt and dθ are diminished,

so that if for
dx

dt
, etc., the limits of these ratios be substituted,

the equations will become rigorously true. But these limits

are the velocities of x, y, and θ, the last of which is also
a

r
;

hence

velocity of x = r sin θ × a

r
= a sin θ,

velocity of y = r cos θ × a

r
= a cos θ;

that is, the point M moves towards O with a variable velocity,
which is always such a part of the velocity of P, as sin θ is
of unity, or as PM is of OB; and the distance PM increases,
or the point N moves from O, with a velocity which is such

∗The same considerations of velocity which have been applied to
the motion of a point along a line may also be applied to the motion of
a line round a point. If the angle so described be always increased by
equal angles in equal portions of time, the angular velocity is said to
be uniform, and is measured by the number of angular units described
in a unit of time. By similar reasoning to that already described, if the
velocity with which the angle increases be not uniform, so that at the
end of the time t the angle described is θ = ϕt, the angular velocity

is ϕ′t, or the limit of the ratio
dθ

dt
.
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a part of the velocity of P as cos θ is of unity, or as OM is
of OA. [The motion of the point M or the point N is called
in physics a simple harmonic motion.]

In the language of Leibnitz, the results of the two forego-
ing sections would be expressed thus: If a point move, but
not uniformly, it may still be considered as moving uniformly
for any infinitely small time; and the velocity with which it
moves is the infinitely small space thus described, divided by
the infinitely small time.

THE METHOD OF FLUXIONS.

The foregoing process contains the method employed by
Newton, known by the name of the Method of Fluxions. If we
suppose y to be any function of x, and that x increases with a
given velocity, y will also increase or decrease with a velocity
depending: (1) upon the velocity of x; (2) upon the function
which y is of x. These velocities Newton called the fluxions of
y and x, and denoted them by ẏ and ẋ. Thus, if y = x2, and
if in the interval of time dt, x becomes x+dx, and y becomes
y + dy, we have y + dy = (x+ dx)2, and dy = 2x dx+ (dx)2,

or
dy

dt
= 2x

dx

dt
+
dx

dt
dx. If we diminish dt, the term

dx

dt
dx

will diminish without limit, since one factor continually ap-
proaches to a given quantity, viz., the velocity of x, and the
other diminishes without limit. Hence we obtain the velocity
of y = 2x × the velocity of x, or ẏ = 2x ẋ, which is used in
the method of fluxions instead of dy = 2x dx considered in
the manner already described. The processes are the same
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in both methods, since the ratio of the velocities is the lim-
iting ratio of the corresponding increments, or, according to
Leibnitz, the ratio of the infinitely small increments. We
shall hereafter notice the common objection to the Method
of Fluxions.

ACCELERATED MOTION.

When the velocity of a material point is suddenly in-
creased, an impulse is said to be given to it, and the
magnitude of the impulse or impulsive force is in proportion
to the velocity created by it. Thus, an impulse which changes
the velocity from 50 to 70 feet per second, is twice as great as
one which changes it from 50 to 60 feet. When the velocity
of the point is altered, not suddenly but continuously, so
that before the velocity can change from 50 to 70 feet, it
goes through all possible intermediate velocities, the point is
said to be acted on by an accelerating force. Force is a name
given to that which causes a change in the velocity of a body.
It is said to act uniformly, when the velocity acquired by the
point in any one interval of time is the same as that acquired
in any other interval of equal duration. It is plain that we
cannot, by supposing any succession of impulses, however
small, and however quickly repeated, arrive at a uniformly
accelerated motion; because the length described between
any two impulses will be uniformly described, which is in-
consistent with the idea of continually accelerated velocity.
Nevertheless, by diminishing the magnitude of the impulses,
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and increasing their number, we may come as near as we
please to such a continued motion, in the same way as, by
diminishing the magnitudes of the sides of a polygon, and
increasing their number, we may approximate as near as we
please to a continuous curve.

Let a point, setting out from a state of rest, increase its
velocity uniformly, so that in the time t, it may acquire the
velocity v—what length will have been described during that
time t? Let the time t and the velocity v be both divided
into n equal parts, each of which is t′ and v′, so that nt′ = t,
and nv′ = v. Let the velocity v′ be communicated to the
point at rest; after an interval of t′ let another velocity v′ be
communicated, so that during the second interval t′ the point
has a velocity 2v′; during the third interval let the point have
the velocity 3v′, and so on; so that in the last or nth interval
the point has the velocity nv′. The space described in the
first interval is, therefore, v′t′; in the second, 2v′t′; in the
third 3v′t′; and so on, till in the nth interval it is nv′t′. The
whole space described is, therefore,

v′t′ + 2v′t′ + 3v′t′ + · · ·+ (n− 1)v′t′ + nv′t′,

or

[1+2+3+· · ·+(n−1)+n]v′t′ = n·(n+ 1)

2
v′t′ =

n2v′t′ + nv′t′

2
.

In this substitute v for nv′, and t for nt′, which gives for the
space described 1

2
v(t + t′). The smaller we suppose t′, the
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more nearly will this approach to 1
2
vt. But the smaller we

suppose t′, the greater must be n, the number of parts into
which t is divided; and the more nearly do we render the
motion of the point uniformly accelerated. Hence the limit
to which we approximate by diminishing t′ without limit, is
the length described in the time t by a uniformly accelerated
velocity, which shall increase from 0 to v in that time. This
is 1

2
vt, or half the length which would have been described

by the velocity v continued uniformly from the beginning of
the motion.

It is usual to measure the accelerating force by the ve-
locity acquired in one second. Let this be g; then since the
same velocity is acquired in every other second, the veloc-
ity acquired in t seconds will be gt, or v = gt. Hence the
space described is 1

2
gt × t, or 1

2
gt2. If the point, instead of

being at rest at the beginning of the acceleration, had had
the velocity a, the lengths described in the successive inter-
vals would have been at′ + v′t′, at′ + 2v′t′, etc.; so that to
the space described by the accelerated motion would have
been added nat′, or at, and the whole length would have
been at + 1

2
gt2. By similar reasoning, had the force been a

uniformly retarding force, that is, one which diminished the
initial velocity a equally in equal times, the length described
in the time t would have been at− 1

2
gt2.

Now let the point move in such a way, that the veloc-
ity is accelerated or retarded, but not uniformly; that is, in
different times of equal duration, let different velocities be
lost or gained. For example, let the point, setting out from a
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state of rest, move in such a way that the number of inches

passed over in t seconds is always t3. Here ϕt = t3, and the
velocity acquired by the body at the end of the time t, is
the coefficient of dt in (t + dt)3, or 3t2 inches per second.
Let the point (Fig. 9) be at A at the end of the time t;
and let AB, BC, CD, etc., be lengths described in succes-
sive equal intervals of time, each of which is dt. Then the
velocities at A, B, C, etc., are 3t2, 3(t + dt)2, 3(t + 2 dt)3,
etc., and the lengths AB, BC, CD, etc., are (t + dt)3 − t3,
(t+ 2 dt)2 − (t+ dt)3, (t+ 3 dt)3 − (t+ 2 dt)3, etc.

VELOCITY AT

A 3t2,

B 3t2 + 6t dt+ 3(dt)2,

C 3t2 + 12t dt+ 12(dt)2,
LENGTH OF

AB 3t2 dt+ 3t(dt)2 + (dt)3,

BC 3t2 dt+ 9t(dt)2 + 7(dt)3,

CD 3t2 dt+ 15t(dt)2 + 19(dt)3.

If we could, without error, reject the terms contain-
ing (dt)2 in the velocities, and those containing (dt)3 in the
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lengths, we should then reduce the motion of the point to
the case already considered, the initial velocity being 3t2,
and the accelerating force 6t. For we have already shown
that a being the initial velocity, and g the accelerating
force, the space described in the time t is at + 1

2
gt2. Hence,

3t2 being the initial velocity, and 6t the accelerating force,
the space in the time dt is 3t2 dt+ 3t(dt)2, which is the same
as AB after (dt)3 is rejected. The velocity acquired is gt,
and the whole velocity is, therefore, a + gt, or making the
same substitutions 3t2 + 6t dt. This is the velocity at B,
after the term 3(dt)2 is rejected. Again, the velocity being
3t2+6t dt, and the force 6t, the space described in the time dt
is (3t2 + 6t dt) dt + 3t(dt)2, or 3t2 dt + 9t(dt)2. This is what
the space BC becomes after 7(dt)3 is rejected. The velocity
acquired is 6t dt; and the whole velocity is 3t2 + 6t dt+ 6t dt,
or 3t2 + 12t dt; which is the velocity at C after 12(dt)2 is
rejected.

But as the terms involving (dt)2 in the velocities, etc.,
cannot be rejected without error, the above supposition of
a uniform force cannot be made. Nevertheless, as we may
take dt so small that these terms shall be as small parts as
we please of those which precede, the results of the erroneous
and correct suppositions may be brought as near to equality
as we please; hence we conclude, that though there is no
force, which, continued uniformly, would preserve the motion
of the point A, so that OA should always be t2 in inches, yet
an interval of time may be taken so small, that the length
actually described by A in that time, and the one which
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would be described if the force 6t were continued uniformly,
shall have a ratio as near to equality as we please. Hence,
on a principle similar to that by which we called 3t3 the
velocity at A, though, in truth, no space, however small, is
described with that velocity, we call 6t the accelerating force
at A. And it must be observed that 6t is the differential
coefficient of 3t2, or the coefficient of dt, in the development
of 3(t+ dt)2.

Generally, let the point move so that the length described
in any time t is ϕt. Hence the length described at the end
of the time t + dt is ϕ(t + dt), and that described in the
interval dt is ϕ(t+ dt)− ϕt, or

ϕ′t dt+ ϕ′′t
(dt)2

2
+ ϕ′′′t

(dt)3

2 · 3
+ etc.,

in which dt may be taken so small, that either of the first
two terms shall contain the aggregate of all the rest, as often
as we please. These two first terms are ϕ′t dt + 1

2
ϕ′′t(dt)2,

and represent the length described during dt, with a uniform
velocity ϕ′t, and an accelerating force ϕ′′t. The interval dt
may then generally be taken so small, that this supposition
shall represent the motion during that interval as nearly as
we please.

LIMITING RATIOS OF MAGNITUDES THAT INCREASE
WITHOUT LIMIT.

We have hitherto considered the limiting ratio of quan-
tities only as to their state of decrease: we now proceed to
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some cases in which the limiting ratio of different magnitudes
which increase without limit is investigated.

It is easy to show that the increase of two magnitudes may
cause a decrease of their ratio; so that, as the two increase
without limit, their ratio may diminish without limit. The
limit of any ratio may be found by rejecting any terms or
aggregate of terms (Q) which are connected with another
term (P) by the sign of addition or subtraction, provided
that by increasing x, Q may be made as small a part of P

as we please. For example, to find the limit of
x2 + 2x+ 3

2x2 + 5x
,

when x is increased without limit. By increasing x we can,
as will be shown immediately, cause 2x + 3 and 5x to be
contained in x2 and 2x2, as often as we please; rejecting

these terms, we have
x2

2x2
, or 1

2
, for the limit.

The demonstration is as follows: Divide both numerator

and denominator by x2, which gives 1 +
2

x
+

3

x2
, and 2 +

5

x
,

for the numerator and denominator of a fraction equal in
value to the one proposed. These can be brought as near
as we please to 1 and 2 by making x sufficiently great, or
1

x
sufficiently small; and, consequently, their ratio can be

brought as near as we please to
1

2
.

We will now prove the following: That in any series of
decreasing powers of x, any one term will, if x be taken
sufficiently great, contain the aggregate of all which follow,
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as many times as we please. Take, for example,

axm + bxm−1 + cxm−2 + · · ·+ px+ q +
r

x
+

s

x2
+ etc.

The ratio of the several terms will not be altered if we divide
the whole by xm, which gives

a+
b

x
+

c

x2
+ · · ·+ p

xm−1
+

q

xm
+

r

xm+1
+

s

xm+2
+ etc.

It has been shown that by taking
1

x
sufficiently small, that

is, by taking x sufficiently great, any term of this series may
be made to contain the aggregate of the succeeding terms, as
often as we please; which relation is not altered if we multiply
every term by xm, and so restore the original series.

It follows from this, that
(x+ 1)m

xm
has unity for its limit

when x is increased without limit. For (x + 1)m is xm +
mxm−1 +etc., in which xm can be made as great as we please

with respect to the rest of the series. Hence
(x+ 1)m

xm
= 1 +

mxm−1 + etc.

xm
, the numerator of which last fraction decreases

indefinitely as compared with its denominator.
In a similar way it may be shown that the limit of

xm

(x+ 1)m+1 − xm+1
, when x is increased, is

1

m+ 1
. For since

(x + 1)m+1 = xm+1 + (m + 1)xm + 1
2
(m + 1)mxm−1 + etc.,

this fraction is
xm

(m+ 1)xm + 1
2
(m+ 1)mxm−1 + etc.
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in which the first term of the denominator may be made
to contain all the rest as often as we please; that is, if the

fraction be written thus,
xm

(m+ 1)xm + A
, A can be made as

small a part of (m+ 1)xm as we please. Hence this fraction
can, by a sufficient increase of x, be brought as near as we

please to
xm

(m+ 1)xm
, or

1

m+ 1
.

A similar proposition may be shown of the fraction
(x+ b)m

(x+ a)m+1 − xm+1
, which may be immediately reduced to

the form
xm + B

(m+ 1)axm + A
, where x may be taken so great

that xm shall contain A and B any number of times.
We will now consider the sums of x terms of the following

series, each of which may evidently be made as great as we
please, by taking a sufficient number of its terms,

1 + 2 + 3 + 4 + . . .+ x− 1 + x, (1)

12 + 22 + 32 + 42 + . . .+ (x− 1)2 + x2, (2)

13 + 23 + 33 + 43 + . . .+ (x− 1)3 + x3, (3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1m + 2m + 3m + 4m + . . .+ (x− 1)m + xm. (m)

We propose to inquire what is the limiting ratio of any one of
these series to the last term of the succeeding one; that is, to
what do the ratios of (1+2+· · ·+x) to x2, of (12+22+· · ·+x2)
to x3, etc., approach, when x is increased without limit.
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To give an idea of the method of increase of these series,
we shall first show that x may be taken so great, that the last
term of each series shall be as small a part as we please of
the sum of all those which precede. To simplify the symbols,
let us take the third series 13 + 23 + · · · + x3, in which we
are to show that x3 may be made less than any given part,
say one thousandth, of the sum of those which precede, or
of 13 + 23 + · · ·+ (x− 1)3.

First, x may be taken so great that x3 and (x − 1000)3

shall have a ratio as near to equality as we please. For
the ratio of these quantities being the same as that of 1

to

(
1− 1000

x

)3

, and
1000

x
being as small as we please if x

may be as great as we please, it follows that 1− 1000

x
, and,

consequently,

(
1− 1000

x

)3

may be made as near to unity as

we please, or the ratio of 1 to

(
1− 1000

x

)3

, may be brought

as near as we please to that of 1 to 1, or a ratio of equality.
But this ratio is that of x3 to (x − 1000)3. Similarly the
ratios of x3 to (x− 999)3, of x3 to (x− 998)3, etc., up to the
ratio of x3 to (x− 1)3 may be made as near as we please to
ratios of equality; there being one thousand in all. If, then,
(x−1)3 = αx3, (x−2)3 = βx3, etc., up to (x−1000)3 = ωx3,
x can be taken so great that each of the fractions α, β, etc.,
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shall be as near to unity, or α+ β + · · ·+ω as near∗ to 1000
as we please. Hence

1

α + β + · · ·+ ω
,

which is
x3

αx3 + βx3 + · · ·+ ωx3
,

or
x3

(x− 1)3 + (x− 2)2 + · · ·+ (x− 1000)3
,

can be brought as near to
1

1000
as we please; and by the

same reasoning, the fraction

x3

(x− 1)3 + · · ·+ (x− 1001)3

may be brought as near to
1

1001
as we please; that is, may

be made less than
1

1000
. Still more then may

x3

(x− 1)3 + · · ·+ (x− 1001)3 + · · ·+ 23 + 13

∗Observe that this conclusion depends upon the number of quan-
tities α, β, etc., being determinate. If there be ten quantities, each of
which can be brought as near to unity as we please, their sum can be
brought as near to 10 as we please; for, take any fraction A, and make
each of those quantities differ from unity by less than the tenth part
of A, then will the sum differ from 10 by less than A. This argument
fails, if the number of quantities be unlimited.
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be made less than
1

1000
, or x3 may be less than the thou-

sandth part of the sum of all the preceding terms.
In the same way it may be shown that a term may be

taken in any one of the series, which shall be less than any
given part of the sum of all the preceding terms. It is also
true that the difference of any two succeeding terms may be
made as small a part of either as we please. For (x+1)m−xm,
when developed, will only contain exponents less than m,

being mxm−1 + m
m− 1

2
xm−2 + etc.; and we have shown

(page 77) that the sum of such a series may be made less
than any given part of xm. It is also evident that, whatever
number of terms we may sum, if a sufficient number of suc-
ceeding terms be taken, the sum of the latter shall exceed
that of the former in any ratio we please.

Let there be a series of fractions

a

pa+ b
,

a′

pa′ + b′
,

a′′

pa′′ + b′′
, etc.,

in which a, a′, etc., b, b′, etc., increase without limit; but in
which the ratio of b to a, b′ to a′, etc., diminishes without
limit. If it be allowable to begin by supposing b as small as

we please with respect to a, or
b

a
as small as we please, the

first, and all the succeeding fractions, will be as near as we
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please to
1

p
, which is evident from the equations

a

pa+ b
=

1

p+
b

a

,
a′

pa′ + b′
=

1

p+
b′

a′

, etc.

Form a new fraction by summing the numerators and de-
nominators of the preceding, such as

a+ a′ + a′′ + etc.

p(a+ a′ + a′′ + etc.) + b+ b′ + b′′ + etc.
,

the etc. extending to any given number of terms.

This may also be brought as near to
1

p
as we please. For

this fraction is the same as

1 divided by p+
b+ b′ + etc.

a+ a′ + etc.
;

and it can be shown∗ that

b+ b′ + etc.

a+ a′ + etc.

must lie between the least and greatest of the fractions
b

a
,
b′

a′
, etc. If, then, each of these latter fractions can be

made as small as we please, so also can

b+ b′ + etc.

a+ a′ + etc.
.

∗See Study of Mathematics (Reprint Edition, Chicago: The Open
Court Publishing Co.), page 270.
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No difference will be made in this result, if we use the fol-
lowing fraction,

A + (a+ a′ + a′′ + etc.)

B + p(a+ a′ + a′′ + etc.) + b+ b′ + b′′ + etc.
, (1)

A and B being given quantities; provided that we can take a
number of the original fractions sufficient to make a+a′+a′′+
etc., as great as we please, compared with A and B. This will
appear on dividing the numerator and denominator of (1) by
a+ a′ + a′′ + etc.

Let the fractions be

(x+ 1)3

(x+ 1)4 − x4
,

(x+ 2)3

(x+ 2)4 − (x+ 1)4
,

(x+ 3)3

(x+ 3)4 − (x+ 2)4
, etc.

The first of which, or
(x+ 1)3

4x3 + etc.
may, as we have shown, be

within any given difference of
1

4
, and the others still nearer,

by taking a value of x sufficiently great. Let us suppose each

of these fractions to be within
1

100000
of

1

4
. The fraction

formed by summing the numerators and denominators of
these fractions (n in number) will be within the same degree
of nearness to 1

4
. But this is

(x+ 1)3 + (x+ 2)3 + · · ·+ (x+ n)3

(x+ 1)4 − x4
, (2)



the differential and integral calculus. 85

all the terms of the denominator disappearing, except two
from the first and last. If, then, we add x4 to the denomina-
tor, and 13 + 23 + 33 + · · ·+x3 to the numerator, we can still
take n so great that (x + 1)3 + · · · + (x + n)3 shall contain
13 + · · · + x3 as often as we please, and that (x + n)4 − x4

shall contain x4 in the same manner. To prove the latter,

observe that the ratio of (x+n)4−x4 to x4 being
(

1 +
n

x

)4

,

can be made as great as we please, if it be permitted to take
for n a number containing x as often as we please. Hence,
by the preceding reasoning, the fraction, with its numerator
and denominator thus increased, or

13 + 23 + 33 + · · ·+ x3 + (x+ 1)3 + · · ·+ (x+ n)3

(x+ n)4
(3)

may be brought to lie within the same degree of nearness
to 1

4
as (2); and since this degree of nearness could be named

at pleasure, it follows that (3) can be brought as near to 1
4

as we please. Hence the limit of the ratio of (13 + 23 +
· · · + x3) to x4, as x is increased without limit, is 1

4
; and,

in a similar manner, it may be proved that the limit of the
ratio of (1m + 2m + · · ·+ xm) to xm+1 is the same as that of

(x+ 1)m

(x+ 1)m+1 − xm+1
or

1

m+ 1
.

This result will be of use when we come to the first princi-
ples of the integral calculus. It may also be noticed that the

limits of the ratios which x
x− 1

2
, x

x− 1

2

x− 2

3
, etc., bear
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to x2, x3, etc., are severally
1

2
,

1

2 · 3
, etc.; the limit being that

to which the ratios approximate as x increases without limit.

For x
x− 1

2
÷x2 =

x− 1

2x
, x

x− 1

2

x− 2

3
÷x3 =

x− 1

2x

x− 2

3x
,

etc., and the limits of
x− 1

2
,
x− 2

3
, are severally equal to

unity.
We now resume the elementary principles of the Differ-

ential Calculus.

RECAPITULATION OF RESULTS.

The following is a recapitulation of the principal results
which have hitherto been noticed in the general theory of
functions:

(1) That if in the equation y = ϕ(x), the variable x re-
ceives an increment dx, y is increased by the series

ϕ′x dx+ ϕ′′x
(dx)2

2
+ ϕ′′′x

(dx)3

2 · 3
+ etc.

(2) That ϕ′′x is derived in the same manner from ϕ′x,
that ϕ′x is from ϕx; viz., that in like manner as ϕ′x is the
coefficient of dx in the development of ϕ(x+dx), so ϕ′′x is the
coefficient of dx in the development of ϕ′(x + dx); similarly
ϕ′′′x is the coefficient of dx in the development of ϕ′′(x+dx),
and so on.

(3) That ϕ′x is the limit of
dy

dx
, or the quantity to which

the latter will approach, and to which it may be brought as
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near as we please, when dx is diminished. It is called the
differential coefficient of y.

(4) That in every case which occurs in practice, dx may
be taken so small, that any term of the series above written
may be made to contain the aggregate of those which follow,
as often as we please; whence, though ϕ′x dx is not the ac-
tual increment produced by changing x into x + dx in the
function ϕx, yet, by taking dx sufficiently small, it may be
brought as near as we please to a ratio of equality with the
actual increment.

APPROXIMATIONS.

The last of the above-mentioned principles is of the great-
est utility, since, by means of it, ϕ′x dx may be made as
nearly as we please the actual increment; and it will gen-
erally happen in practice, that ϕ′x dx may be used for the
increment of ϕx without sensible error; that is, if in ϕx, x be
changed into x + dx, dx being very small, ϕx is changed
into ϕx + ϕ′x dx, very nearly. Suppose that x being the
correct value of the variable, x + h and x + k have been
successively substituted for it, or the errors h and k have
been committed in the valuation of x, h and k being very
small. Hence ϕ(x+h) and ϕ(x+k) will be erroneously used
for ϕx. But these are nearly ϕx + ϕ′xh and ϕx + ϕ′x k,
and the errors committed in taking ϕx are ϕ′xh and ϕ′x k,
very nearly. These last are in the proportion of h to k, and
hence results a proposition of the utmost importance in ev-
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ery practical application of mathematics, viz., that if two
different, but small, errors be committed in the valuation
of any quantity, the errors arising therefrom at the end of
any process, in which both the supposed values of x are suc-
cessively adopted, are very nearly in the proportion of the
errors committed at the beginning. For example, let there
be a right-angled triangle, whose base is 3, and whose other
side should be 4, so that the hypothenuse should be

√
32 + 42

or 5. But suppose that the other side has been twice erro-
neously measured, the first measurement giving 4.001, and
the second 4.002, the errors being .001 and .002. The two
values of the hypothenuse thus obtained are

√
32 + 4.0012, or

√
25.008001,

and √
32 + 4.0022, or

√
25.016004,

which are very nearly 5.0008 and 5.0016. The errors of the
hypothenuse are then .0008 and .0016 nearly; and these last
are in the proportion of .001 and .002.

It also follows, that if x increase by successive equal steps,
any function of x will, for a few steps, increase so nearly in
the same manner, that the supposition of such an increase
will not be materially wrong. For, if h, 2h, 3h, etc., be suc-
cessive small increments given to x, the successive increments
of ϕx will be ϕ′xh, ϕ′x 2h, ϕ′x 3h, etc. nearly; which being
proportional to h, 2h, 3h, etc., the increase of the function is
nearly doubled, trebled, etc., if the increase of x be doubled,
trebled, etc.
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This result may be rendered conspicuous by reference
to any astronomical ephemeris, in which the positions of a
heavenly body are given from day to day. The intervals of
time at which the positions are given differ by 24 hours, or
nearly 1

365
th part of the whole year. And even for this inter-

val, though it can hardly be called small in an astronomical
point of view, the increments or decrements will be found so
nearly the same for four or five days together, as to enable
the student to form an idea how much more near they would
be to equality, if the interval had been less, say one hour
instead of twenty-four. For example, the sun’s longitude on
the following days at noon is written underneath, with the
increments from day to day.

1834
September

Sun’s longitude
at noon.

Increments.
Proportion which the differences

of the increments bear to the
whole increments.

1st 158◦ 30′ 35′′
58′ 9′′

2nd 159 28 44
58 12

3
3489

3rd 160 26 56
58 13

1
3492

4th 161 25 9
58 14

1
3493

5th 162 23 23

The sun’s longitude is a function of the time; that is, the
number of years and days from a given epoch being given,
and called x, the sun’s longitude can be found by an alge-
braical expression which may be called ϕx. If we date from
the first of January, 1834, x is .666, which is the decimal part
of a year between the first days of January and September.
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The increment is one day, or nearly .0027 of a year. Here x is
successively made equal to .666, .666+0027, .666+2× .0027,
etc.; and the intervals of the corresponding values of ϕx, if
we consider only minutes, are the same; but if we take in the
seconds, they differ from one another, though only by very
small parts of themselves, as the last column shows.

SOLUTION OF EQUATIONS.

This property is also used∗ in finding logarithms inter-
mediate to those given in the tables; and may be applied
to find a nearer solution to an equation, than one already
found. For example, suppose it required to find the value
of x in the equation ϕx = 0, a being a near approximation
to the required value. Let a + h be the real value, in which
h will be a small quantity. It follows that ϕ(a + h) = 0, or,
which is nearly true, ϕa + ϕ′a h = 0. Hence the real value

of h is nearly − ϕa
ϕ′a

, or the value a− ϕa

ϕ′a
is a nearer approx-

imation to the value of x. For example, let x2 + x − 4 = 0
be the equation. Here ϕx = x2 + x − 4, and ϕ(x + h) =
(x+ h)2 + x+ h− 4 = x2 + x− 4 + (2x+ 1)h+ h2; so that
ϕ′x = 2x + 1. A near value of x is 1.57; let this be a. Then

ϕa = .0349, and ϕ′a = 4.14. Hence − ϕa
ϕ′a

= −.00843. Hence

1.57 − .00843, or 1.56157, is a nearer value of x. If we pro-
ceed in the same way with 1.5616, we shall find a still nearer

∗See Study of Mathematics (Reprint Edition, Chicago: The Open
Court Publishing Co., 1898), page 169 et seq.
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value of x, viz., 1.561553. We have here chosen an equation
of the second degree, in order that the student may be able
to verify the result in the common way; it is, however, ob-
vious that the same method may be applied to equations of
higher degrees, and even to those which are not to be treated
by common algebraical method, such as tan x = ax.

PARTIAL AND TOTAL DIFFERENTIALS.

We have already observed, that in a function of more
quantities than one, those only are mentioned which are con-
sidered as variable; so that all which we have said upon
functions of one variable, applies equally to functions of
several variables, so far as a change in one only is con-
cerned. Take for example x2y + 2xy3. If x be changed into
x + dx, y remaining the same, this function is increased by
2xy dx + 2y3 dx + etc., in which, as in page 33, no terms
are contained in the etc. except those which, by diminish-
ing dx, can be made to bear as small a proportion as we
please to the first terms. Again, if y be changed into y+ dy,
x remaining the same, the function receives the increment
x2 dy+ 6xy2 dy+ etc.; and if x be changed into x+ dx, y be-
ing at the same time changed into y + dy, the increment of
the function is (2xy+2y3) dx+(x2 +6xy2) dy+etc. If, then,
u = x2y + 2xy3, and du denote the increment of u, we have
the three following equations, answering to the various sup-
positions above mentioned,
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(1) when x only varies,

du = (2xy + 2y3) dx+ etc.

(2) when y only varies,

du = (x2 + 6xy2) dy + etc.

(3) when both x and y vary,

du = (2xy + 2y3) dx+ (x2 + 6xy2) dy + etc.

in which, however, it must be remembered, that du does not
stand for the same thing in any two of the three equations: it
is true that it always represents an increment of u, but as far
as we have yet gone, we have used it indifferently, whether
the increment of u was the result of a change in x only, or
y only, or both together.

To distinguish the different increments of u, we must
therefore seek an additional notation, which, without sac-
rificing the du that serves to remind us that it was u which
received an increment, may also point out from what sup-
position the increment arose. For this purpose we might use
dxu and dyu, and dx,yu, to distinguish the three; and this will
appear to the learner more simple than the one in common
use, which we shall proceed to explain. We must, however,
remind the student, that though in matters of reasoning, he
has a right to expect a solution of every difficulty, in all that
relates to notation, he must trust entirely to his instructor;
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since he cannot judge between the convenience or inconve-
nience of two symbols without a degree of experience which
he evidently cannot have had. Instead of the notation above
described, the increments arising from a change in x and y

are severally denoted by
du

dx
dx and

du

dy
dy, on the following

principle: If there be a number of results obtained by the
same species of process, but on different suppositions with
regard to the quantities used; if, for example, p be derived
from some supposition with regard to a, in the same manner
as are q and r with regard to b and c, and if it be inconve-
nient and unsymmetrical to use separate letters p, q, and r,
for the three results, they may be distinguished by using
the same letter p for all, and writing the three results thus,
p

a
a,

p

b
b,
p

c
c. Each of these, in common algebra, is equal

to p, but the letter p does not stand for the same thing in
the three expressions. The first is the p, so to speak, which
belongs to a, the second that which belongs to b, the third
that which belongs to c. Therefore the numerator of each

of the fractions
p

a
,
p

b
, and

p

c
, must never be separated from

its denominator, because the value of the former depends,
in part, upon the latter; and one p cannot be distinguished
from another without its denominator. The numerator by
itself only indicates what operation is to be performed, and
on what quantity; the denominator shows what quantity is
to be made use of in performing it. Neither are we allowed to

say that
p

a
divided by

p

b
is
b

a
; for this supposes that p means
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the same thing in both quantities.

In the expressions
du

dx
dx, and

du

dy
dy, each denotes that

u has received an increment; but the first points out that x,
and the second that y, was supposed to increase, in order to
produce that increment; while du by itself, or sometimes d.u,
is employed to express the increment derived from both sup-
positions at once. And since, as we have already remarked, it
is not the ratios of the increments themselves, but the limits
of those ratios, which are the objects of investigation in the

Differential Calculus, here, as in page 32,
du

dx
dx, and

du

dy
dy,

are generally considered as representing those terms which
are of use in obtaining the limiting ratios, and do not include
those terms, which, from their containing higher powers of
dx or dy than the first, may be made as small as we please
with respect to dx or dy. Hence in the example just given,
where u = x2y + 2xy3, we have

du

dx
dx = (2xy + 2y3) dx, or

du

dx
= 2xy + 2y3,

du

dy
dy = (x2 + 6xy2) dy, or

du

dy
= x2 + 6xy2,

du or d.u =
du

dx
dx+

du

dy
dy.

The last equation gives a striking illustration of the
method of notation. Treated according to the common rules
of algebra, it is du = du + du, which is absurd, but which
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appears rational when we recollect that the second du arises
from a change in x only, the third from a change in y only,
and the first from a change in both. The same equation may
be proved to be generally true for all functions of x and y,
if we bear in mind that no term is retained, or need be re-
tained, as far as the limit is concerned, which, when dx or dy
is diminished, diminishes without limit as compared with

them. In using
du

dx
and

du

dy
as differential coefficients of u

with respect to x and y, the objection (page 30) against
considering these as the limits of the ratios, and not the
ratios themselves, does not hold, since the numerator is not
to be separated from its denominator.

Let u be a function of x and y, represented∗ by ϕ(x, y). It
is indifferent whether x and y be changed at once into x+dx
and y+dy, or whether x be first changed into x+dx, and y be
changed into y+dy in the result. Thus, x2y+y3 will become
(x+ dx)2(y + dy) + (y + dy)3 in either case. If x be changed

∗The symbol ϕ(x, y) must not be confounded with ϕ(xy). The
former represents any function of x and y; the latter a function in
which x and y only enter so far as they are contained in their product.
The second is therefore a particular case of the first; but the first is not
necessarily represented by the second. For example, take the function
xy + sinxy, which, though it contains both x and y, yet can only be
altered by such a change in x and y as will alter their product, and
if the product be called p, will be p + sin p. This may properly be
represented by ϕ(xy); whereas x + xy2 cannot be represented in the
same way, since other functions besides the product are contained in
it.
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into x+dx, u becomes u+u′x dx+etc., (where u′x is what we
have called the differential coefficient of u with respect to x,
and is itself a function of x and y; and the corresponding
increment of u is u′x dx+ etc.). If in this result y be changed
into y + dy, u will assume the form u + u′y dy + etc., where
u′y is the differential coefficient of u with respect to y; and
the increment which u receives will be u′y +etc. Again, when
y is changed into y + dy, u′x, which is a function of x and y,
will assume the form u′x + p dy + etc.; and u + u′x dx + etc.
becomes u + u′y dy + etc. + (u′x + p dy + etc.) dx + etc., or
u+ u′y dy + u′x dx+ p dx dy + etc., in which the term p dx dy
is useless in finding the limit. For since dy can be made
as small as we please, p dx dy can be made as small a part
of p dx as we please, and therefore can be made as small a
part of dx as we please. Hence on the three suppositions
already made, we have the following results:

(1) when x only is changed into x + dx, u receives the
increment u′x dx+ etc.,

(2) when y only is changed into y + dy, u receives the
increment u′y dy + etc.,

(3) when x becomes x+ dx and y becomes y+ dy at once,
u receives the increment u′x dx+ u′y dy + etc.,

the etc. in each case containing those terms only which can
be made as small as we please, with respect to the pre-
ceding terms. In the language of Leibnitz, we should say
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that if x and y receive infinitely small increments, the sum
of the infinitely small increments of u obtained by making
these changes separately, is equal to the infinitely small in-
crement obtained by making them both at once. As before,
we may correct this inaccurate method of speaking. The
several increments in (1), (2), and (3), maybe expressed by
u′x dx + P, u′y dy + Q, and u′x dx + u′y dy + R; where P, Q,
and R can be made such parts of dx or dy as we please, by
taking dx or dy sufficiently small. The sum of the two first
is u′x dx + u′y dy + P + Q, which differs from the third by
P + Q − R; which, since each of its terms can be made as
small a part of dx or dy as we please, can itself be made less
than any given part of dx or dy.

This theorem is not confined to functions of two variables
only, but may be extended to those of any number whatever.
Thus, if z be a function of p, q, r, and s, we have

d.z or dz =
dz

dp
dp+

dz

dq
dq +

dz

dr
dr +

dz

ds
ds+ etc.

in which
dz

dp
dp + etc. is the increment which a change in

p only gives to z, and so on. The etc. is the representative of
an infinite series of terms, the aggregate of which diminishes
continually with respect to dp, dq, etc., as the latter are
diminished, and which, therefore, has no effect on the limit
of the ratio of d.z to any other quantity.
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PRACTICAL APPLICATION OF THE PRECEDING THEOREM.

We proceed to an important practical use of this theorem.
If the increments dp, dq, etc., be small, this last-mentioned
equation, (the terms included in the etc. being omitted,)
though not actually true, is sufficiently near the truth for all
practical purposes; which renders the proposition, from its
simplicity, of the highest use in the applications of mathe-
matics. For if any result be obtained from a set of data, no
one of which is exactly correct, the error in the result would
be a very complicated function of the errors in the data, if the
latter were considerable. When they are small, the error in
the results is very nearly the sum of the errors which would
arise from the error in each datum, if all the others were cor-
rect. For if p, q, r, and s, are the presumed values of the
data, which give a certain value z to the function required to
be found; and if p+ dp, q + dq, etc., be the correct values of
the data, the correction of the function z will be very nearly

made, if z be increased by
dz

dp
dp +

dz

dq
dq +

dz

dr
dr +

dz

ds
ds,

being the sum of terms which would arise from each separate
error, if each were made in turn by itself.

For example: A transit instrument is a telescope mounted
on an axis, so as to move in the plane of the meridian only,
that is, the line joining the centres of the two glasses ought,
if the telescope be moved, to pass successively through the
zenith and the pole. Hence can be determined the exact
time, as shown by a clock, at which any star passes a ver-
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tical thread, fixed inside the telescope so as apparently to
cut the field of view exactly in half, which thread will always
cover a part of the meridian, if the telescope be correctly
adjusted. In trying to do this, three errors may, and gener-
ally will be committed, in some small degree. (1) The axis
of the telescope may not be exactly level; (2) the ends of
the same axis may not be exactly east and west; (3) the line
which joins the centres of the two glasses, instead of being
perpendicular to the axis of the telescope, may be inclined to
it. If each of these errors were considerable, and the time at
which a star passed the thread were observed, the calculation
of the time at which the same star passes the real meridian
would require complicated formulæ, and be a work of much
labor. But if the errors exist in small quantities only, the
calculation is very much simplified by the preceding princi-
ple. For, suppose only the first error to exist, and calculate
the corresponding error in the time of passing the thread.
Next suppose only the second error, and then only the third
to exist, and calculate the effect of each separately, all which
may be done by simple formulæ. The effect of all the errors
will then be the sum of the effects of each separate error,
at least with sufficient accuracy for practical purposes. The
formulæ employed, like the equations in page 32, are not ac-
tually true in any case, but approach more near to the truth
as the errors are diminished.
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RULES FOR DIFFERENTIATION.

In order to give the student an opportunity of exercising
himself in the principles laid down, we will so far anticipate
the treatises on the Differential Calculus as to give the results
of all the common rules for differentiation; that is, assuming
y to stand for various functions of x, we find the increment
of y arising from an increment in the value of x, or rather,
that term of the increment which contains the first power
of dx. This term, in theory, is the only one on which the
limit of the ratio of the increments depends; in practice, it is
sufficiently near to the real increment of y, if the increment
of x be small.

(1) y = xm, where m is either whole or fractional,
positive or negative; then dy = mxm−1 dx. Thus the
increment of x

2
3 or the first term of (x + dx)

2
3 − x 2

3 is

2
3
x

2
3
−1 dx, or

2 dx

3x
1
3

. Again, if y = x8, dy = 8x7 dx. When

the exponent is negative, or when y =
1

xm
, dy = −mdx

xm+1
,

or when y = x−m, dy = −mx−m−1 dx, which is according to
the rule. The negative sign indicates that an increase in x
decreases the value of y; which, in this case, is evident.

(2) y = ax. Here dy = ax log a dx where the logarithm
(as is always the case in analysis, except where the contrary
is specially mentioned) is the Naperian or hyperbolic loga-
rithm. When a is the base of these logarithms, that is when
a = 2.7182818 = e, or when y = ex, dy = ex dx.
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(3) y = log x (the Naperian logarithm). Here dy =
dx

x
.

If y = common log x, dy = −.4342944
dx

x
.

(4) y = sin x, dy = cos x dx; y = cos x, dy = − sinx dx;

y = tanx, dy =
dx

cos2 x
.

ILLUSTRATION OF THE PRECEDING FORMULÆ.

At the risk of being tedious to some readers, we will pro-
ceed to illustrate these formulæ by examples from the tables
of logarithms and sines, let y = common log x. If x be
changed into x+ dx, the real increment of y is

.4342944

(
dx

x
− 1

2

(dx)2

x2
+ 1

3

(dx)3

x3
− etc.

)
,

in which the law of continuation is evident. The correspond-
ing series for Naperian logarithms is to be found in page 22.
From the first term of this the limit of the ratio of dy to dx
can be found; and if dx be small, this will represent the
increment with sufficient accuracy. Let x = 1000, whence
y = common log 1000 = 3; and let dx = 1, or let it be re-
quired to find the common logarithm of 1000 + 1, or 1001.
The first term of the series is therefore .4342944 × 1

1000
, or

.0004343, taking seven decimal places only. Hence log 1001 =
log 1000 + .0004343 or 3.0004343 nearly. The tables give
3.0004341, differing from the former only in the 7th place of
decimals.
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Again, let y = sinx; from which, by page 22, as
before, if x be increased by dx, sinx is increased by
cosx dx − 1

2
sinx (dx)2 − etc., of which we take only the

first term. Let x = 16◦, in which case sinx = .2756374,
and cos x = .9612617. Let dx = 1′, or, as it is represented
in analysis, where the angular unit is that angle whose arc
is equal to the radius,∗ 60

206265
. Hence sin 16◦ 1′ = sin 16◦ +

.9612617× 60
206265

= .2756374 + .0002797 = .2759171, nearly.
The tables give .2759170. These examples may serve to show
how nearly the real ratio of two increments approaches to
their limit, when the increments themselves are small.

DIFFERENTIAL COEFFICIENTS OF DIFFERENTIAL
COEFFICIENTS.

When the differential coefficient of a function of x has
been found, the result, being a function of x, may be also
differentiated, which gives the differential coefficient of the
differential coefficient, or, as it is called, the second differ-
ential coefficient. Similarly the differential coefficient of the
second differential coefficient is called the third differential
coefficient, and so on. We have already had occasion to
notice these successive differential coefficients in page 25,
where it appears that ϕ′x being the first differential coef-
ficient of ϕx, ϕ′′x is the coefficient of h in the development
ϕ′(x+h), and is therefore the differential coefficient of ϕ′x, or

∗See Study of Mathematics (Chicago; The Open Court Pub. Co.),
page 273 et seq.



the differential and integral calculus. 103

what we have called the second differential coefficient of ϕx.
Similarly ϕ′′′x is the third differential coefficient of ϕx. If we
were strictly to adhere to our system of notation, we should
denote the several differential coefficients of ϕx or y by

dy

dx
,

d.
dy

dx
dx

,
d.
d. dy

dx

dx
dx

, etc.

In order to avoid so cumbrous a system of notation, the
following symbols are usually preferred,

dy

dx
,

d2y

dx2
,

d3y

dx3
, etc.

CALCULUS OF FINITE DIFFERENCES. SUCCESSIVE
DIFFERENTIATION.

We proceed to explain the manner in which this notation
is connected with our previous ideas on the subject.

When in any function of x, an increase is given to x,
which is not supposed to be as small as we please, it is usual
to denote it by ∆x instead of dx, and the corresponding in-
crement of y or ϕx, by ∆y or ∆ϕx, instead of dy or dϕx.
The symbol ∆x is called the difference of x, being the dif-
ference between the value of the variable x, before and after
its increase.

Let x increase at successive steps by the same difference;
that is, let a variable, whose first value is x, successively
become x+∆x, x+2∆x, x+3∆x, etc., and let the successive
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values of ϕx corresponding to these values of x be y, y1,
y2, y3, etc.; that is, ϕx is called y, ϕ(x+∆x) is y1, ϕ(x+2∆x)
is y2, etc., and, generally, ϕ(x + m∆x) is ym. Then, by our
previous definition y1 − y is ∆y, y2 − y1 is ∆y1, y3 − y2

is ∆y2, etc., the letter ∆ before a quantity always denoting
the increment it would receive if x + ∆x were substituted
for x. Thus y3 or ϕ(x+ 3∆x) becomes ϕ(x+ ∆x+ 3∆x), or
ϕ(x+4∆x), when x is changed into x+∆x, and receives the
increment ϕ(x + 4∆x) − ϕ(x + 3∆x), or y4 − y3. If y be a
function which decreases when x is increased, y1 − y, or ∆y
is negative.

It must be observed, as in page 29, that ∆x does not
depend upon x, because x occurs in it; the symbol merely
signifies an increment given to x, which increment is not
necessarily dependent upon the value of x. For instance, in
the present case we suppose it a given quantity; that is, when
x+∆x is changed into x+∆x+∆x, or x+2∆x, x is changed,
and ∆x is not.

In this way we get the two first of the columns under-
neath, in which each term of the second column is formed
by subtracting the term which immediately precedes it in the
first column from the one which immediately follows. Thus
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∆y is y1 − y, ∆y1 is y2 − y1, etc.

ϕ(x) y

ϕ(x+ ∆x) y1

ϕ(x+ 2∆x) y2

ϕ(x+ 3∆x) y3

ϕ(x+ 4∆x) y4

∣∣∣∣∣∣∣∣∣∣∣∣

∆y

∆y1

∆y2

∆y3

∣∣∣∣∣∣∣∣∣
∆2y

∆2y1

∆2y2

∣∣∣∣∣∣∣
∆3y

∆3y1

∣∣∣∣∣ ∆4y

etc.

In the first column is to be found a series of succes-
sive values of the same function ϕx, that is, it contains
terms produced by substituting successively in ϕx the quan-
tities x, x + ∆x, x + 2∆x, etc., instead of x. The second
column contains the successive values of another function
ϕ(x + ∆x) − ϕx, or ∆ϕx, made by the same substitutions;
if, for example, we substitute x + 2∆x for x, we obtain
ϕ(x + 3∆x) − ϕ(x + 2∆x), or y3 − y2, or ∆y2. If, then,
we form the successive differences of the terms in the sec-
ond column, we obtain a new series, which we might call the
differences of the differences of the first column, but which
are called the second differences of the first column. And
as we have denoted the operation which deduces the second
column from the first by ∆, so that which deduces the third
from the second may be denoted by ∆∆, which is abbrevi-
ated into ∆2. Hence as y1 − y was written ∆y, ∆y1 −∆y is
written ∆∆y, or ∆2y. And the student must recollect, that
in like manner as ∆ is not the symbol of a number, but of
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an operation, so ∆2 does not denote a number multiplied by
itself, but an operation repeated upon its own result; just as
the logarithm of the logarithm of x might be written log2 x;
(log x)2 being reserved to signify the square of the logarithm
of x. We do not enlarge on this notation, as the subject is
discussed in most treatises on algebra.∗ Similarly the terms
of the fourth column, or the differences of the second dif-
ferences, have the prefix ∆∆∆ abbreviated into ∆3, so that
∆2y1 −∆2y = ∆3y, etc.

When we have occasion to examine the results which arise
from supposing ∆x to diminish without limit, we use dx
instead of ∆x, dy instead of ∆y, d2y instead of ∆2y, and so
on. If we suppose this case, we can show that the ratio which
the term in any column bears to its corresponding term in
any preceding column, diminishes without limit. Take for
example, d2y and dy. The latter is ϕ(x+dx)−ϕx, which, as
we have often noticed already, is of the form p dx+ q (dx)2 +
etc., in which p, q, etc., are also functions of x. To obtain d2y,
we must, in this series, change x into x + dx, and subtract
p dx+ q (dx)2 + etc. from the result. But since p, q, etc., are
functions of x, this change gives them the form

p+ p′ dx+ etc., q + q′ dx+ etc.;

∗The reference of the original text is to “the treatise on Algebraical
Expressions,” Number 105 of the Library of Useful Knowledge,—the
same series in which the present work appeared. The first six pages of
this treatise are particularly recommended by De Morgan in relation
to the present point.—Ed.
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so that d2y is

(p+ p′ dx+ etc.) dx+ (q + q′ dx+ etc.)(dx)2 + etc.

− (p dx+ q (dx)2 + etc.)

in which the first power of dx is destroyed. Hence (pages
48–50), the ratio of d2y to dx diminishes without limit, while
that of d2y to (dx)2 has a finite limit, except in those par-
ticular cases in which the second power of dx is destroyed,
in the previous subtraction, as well as the first. In the same
way it may be shown that the ratio of d3y to dx and (dx)2

decreases without limit, while that of d3y to (dx)3 remains

finite; and so on. Hence we have a succession of ratios
dy

dx
,

d2y

dx2
,
d3y

dx3
, etc., which tend towards finite limits when dx is

diminished.
We now proceed to show that in the development of

ϕ(x+ h), which has been shown to be of the form

ϕx+ ϕ′xh+ ϕ′′x
h2

2
+ ϕ′′′x

h3

2 · 3
+ etc.,

in the same manner as ϕ′x is the limit of
dy

dx
(page 26), so

ϕ′′x is the limit of
d2y

dx2
, ϕ′′′x is that of

d3y

dx3
, and so forth.

From the manner in which the preceding table was
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formed, the following relations are seen immediately:

y1 = y + ∆y ∆y1 = ∆y + ∆2y,

y2 = y1 + ∆y1 ∆y2 = ∆y1 + ∆2y1,

∆2y1 = ∆2y + ∆3y etc.,

∆2y2 = ∆2y1 + ∆3y1 etc.

Hence y1, y2, etc., can be expressed in terms of y, ∆y,
∆2y, etc. For y1 = y + ∆y;

y2 = y1 + ∆y1 = (y + ∆y) + (∆y + ∆2y) = y + 2∆y + ∆2y.

In the same way ∆y2 = ∆y + 2∆2y + ∆3y; hence

y3 = y2 + ∆y2 = (y + 2∆y + ∆2y) + (∆y + 2∆2y + ∆3y)

= y + 3∆y + 3∆2y + ∆3y.

Proceeding in this way we have

y1 = y + ∆y,

y2 = y + 2∆y + ∆2y,

y3 = y + 3∆y + 3∆2y + ∆3y,

y4 = y + 4∆y + 6∆2y + 4∆3y + ∆5y,

y5 = y + 5∆y + 10∆2y + 10∆3y + 5∆5y + ∆6y, etc.,

from the whole of which it appears that yn or ϕ(x + n∆x)
is a series consisting of y, ∆y, etc., up to ∆ny, severally
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multiplied by the coefficients which occur in the expansion
(1 + a)n, or

yn = ϕ(x+ n∆x)

= y + n∆y + n
n− 1

2
∆2y + n

n− 1

2

n− 2

3
∆3y + etc.

Let us now suppose that x becomes x + h by n equal

steps; that is, x, x +
h

n
, x +

2h

n
, etc. . . . x +

nh

h
or x + h,

are the successive values of x, so that n∆x = h. Since the
product of a number of factors is not altered by multiplying
one of them, provided we divide another of them by the same
quantity, multiply every factor which contains n by ∆x, and
divide the accompanying difference of y by ∆x as often as
there are factors which contain n, substituting h for n∆x,
which gives

ϕ(x+ n∆x) = y + n∆x
∆y

∆x
+ n∆x

n∆x−∆x

2

∆2y

(∆x)2

+ n∆x
n∆x−∆x

2

n∆x− 2∆x

3

∆3y

(∆x)3
+ etc.,

or

ϕ(x+ h) = y + h
∆y

∆x
+ h

h−∆x

2

∆2y

(∆x)2

+ h
h−∆x

2

h− 2∆x

3

∆3y

(∆x)3
+ etc.
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If h remain the same, the more steps we make between
x and x + h, the smaller will each of those steps be, and
the number of steps may be increased, until each of them
is as small as we please. We can therefore suppose ∆x to
decrease without limit, without affecting the truth of the se-
ries just deduced. Write dx for ∆x, etc., and recollect that
h − dx, h − 2 dx, etc., continually approximate to h. The
series then becomes

ϕ(x+ h) = y +
dy

dx
h+

d2y

dx2

h2

2
+
d3y

dx3

h3

2 · 3
+ etc.,

in which, according to the view taken of the symbols
dy

dx
etc.

in pages 29–30,
dy

dx
stands for the limit of the ratio of the

increments,
dy

dx
is ϕ′x,

d2y

dx2
is ϕ′′x, etc. According to the

method proposed in pages 32–33, the series written above is
the first term of the development of ϕ(x+ h), the remaining
terms (which we might include under an additional + etc.)
being such as to diminish without limit in comparison with
the first, when dx is diminished without limit. And we may

show that the limit of
d2y

dx2
is the differential coefficient of the

limit of
dy

dx
; or if by these fractions themselves are understood

their limits, that
d2y

dx2
is the differential coefficient of

dy

dx
: for

since dy, or ϕ(x + dx) − ϕx, becomes dy + d2y, when x is
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changed into x + dx; and since dx does not change in this

process,
dy

dx
will become

dy

dx
+
d2y

dx
, or its increment is

d2y

dx
.

The ratio of this to dx is
d2y

(dx)2
, the limit of which, in the

definition of page 25, is the differential coefficient of
dy

dx
.

Similarly the limit of
d3y

dx3
is the differential coefficient of the

limit of
d2y

dx2
; and so on.

TOTAL AND PARTIAL DIFFERENTIAL COEFFICIENTS.
IMPLICIT DIFFERENTIATION.

We now proceed to apply the principles laid down, to
some cases in which the variable enters into its function in a
less direct and more complicated manner.

For example, let z be a given function of x and y, and let
y be another given function of x; so that z contains x both
directly and indirectly; the latter as it contains y, which is
a function of x. This will be the case if z = x log y, where
y = sinx. If we were to substitute for y its value in terms
of x, the value of z would then be a function of x only; in the
instance just given it would be x log sinx. But if it be not
convenient to combine the two equations at the beginning of
the process, let us first consider z as a function of x and y,
in which the two variables are independent. In this case, if
x and y respectively receive the increments dx and dy, the



elementary illustrations of 112

whole increment of z, or d.z, (or at least that part which
gives the limit of the ratios) is represented by

dz

dx
dx+

dz

dy
dy.

If y be now considered as a function of x, the consequence
is that dy, instead of being independent of dx, is a series of
the form p dx + q (dx)2 + etc., in which p is the differential
coefficient of y with respect to x. Hence

d.z =
dz

dx
dx+

dz

dy
p dx or

d.z

dx
=
dz

dx
+
dz

dx
p,

in which the difference between
d.z

dx
and

dz

dx
is this, that

in the second, x is only considered as varying where it is
directly contained in z, or z is considered in the form in
which it first appeared, as a function of x and y, where y is

independent of x; in the first, or
d.z

dx
, the total variation of z

is denoted, that is, y is now considered as a function of x,
by which means if x become x+dx, z will receive a different
increment from that which it would have received, had y
been independent of x. In the instance above cited, where
z = x log y and y = sinx, if the first equation be taken,
and x becomes x + dx, y remaining the same, z becomes

x log y + log y dx or
dz

dx
is log y. If y only varies, since

(page 22) z will then become

x log y + x
dy

y
− etc.,
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dz

dy
is
x

y
And

dy

dx
is cosx when y = sin x (page 22). Hence

dz

dx
+
dz

dy
p, or

dz

dx
+
dz

dy

dy

dx
is log y +

x

y
cosx, or log sinx +

x

sinx
cosx. This is

d.z

dx
, which might have been obtained by a

more complicated process, if sin x had been substituted for y,
before the operation commenced. It is called the complete
or total differential coefficient with respect to x, the word
total indicating that every way in which z contains x has

been used; in opposition to
dz

dx
, which is called the partial

differential coefficient, x having been considered as varying
only where it is directly contained in z.

Generally, the complete differential coefficient of z with
respect to x, will contain as many terms as there are different
ways in which z contains x. From looking at a complete dif-
ferential coefficient, we may see in what manner the function
contained its variable. Take, for example, the following,

d.z

dx
=
dz

dx
+
dz

dy

dy

dx
+
dz

da

da

dy

dy

dx
+
dz

da

da

dx
.

Before proceeding to demonstrate this formula, we will
collect from itself the hypothesis from which it must have
arisen. When x is contained in z, we shall say that z is a
direct∗ function of x. When x is contained in y, and y is
contained in z, we shall say that z is an indirect function

∗It may be right to warn the student that this phraseology is new,
to the best of our knowledge. The nomenclature of the Differential
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of x through y. It is evident that an indirect function may
be reduced to one which is direct, by substituting for the
quantities which contain x, their values in terms of x.

The first side of the equation
d.z

dx
is shown by the point

to be a complete differential coefficient, and indicates that
z is a function of x in several ways; either directly, and in-
directly through one quantity at least, or indirectly through
several. If z be a direct function only, or indirectly through

one quantity only, the symbol
dz

dx
, without the point, would

represent its total differential coefficient with respect to x.
On the second side of the equation we see:

(1)
dz

dx
: which shows that z is a direct function of x, and

is that part of the differential coefficient which we should get
by changing x into x + dx throughout z, not supposing any
other quantity which enters into z to contain x.

(2)
dz

dy

dy

dx
: which shows that z is an indirect function

of x through y. If x and y had been supposed to vary inde-
pendently of each other, the increment of z, (or those terms
which give the limiting ratio of this increment to any other,)

would have been
dz

dx
dx +

dz

dy
dy, in which, if dy had arisen

from y being a function of x, dy would have been a series of
the form p dx + q (dx)2 + etc., of which only the differential

Calculus has by no means kept pace with its wants; indeed the same
may be said of algebra generally. [Written in 1832.—Ed.]
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coefficient p would have appeared in the limit. Hence
dz

dy
dy

would have given
dz

dy
p, or

dz

dy

dy

dx
.

(3)
dz

da

da

dy

dy

dx
: this arises from z containing a, which con-

tains y, which contains x. If z had been differentiated with
respect to a only, the increment would have been represented

by
dz

da
da; if da had arisen from an increment of y, this would

have been expressed by
dz

da

da

dy
dy; if y had arisen from an

increment given to x, this would have been expressed by
dz

da

da

dy

dy

dx
dx, which, after dx has been struck out, is the part

of the differential coefficient answering to that increment.

(4)
dz

da

da

dx
: arising from a containing x directly, and

z therefore containing x indirectly through a.
Hence z is directly a function of x, y, and a, of which y is

a function of x, and a of y and x.
If we suppose x, y and a to vary independently, we have

d.z =
dz

dx
dx+

dz

dy
dy +

dz

da
da+ etc. (pages 32–33).

But as a varies as a function of y and x,

da =
da

dx
dx+

da

dy
dy.
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If we substitute this instead of da, and divide by dx, taking
the limit of the ratios, we have the result first given.

For example, let (1) z = x2ya3, (2) y = x2, and (3)
a = x3y. Taking the first equation only, and substituting

x + dx for x etc., we find
dz

dx
= 2xya3,

dz

dy
= x2a3, and

dz

da
= 3x2ya2. From the second

dy

dx
= 2x, and from the third

da

dx
= 3x2y, and

da

dy
= x3. Substituting these in the value

of
d.z

dx
, we find

d.z

dx
or

dz

dx
+
dz

dy

dy

dx
+
dz

da

da

dy

dy

dx
+
dz

da

da

dx

= 2xya3 + x2a3 × 2x+ 3x2ya2 × x3 × 2x+ 3x2ya2 × 3x2y

= 2xya3 + 2x3a3 + 6x6ya2 + 9x4y2a2.

If for y and a in the first equation we substitute their values
x2 and x3y, or x5, we have z = x19, the differential coeffi-
cient of which is 19x18. This is the same as arises from the
formula just obtained, after x2 and x5 have been substituted
for y and a; for this formula then becomes

2x18 + 2x18 + 6x18 + 9x18 or 19x18.

In saying that z is a function of x and y, and that y is a
function of x, we have first supposed x to vary, y remaining
the same. The student must not imagine that y is then a
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function of x; for if so, it would vary when x varied. There
are two parts of the total differential coefficient, arising from
the direct and indirect manner in which z contains x. That
these two parts may be obtained separately, and that their
sum constitutes the complete differential coefficient, is the

theorem we have proved. The first part
dz

dx
is what would

have been obtained if y had not been a function of x; and on
this supposition we therefore proceed to find it. The other

part
dz

dy

dy

dx
is the product (1) of

dz

dy
, which would have re-

sulted from a variation of y only, not considered as a function

of x; and (2) of
dy

dx
, the coefficient which arises from consider-

ing y as a function of x. These partial suppositions, however
useful in obtaining the total differential coefficient, cannot be
separately admitted or used, except for this purpose; since if
y be a function of x, x and y must vary together.

If z be a function of x in various ways, the theorem ob-
tained may be stated as follows:

Find the differential coefficient belonging to each of the
ways in which z will contain x, as if it were the only way;
the sum of these results (with their proper signs) will be the
total differential coefficient.

Thus, if z only contains x indirectly through y,
dz

dx
is

dz

dy

dy

dx
. If z contains a, which contains b, which contains x,

dz

dx
=
dz

da

da

db

db

dx
.
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This theorem is useful in the differentiation of compli-
cated functions; for example, let z = log(x2 + a2). If we

make y = x2 + a2, we have z = log y, and
dz

dy
=

1

y
; while

from the first equation
dy

dx
= 2x. Hence

dy

dx
or

dz

dy

dy

dx
is

2x

y

or
2x

x2 + a2
.

If z = log log sinx, or the logarithm of the logarithm
of sinx, let sin x = y and log y = a; whence z = log a, and
contains x, because a contains y, which contains x. Hence

dz

dx
=
dz

da

da

dy

dy

dx
;

but since z = log a,
dz

da
=

1

a
;

since a = log y,
da

dy
=

1

y
;

and since y = sinx,
dy

dx
= cosx.

Hence

dz

dx
=
dz

da

da

dy

dy

dx
=

1

a

1

y
cosx =

cosx

log sinx sinx
.

We now put some rules in the form of applications of this
theorem, though they may be deduced more simply.
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APPLICATIONS OF THE PRECEDING THEOREM.

(1) Let z = ab, where a and b are functions of x. The gen-
eral formula, since z contains x indirectly through a and b,
is (in this case as well as in those which follow,)

dz

dx
=
dz

da

da

dx
+
dz

db

db

dx
.

We must leave
da

dx
and

db

dx
as we find them, until we

know what functions a and b are of x; but as we know what

function z is of a and b, we substitute for
dz

da
and

dz

db
. Since

z = ab, if a becomes a + da, z becomes ab + b da, whence
dz

db
= b. In this case, and part of the following, the limiting

ratio of the increments is the same as that of the increments

themselves. Similarly
dz

db
= a, whence from z = ab follows

dz

dx
= b

da

dx
+ a

db

dx
.

(2) Let z =
a

b
. If a become a+ da, z becomes

a+ da

b
or

a

b
+
da

b
, and

dz

da
is

1

b
. If b become b+ db, z becomes

a

b+ db
,

or
a

b
− a db

b2
+ etc., whence

dz

db
is − a

b2
. Hence from z =

a

b
follows

dz

dx
=

1

b

da

dx
− a

b2

db

dx
=
b
da

dx
− a db

dx
b2

.
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(3) Let z = ab. Here (a + da)b = ab + bab−1 da + etc.

(page 23), whence
dz

da
= bab−1. Again, ab+db = ab adb =

ab(1 + log a db + etc.) whence
dz

db
= ab log a. Therefore from

z = ab follows

dz

dx
= bab−1 da

dx
+ ab log a

db

dx
.

INVERSE FUNCTIONS.

If y be a function of x, such as y = ϕx, we may, by solu-
tion of the equation, determine x in terms of y, or produce
another equation of the form x = ψy. For example, when
y = x2, x = y

1
2 . It is not necessary that we should be able

to solve the equation y = ϕx in finite terms, that is, so as
to give a value of x without infinite series; it is sufficient
that x can be so expressed that the value of x corresponding
to any value of y may be found as near as we please from
x = ψy, in the same manner as the value of y corresponding
to any value of x is found from y = ϕx.

The equations y = ϕx, and x = ψy, are connected, being,
in fact, the same relation in different forms; and if the value
of y from the first be substituted in the second, the second
becomes x = ψ(ϕx), or as it is more commonly written,
ψϕx. That is, the effect of the operation or set of operations
denoted by ψ is destroyed by the effect of those denoted
by ϕ; as in the instances (x2)

1
2 , (x3)

1
3 , elog x, angle whose

sine is (sinx), etc., each of which is equal to x.
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By differentiating the first equation y = ϕx, we obtain
dy

dx
= ϕ′x, and from the second

dx

dy
= ψ′y. But whatever

values of x and y together satisfy the first equation, satisfy
the second also; hence, if when x becomes x+dx in the first,
y becomes y + dy; the same y + dy substituted for y in the

second, will give the same x+dx. Hence
dx

dy
as deduced from

the second, and
dy

dx
as deduced from the first, are recipro-

cals for every value of dx. The limit of one is therefore the
reciprocal of the limit of the other; the student may easily

prove that if a is always equal to
1

b
, and if a continually ap-

proaches to the limit α, while b at the same time approaches

the limit β, α is equal to
1

β
. But

dx

dy
or ψ′y, deduced from

x = ψy, is expressed in terms of y, while
dy

dx
or ϕ′x, deduced

from y = ϕx is expressed in terms of x. Therefore ψ′y and
ϕ′x are reciprocals for all such values of x and y as satisfy
either of the two first equations.

For example let y = ex, from which x = log y. From the

first (page 22)
dy

dx
= ex; from the second

dx

dy
=

1

y
; and it is

evident that ex and
1

y
are reciprocals, whenever y = ex.

If we differentiate the above equations twice, we get
d2y

dx2
= ϕ′′x, and

d2x

dy2
= ψ′′x. There is no very obvious anal-
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ogy between
d2y

dx2
and

d2x

dy2
; indeed no such appears from the

method in which these coefficients were first formed. Turn
to the table in page 104, and substitute d for ∆ throughout,
to indicate that the increments may be taken as small as we
please. We there substitute in ϕx what we will call a set of
equidistant values of x, or values in arithmetical progression,
viz., x, x + dx, x + 2 dx, etc. The resulting values of y, or
y, y1, etc., are not equidistant, except in one function only,
when y = ax + b, where a and b are constant. Therefore
dy, dy1, etc., are not equal; whence arises the next column
of second differences, or d2y, d2y1, etc. The limiting ratio

of d2y to (dx)2, expressed by
d2y

dx2
, is the second differential

coefficient of y with respect to x. If from y = ϕx we deduce
x = ψy, and take a set of equidistant values of y, viz.,
y, y + dy, y + 2 dy, etc., to which the corresponding values
of x are x, x1, x2, etc., a similar table may be formed,
which will give dx, dx1, etc., d2x, d2x1, etc., and the limit

of the ratio of d2x to (dy)2 or
d2x

dy2
is the second differential

coefficient of x with respect to y. These are entirely different
suppositions, dx being given in the first table, and dy vary-
ing; while in the second dy is given and dx varies. We may
show how to deduce one from the other as follows:

When, as before, y = ϕx and x = ψy, we have

dy

dx
= ϕ′x =

1

ψ′y
=

1

p
,
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if ψ′y be called p. Calling this u, and considering it as a
function of x from containing p, which contains y, which
contains x, we have

du

dp

dp

dy

dy

dx

for its differential coefficient with respect to x. But since

u =
1

p
,

therefore
du

dp
= − 1

p2
;

since p = ψ′y, therefore

dp

dy
= ψ′′y;

and ψ′′y is the differential coefficient of ψ′y, and is
d2x

dy2
. Also

1

p2
is

1

(ψ′y)2
or (ϕ′x)2 or

(
dy

dx

)2

.

Hence the differential coefficient of u or
dy

dx
, with respect

to x, which is
d2y

dx2
, is also

−
(
dy

dx

)2
d2x

dy2

dy

dx
or −

(
dy

dx

)3
d2x

dy2
.
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If y = ex, whence x = log y, we have
dy

dx
= ex and

d2y

dx2
= ex. But

dx

dy
=

1

y
and

d2x

dy2
= − 1

y2
. Therefore

−
(
dy

dx

)3
d2x

dy2
is − e3x

(
− 1

y2

)
or

e3x

y2
or

e3x

e2x
,

which is ex, the value just found for
d2y

dx2
.

In the same way
d3y

dx3
might be expressed in terms of

dy

dx
,

d2y

dx2
, and

d3x

dy3
; and so on.

IMPLICIT FUNCTIONS.

The variable which appears in the denominator of the
differential coefficients is called the independent variable. In
any function, one quantity at least is changed at pleasure;
and the changes of the rest, with the limiting ratio of the
changes, follow from the form of the function. The number
of independent variables depends upon the number of quan-
tities which enter into the equations, and upon the number
of equations which connect them. If there be only one equa-
tion, all the variables except one are independent, or may
be changed at pleasure, without ceasing to satisfy the equa-
tion; for in such a case the common rules of algebra tell us,
that as long as one quantity is left to be determined from
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the rest, it can be determined by one equation; that is, the
values of all but one are at our pleasure, it being still in our
power to satisfy one equation, by giving a proper value to
the remaining one. Similarly, if there be two equations, all
variables except two are independent, and so on. If there be
two equations with two unknown quantities only, there are
no variables; for by algebra, a finite number of values, and a
finite number only, can satisfy these equations; whereas it is
the nature of a variable to receive any value, or at least any
value which will not give impossible values for other vari-
ables. If then there be m equations containing n variables,
(n must be greater than m), we have n−m independent vari-
ables, to each of which we may give what values we please,
and by the equations, deduce the values of the rest. We have
thus various sets of differential coefficients, arising out of the
various choices which we may make of independent variables.

If, for example, a, b, x, y, and z, being variables, we have

ϕ(a, b, x, y, z) = 0,

ψ(a, b, x, y, z) = 0,

χ(a, b, x, y, z) = 0,

we have two independent variables, which may be either
x and y, x and z, a and b, or any other combination. If
we choose x and y, we should determine a, b, and z in terms
of x and y from the three equations; in which case we can
obtain

da

dx
,

da

dy
,

db

dx
, etc.
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When y is a function of x, as in y = ϕx, it is called an
explicit function of x. This equation tells us not only that
y is a function of x, but also what function it is. The value
of x being given, nothing more is necessary to determine the
corresponding value of y, than the substitution of the value
of x in the several terms of ϕx.

But it may happen that though y is a function of x, the
relation between them is contained in a form from which
y must be deduced by the solution of an equation. For ex-
ample, in x2 − xy + y2 = a, when x is known, y must be
determined by the solution of an equation of the second de-
gree. Here, though we know that y must be a function of x,
we do not know, without further investigation, what func-
tion it is. In this case y is said to be implicitly a function
of x, or an implicit function. By bringing all the terms on
one side of the equation, we may always reduce it to the
form ϕ(x, y) = 0. Thus, in the case just cited, we have
x2 − xy + y2 − a = 0.

We now want to deduce the differential coefficient
dy

dx
from an equation of the form ϕ(x, y) = 0. If we take the
equation u = ϕ(x, y), in which when x and y become x+ dx
and y + dy, u becomes u + du, we have, by our former
principles,

du = u′x dx+ u′y dy + etc., (page 95),

in which u′x and u′y can be directly obtained from the equa-
tion, as in page 95. Here x and y are independent, as also



the differential and integral calculus. 127

dx and dy; whatever values are given to them, it is sufficient
that u and du satisfy the two last equations. But if x and y
must be always so taken that u may = 0, (which is implied
in the equation ϕ(x, y) = 0,) we have u = 0, and du = 0;
and this, whatever may be the values of dx and dy. Hence
dx and dy are connected by the equation

0 = u′x dx+ u′y dy + etc.,

and their limiting ratio must be obtained by the equation

u′x dx+ u′y dy = 0, or
dy

dx
= −u

′
x

u′y
;

y and x are no longer independent; for, one of them
being given, the other must be so taken that the equation
ϕ(x, y) = 0 may be satisfied. The quantities u′x and u′y we

have denoted by
du

dx
and

du

dy
, so that

dy

dx
= −

du

dx
du

dy

. (1)

We must again call attention to the different meanings of
the same symbol du in the numerator and denominator of the
last fraction. Had du, dx, and dy been common algebraical
quantities, the first meaning the same thing throughout, the



elementary illustrations of 128

last equation would not have been true until the negative
sign had been removed. We will give an instance in which
du shall mean the same thing in both.

Let u = ϕx, and let u = ψy, in which two equations
is implied a third ϕx = ψy; and y is a function of x. Here,
x being given, u is known from the first equation; and u being
known, y is known from the second. Again, x and dx being
given, du, which is ϕ(x + dx) − ϕx is known, and being
substituted in the result of the second equation, we have
du = ψ(y + dy) − ψy, which dy must be so taken as to
satisfy. From the first equation we deduce du = ϕ′x dx+etc.
and from the second du = ψ′y dy + etc., whence

ϕ′x dx+ etc. = ψ′y dy + etc.;

the etc. only containing terms which disappear in finding the
limiting ratios. Hence,

dy

dx
=
ϕ′x

ψ′y
=

du

dx
du

dy

, (2)

a result in accordance with common algebra.
But the equation (1) was obtained from u = ϕ(x, y),

on the supposition that x and y were always so taken that u
should = 0, while (2) was obtained from u = ϕx and u = Sy,
in which no new supposition can be made; since one more
equation between u, x, and y would give three equations
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connecting these three quantities, in which case they would
cease to be variable (page 124).

As an example of (1) let xy − x = 1, or xy − x− 1 = 0.

From u = xy−x−1 we deduce (page 94)
du

dx
= y−1,

du

dy
= x;

whence, by equation (1),

dy

dx
= −y − 1

x
. (3)

By solution of xy − x = 1, we find y = 1 +
1

x
, and

dy =

(
1 +

1

x+ dx

)
−
(

1 +
1

x

)
= −dx

x2
+ etc.∗

Hence
dy

dx
(meaning the limit) is − 1

x2
, which will also be the

result of (3) if 1 +
1

x
be substituted for y.

FLUXIONS, AND THE IDEA OF TIME.

To follow this subject farther would lead us beyond our
limits; we will therefore proceed to some observations on the
differential coefficient, which, at this stage of his progress,
may be of use to the student, who should never take it for
granted that because he has made some progress in a science,
he understands the first principles, which are often, if not

∗See page 29.
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always, the last to be learned well. If the mind were so
constituted as to receive with facility any perfectly new idea,
as soon as the same was legitimately applied in mathematical
demonstration, it would doubtless be an advantage not to
have any notion upon a mathematical subject, previous to
the time when it is to become a subject of consideration after
a strictly mathematical method.

This not being the case, it is a cause of embarrassment
to the student, that he is introduced at once to a definition
so refined as that of the limiting ratio which the increment
of a function bears to the increment of its variable. Of this
he has not had that previous experience, which is the case in
regard to the words force, velocity, or length. Nevertheless,
he can easily conceive a mathematical quantity in a state of
continuous increase or decrease, such as the distance between
two points, one of which is in motion. The number which
represents this line (reference being made to a given linear
unit) is in a corresponding state of increase or decrease, and
so is every function of this number, or every algebraical ex-
pression in the formation of which it is required. And the
nature of the change which takes place in the function, that
is, whether the function will increase or decrease when the
variable increases; whether that increase or decrease corre-
sponding to a given change in the variable will be smaller or
greater, etc., depends on the manner in which the variable
enters as a component part of its function.

Here we want a new word, which has not been invented
for the world at large, since none but mathematicians con-
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sider the subject; which word, if the change considered were
change of place, depending upon change of time, would be
velocity. Newton adopted this word, and the corresponding
idea, expressing many numbers in succession, instead of at
once, by supposing a point to generate a straight line by its
motion, which line would at different instants contain any
different numbers of linear units.

To this it was objected that the idea of time is intro-
duced, which is foreign to the subject. We may answer that
the notion of time is only necessary, inasmuch as we are not
able to consider more than one thing at a time. Imagine
the diameter of a circle divided into a million of equal parts,
from each of which a perpendicular is drawn meeting the
circle. A mind which could at a view take in every one of
these lines, and compare the differences between every two
contiguous perpendiculars with one another, could, by sub-
dividing the diameter still further, prove those propositions
which arise from supposing a point to move uniformly along
the diameter, carrying with it a perpendicular which length-
ens or shortens itself so as always to have one extremity on
the circle. But we, who cannot consider all these perpen-
diculars at once, are obliged to take one after another. If
one perpendicular only were considered, and the differential
coefficient of that perpendicular deduced, we might certainly
appear to avoid the idea of time; but if all the states of a
function are to be considered, corresponding to the differ-
ent states of its variable, we have no alternative, with our
bounded faculties, but to consider them in succession; and
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succession, disguise it as we may, is the identical idea of time
introduced in Newton’s Method of Fluxions.

THE DIFFERENTIAL COEFFICIENT CONSIDERED WITH
RESPECT TO ITS MAGNITUDE.

The differential coefficient corresponding to a particular
value of the variable, is, if we may use the phrase, the index
of the change which the function would receive if the value
of the variable were increased. Every value of the variable,
gives not only a different value to the function, but a different
quantity of increase or decrease in passing to what we may
call contiguous values, obtained by a given increase of the
variable.

If, for example, we take the common logarithm of x, and
let x be 100, we have common log 100 = 2. If x be increased
by 2, this gives common log 102 = 2.0086002, the ratio of
the increment of the function to that of the variable being
that of .0086002 to 2, or .0043001. In passing from 1000
to 1003, we have the logarithms 3 and 3.0013009, the above-
mentioned ratio being .0004336, little more than a tenth of
the former. We do not take the increments themselves, but
the proportion they bear to the changes in the variable which
gave rise to them; so in estimating the rate of motion of
two points, we either consider lengths described in the same
time, or if that cannot be done, we judge, not by the lengths
described in different times, but by the proportion of those
lengths to the times, or the proportions of the units which
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express them.
The above rough process, though from it some might

draw the conclusion that the logarithm of x is increasing
faster when x = 100 than when x = 1000, is defective; for,
in passing from 100 to 102, the change of the logarithm is not
a sufficient index of the change which is taking place when x
is 100; since, for any thing we can be supposed to know to the
contrary, the logarithm might be decreasing when x = 100,
and might afterwards begin to increase between x = 100
and x = 102, so as, on the whole, to cause the increase
above mentioned. The same objection would remain good,
however small the increment might be, which we suppose
x to have. If, for example, we suppose x to change from
x = 100 to x = 100.00001, which increases the logarithm
from 2 to 2.00000004343, we cannot yet say but that the
logarithm may be decreasing when x = 100, and may begin
to increase between x = 100 and x = 100.00001.

In the same way, if a point is moving, so that at the end
of 1 second it is at 3 feet from a fixed point, and at the end
of 2 seconds it is at 5 feet from the fixed point, we cannot
say which way it is moving at the end of one second. On the
whole, it increases its distance from the fixed point in the
second second; but it is possible that at the end of the first
second it may be moving back towards the fixed point, and
may turn the contrary way during the second second. And
the same argument holds, if we attempt to ascertain the
way in which the point is moving by supposing any finite
portion to elapse after the first second. But if on adding
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any interval, however small, to the first second, the moving
point does, during that interval, increase its distance from
the fixed point, we can then certainly say that at the end of
the first second the point is moving from the fixed point.

On the same principle, we cannot say whether the loga-
rithm of x is increasing or decreasing when x increases and
becomes 100, unless we can be sure that any increment, how-
ever small, added to x, will increase the logarithm. Neither
does the ratio of the increment of the function to the incre-
ment of its variable furnish any distinct idea of the change
which is taking place when the variable has attained or is
passing through a given value. For example, when x passes
from 100 to 102, the difference between log 102 and log 100 is
the united effect of all the changes which have taken place be-
tween x = 100 and x = 100 1

10
; x = 100 1

10
and x = 100 2

10
, and

so on. Again, the change which takes place between x = 100
and x = 100 1

10
may be further compounded of those which

take place between x = 100 and x = 100 1
100

; x = 100 1
100

and x = 100 2
100

, and so on. The objection becomes of less
force as the increment diminishes, but always exists unless
we take the limit of the ratio of the increments, instead of
that ratio.

How well this answers to our previously formed ideas on
such subjects as direction, velocity, and force, has already
appeared.
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THE INTEGRAL CALCULUS.

We now proceed to the Integral Calculus, which is the
inverse of the Differential Calculus, as will afterwards appear.

We have already shown, that when two functions increase
or decrease without limit, their ratio may either increase or
decrease without limit, or may tend to some finite limit.
Which of these will be the case depends upon the manner in
which the functions are related to their variable and to one
another.

This same proposition may be put in another form, as fol-
lows: If there be two functions, the first of which decreases
without limit, on the same supposition which makes the sec-
ond increase without limit, the product of the two may either
remain finite, and never exceed a certain finite limit; or it
may increase without limit, or diminish without limit.

For example, take cos θ and tan θ. As the angle θ ap-
proaches a right angle, cos θ diminishes without limit; it
is nothing when θ is a right angle; and any fraction being
named, θ can be taken so near to a right angle that cos θ shall
be smaller. Again, as θ approaches to a right angle, tan θ in-
creases without limit; it is called infinite when θ is a right
angle, by which we mean that, let any number be named,
however great, θ can be taken so near a right angle that
tan θ shall be greater. Nevertheless the product cos θ×tan θ,
of which the first factor diminishes without limit, while the
second increases without limit, is always finite, and tends
towards the limit 1; for cos θ × tan θ is always sin θ, which
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last approaches to 1 as θ approaches to a right angle, and
is 1 when θ is a right angle.

Generally, if A diminishes without limit at the same time
as B increases without limit, the product AB may, and of-
ten will, tend towards a finite limit. This product AB is the

representative of A divided by
1

B
or the ratio of A to

1

B
. If

B increases without limit,
1

B
decreases without limit; and as

A also decreases without limit, the ratio of A to
1

B
may have

a finite limit. But it may also diminish without limit; as in
the instance of cos2 θ×tan θ, when θ approaches to a right an-
gle. Here cos2 θ diminishes without limit, and tan θ increases
without limit; but cos2 θ × tan θ being cos θ × sin θ, or a di-
minishing magnitude multiplied by one which remains finite,
diminishes without limit. Or it may increase without limit,
as in the case of cos θ × tan2 θ, which is also sin θ × tan θ;
which last has one factor finite, and the other increasing
without limit. We shall soon see an instance of this.

If we take any numbers, such as 1 and 2, it is evident
that between the two we may interpose any number of frac-
tions, however great, either in arithmetical progression, or
according to any other law. Suppose, for example, we wish
to interpose 9 fractions in arithmetical progression between
1 and 2. These are 1 1

10
, 1 2

10
, etc., up to 1 9

10
; and, gener-

ally, if m fractions in arithmetical progression be interposed
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between a and a+ h, the complete series is

a, a+
h

m+ 1
, a+

2h

m+ 1
, etc., . . .

up to a+
mh

m+ 1
, a+ h. (1)

The sum of these can evidently be made as great as we please,
since no one is less than the given quantity a, and the number
is as great as we please. Again, if we take ϕx, any function
of x, and let the values just written be successively substi-
tuted for x, we shall have the series

ϕa, ϕ

(
a+

h

m+ 1

)
, ϕ

(
a+

2h

m+ 1

)
, etc., . . .

up to ϕ(a+ h); (2)

the sum of which may, in many cases, also be made as great
as we please by sufficiently increasing the number of frac-
tions interposed, that is, by sufficiently increasing m. But
though the two sums increase without limit whenm increases
without limit, it does not therefore follow that their ratio in-
creases without limit; indeed we can show that this cannot
be the case when all the separate terms of (2) remain finite.

For let A be greater than any term in (2), whence, as
there are (m + 2) terms, (m + 2)A is greater than their
sum. Again, every term of (1), except the first, being greater
than a, and the terms being m + 2 in number, (m + 2)a is
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less than the sum of the terms in (1). Consequently,

(m+ 2)A

(m+ 2)a
is greater than the ratio

sum of terms in (2)

sum of terms in (1)
,

since its numerator is greater than the last numerator, and
its denominator less than the last denominator. But

(m+ 2)A

(m+ 2)a
=

A

a
,

which is independent of m, and is a finite quantity. Hence
the ratio of the sums of the terms is always finite, whatever
may be the number of terms, at least unless the terms in (2)
increase without limit.

As the number of interposed values increases, the inter-
val or difference between them diminishes; if, therefore, we
multiply this difference by the sum of the values, or form

h

m+ 1

[
ϕa+ ϕ

(
a+

h

m+ 1

)
+

ϕ

(
a+

2h

m+ 1

)
+ · · ·+ ϕ(a+ h)

]
,

we have a product, one term of which diminishes, and the
other increases, when m is increased. The product may
therefore remain finite, or never pass a certain limit, when
m is increased without limit, and we shall show that this is
the case.
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As an example, let the given function of x be x2, and let
the intermediate values of x be interposed between x = a

and x = a+h. Let v =
h

m+ 1
, whence the above-mentioned

product is

v
{
a2 + (a+ v)2 + (a+ 2v)2 + · · ·+

(
a+ (m+ 1)v

)2}
= (m+ 2)va2 + 2av2{1 + 2 + 3 + · · ·+ (m+ 1)}

+ v3{12 + 22 + 32 + · · ·+ (m+ 1)2};

of which, 1 + 2 + · · · + (m + 1) = 1
2
(m + 1)(m + 2) and

(page 85), 12 + 22 + · · ·+ (m+ 1)2 approaches without limit
to a ratio of equality with 1

3
(m+ 1)3, when m is increased

without limit. Hence this last sum may be put under
the form 1

3
(m + 1)3(1 + α), where α diminishes without

limit when m is increased without limit. Making these

substitutions, and putting for v its value
h

m+ 1
, the above

expression becomes

m+ 2

m+ 1
ha2 +

m+ 2

m+ 1
ha2 + (1 + α)

h3

3
,

in which
m+ 2

m+ 1
has the limit 1 when m increases without

limit, and 1 + α has also the limit 1, since, in that case,
α diminishes without limit. Therefore the limit of the last
expression is

ha2 + ha2 +
h3

3
or

(a+ h)3 − a3

3
.
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This result may be stated as follows: If the variable x,
setting out from a value a, becomes successively a + dx,
a+ 2 dx, etc., until the total increment is h, the smaller dx
is taken, the more nearly will the sum of all the values
of x2 dx, or a2 dx + (a + dx)2 dx + (a + 2 dx)2 dx + etc., be
equal to

(a+ h)3 − a3

3
,

and to this the aforesaid sum may be brought within any
given degree of nearness, by taking dx sufficiently small.

This result is called the integral of x2 dx, between the
limits a and a + h, and is written

∫
x2 dx, when it is not

necessary to specify the limits,
∫ a+h

a
x2 dx, or∗

∫
x2 dx a+h

a ,

or
∫
x2 dx x=a+h

x=a in the contrary case. We now proceed to
show the connexion of this process with the principles of the
Differential Calculus.

CONNEXION OF THE INTEGRAL WITH THE DIFFERENTIAL
CALCULUS.

Let x have the successive values a, a+dx, a+2 dx, etc., . . .
up to a+mdx, or a+h, h being a given quantity, and dx the

∗This notation
∫
x2 dx

a+h
a appears to me to avoid the objections

which may be raised against
∫ a

a+h
x2 dx as contrary to analogy, which

would require that
∫ 2
x2 dx2 should stand for the second integral

of x2 dx. It will be found convenient in such integrals as
∫
z dx

a
b dy

ϕx
0 .

There is as yet no general agreement on this point of notation.—
De Morgan, 1832.
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mth part of h, so that as m is increased without limit, dx is
diminished without limit. Develop the successive values ϕx,
or ϕa, ϕ(a+ dx), . . . (page 23),

ϕa = ϕa,

ϕ(a+ dx) = ϕa + ϕ′a dx + ϕ′′a
(dx)2

2
+ ϕ′′′a

(dx)3

2 · 3
+ etc.,

ϕ(a+ 2 dx) = ϕa + ϕ′a 2 dx + ϕ′′a
(2 dx)2

2
+ ϕ′′′a

(2 dx)3

2 · 3
+ etc.,

ϕ(a+ 3 dx) = ϕa + ϕ′a 3 dx + ϕ′′a
(3 dx)2

2
+ ϕ′′′a

(3 dx)3

2 · 3
+ etc.,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ(a+mdx) = ϕa + ϕ′amdx+ ϕ′′a
(mdx)2

2
+ ϕ′′′a

(mdx)3

2 · 3
+ etc.

If we multiply each development by dx and add the results,
we have a series made up of the following terms, arising from
the different columns,

ϕa × mdx,

ϕ′a × (1 + 2 + 3 + . . .+m ) (dx)2,

ϕ′′a × (12 + 22 + 32 + . . .+m2)
(dx)3

2
,

ϕ′′′a× (13 + 23 + 33 + . . .+m3)
(dx)4

2 · 3
etc.,

and, as in the last example, we may represent (page 85),

1 + 2 + 3 + . . .+m by 1
2
m2(1 + α),
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12 + 22 + 32 + . . .+m2 by 1
3
m3(1 + β),

13 + 23 + 33 + . . .+m3 by 1
4
m4(1 + γ) etc.,

where α, β, γ, etc., diminish without limit, when m is in-
creased without limit. If we substitute these values, and also

put
h

m
instead of dx, we have, for the sum of the terms,

ϕah+ ϕ′a
h2

2
(1 + α) + ϕ′′a

h3

2 · 3
(1 + β)

+ ϕ′′′a
h4

2 · 3 · 4
(1 + γ) + etc.

which, when m is increased without limit, in consequence
of which α, β, etc., diminish without limit, continually ap-
proaches to

ϕah+ ϕ′a
h2

2
+ ϕ′′a

h3

2 · 3
+ ϕ′′′a

h4

2 · 3 · 4
+ etc.,

which is the limit arising from supposing x to increase from a
through a+ dx, a+ 2 dx, etc., up to a+h, multiplying every
value of ϕx so obtained by dx, summing the results, and
decreasing dx without limit.

This is the integral of ϕx dx from x = a to x = a+ h. It
is evident that this series bears a great resemblance to the
development in page 23, deprived of its first term. Let us
suppose that ψa is the function of which ϕa is the differential
coefficient, that is, that ψ′a = ϕa. These two functions being
the same, their differential coefficients will be the same, that
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is, ψ′′a = ϕ′a. Similarly ψ′′′a = ϕ′′a, and so on. Substituting
these, the above series becomes

ψ′a h+ ψ′′a
h2

2
+ ψ′′′a

h3

2 · 3
+ ψiva

h4

2 · 3 · 4
+ etc.,

which is (page 23) the same as ψ(a + h) − ψa. That
is, the integral of ϕx dx between the limits a and a + h,
is ψ(a + h) − ψa, where ψx is the function, which, when
differentiated, gives ϕx. For a + h we may write b, so
that ψb− ψa is the integral of ϕx dx from x = a to x = b.
Or we may make the second limit indefinite by writing x
instead of b, which gives ψx− ψa, which is said to be the
integral of ϕx dx, beginning when x = a, the summation
being supposed to be continued from x = a until x has the
value which it may be convenient to give it.

NATURE OF INTEGRATION.

Hence results a new branch of the inquiry, the reverse of
the Differential Calculus, the object of which is, not to find
the differential coefficient, having given the function, but to
find the function, having given the differential coefficient.
This is called the Integral Calculus.

From the definition given, it is obvious that the value
of an integral is not to be determined, unless we know the
values of x corresponding to the beginning and end of the
summation, whose limit furnishes the integral. We might,
instead of defining the integral in the manner above stated,
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have made the word mean merely the converse of the dif-
ferential coefficient; thus, if ϕx be the differential coefficient
of ψx, ψx might have been called the integral of ϕx dx. We
should then have had to show that the integral, thus de-
fined, is equivalent to the limit of the summation already
explained. We have preferred bringing the former method
before the student first, as it is most analogous to the man-
ner in which he will deduce integrals in questions of geometry
or mechanics.

With the last-mentioned definition, it is also obvious that
every function has an unlimited number of integrals. For
whatever differential coefficient ψx gives, C + ψx will give
the same, if C be a constant, that is, not varying when
x varies. In this case, if x become x + h, C + ψx becomes
C+ψx+ψ′xh+etc., from which the subtraction of the orig-
inal form C + ψx gives ψ′xh + etc.; whence, by the process
in page 26, ψ′x is the differential coefficient of C + ψ′x as
well as of ψx. As many values, therefore, positive or nega-
tive, as can be given to C, so many different integrals can be
found for ψ′x; and these answer to the various limits between
which the summation in our original definition may be made.
To make this problem definite, not only ψ′x the function to
be integrated, must be given, but also that value of x from
which the summation is to begin. If this be a, the integral
of ψ′x is, as before determined, ψx−ψa, and C = −ψa. We
may afterwards end at any value of x which we please. If
x = a, ψx−ψa = 0, as is evident also from the formation of
the integral. We may thus, having given an integral in terms
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of x, find the value at which it began, by equating the inte-
gral to zero, and finding the value of x. Thus, since x2, when
differentiated, gives 2x, x2 is the integral of 2x, beginning at
x = 0; and x2 − 4 is the integral beginning at x = 2.

In the language of Leibnitz, an integral would be the sum
of an infinite number of infinitely small quantities, which are
the differentials or infinitely small increments of a function.
Thus, a circle being, according to him, a rectilinear polygon
of an infinite number of infinitely small sides, the sum of
these would be the circumference of the figure. As before
(pages 14–15, 43 et seq., 55 et seq.) we proceed to interpret
this inaccuracy of language. If, in a circle, we successively
describe regular polygons of 3, 4, 5, 6, etc., sides, we may, by
this means, at last attain to a polygon whose side shall differ
from the arc of which it is the chord, by as small a fraction,
either of the chord or arc, as we please (pages 7–12). That
is, A being the arc, C the chord, and D their difference, there
is no fraction so small that D cannot be made a smaller part
of C. Hence, if m be the number of sides of the polygon,
mC +mD or mA is the real circumference; and since mD is
the same part of mC, which D is of C, mD may be made as
small a part of mC as we please; so that mC, or the sum of
all the sides of the polygon, can be made as nearly equal to
the circumference as we please.

As in other cases, the expressions of Leibnitz are the most
convenient and the shortest, for all who can immediately
put a rational construction upon them; this, and the fact
that, good or bad, they have been, and are, used in the
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works of Lagrange, Laplace, Euler, and many others, which
the student who really desires to know the present state of
physical science, cannot dispense with, must be our excuse
for continually bringing before him modes of speech, which,
taken quite literally, are absurd.

DETERMINATION OF CURVILINEAR AREAS. THE
PARABOLA.

We will now suppose such a part of a curve, each ordinate
of which is a given function of the corresponding abscissa,
as lies between two given ordinates; for example, MPP′M′.
Divide the line MM′ into a number of equal parts, which
we may suppose as great as we please, and construct Fig-
ure 10. Let O be the origin of co-ordinates, and let OM,
the value of x, at which we begin, be a; and OM′, the value
at which we end, be b. Though we have only divided MM′

into four equal parts in the figure, the reasoning to which we
proceed would apply equally, had we divided it into four mil-
lion of parts. The sum of the parallelograms Mr, mr, m′r′′,
and m′′R, is less than the area MPP′M′, the value of which
it is our object to investigate, by the sum of the curvilinear
triangles Prp, pr′p′, p′r′′p′′, and p′′RP′. The sum of these tri-
angles is less than the sum of the parallelograms Qr, qr′, q′r′′,
and q′′R; but these parallelograms are together equal to the
parallelogram q′′w, as appears by inspection of the figure,
since the base of each of the above-mentioned parallelograms
is equal to m′′M, or q′′P′, and the altitude P′w is equal to the
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sum of the altitudes of the same parallelograms. Hence the
sum of the parallelograms Mr, mr′, m′r′′, and m′′R, differs
from the curvilinear area MPP′M′ by less than the parallelo-
gram q′′w. But this last parallelogram may be made as small
as we please by sufficiently increasing the number of parts
into which MM′ is divided; for since one side of it, P′w, is
always less than P′M′, and the other side P′q′′, or m′′M′, is
as small a part as we please of MM′ the number of square
units in q′′w, is the product of the number of linear units in
P′w and P′q′′, the first of which numbers being finite, and
the second as small as we please, the product is as small as
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we please. Hence the curvilinear area MPP′M′ is the limit
towards which we continually approach, but which we never
reach, by dividing MM′ into a greater and greater number of
equal parts, and adding the parallelograms Mr, mr′, etc.,
so obtained. If each of the equal parts into which MM′

is divided be called dx, we have OM = a, Om = a + dx,
Om′ = a+ 2 dx, etc. And MP, mp, m′p′, etc., are the values
of the function which expresses the ordinates, corresponding
to a, a+dx, a+ 2 dx, etc., and may therefore be represented
by ϕa, ϕ(a + dx), ϕ(a + 2 dx), etc. These are the altitudes
of a set of parallelograms, the base of each of which is dx;
hence the sum of their area is

ϕa dx+ ϕ(a+ dx) dx+ ϕ(a+ 2 dx) dx+ etc.,

and the limit of this, to which we approach by diminish-
ing dx, is the area required.

This limit is what we have defined to be the integral
of ϕx dx from x = a to x = b; or if ψx be the function,
which, when differentiated, gives ϕx, it is ψb − ψa. Hence,
y being the ordinate, the area included between the axis of x,
any two values of y, and the portion of the curve they cut
off, is

∫
y dx, beginning at the one ordinate and ending at

the other.
Suppose that the curve is a part of a parabola of which

O is the vertex, and whose equation∗ is therefore y2 = px

∗If the student has not any acquaintance with the conic sections,
he must nevertheless be aware that there is some curve whose abscissa
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where p is the double ordinate which passes through the
focus. Here y = p

1
2x

1
2 , and we must find the integral

of p
1
2x

1
2 dx, or the function whose differential coefficient

is p
1
2x

1
2 , p

1
2 being a constant. If we take the function cxn,

c being independent of x, and substitute x + h for x, we
have for the development cxn + cnxn−1 h + etc. Hence the
differential coefficient of cxn is cnxn−1; and as c and n may
be any numbers or fractions we please, we may take them
such that cn shall = p

1
2 and n− 1 = 1

2
, in which case n = 3

2

and c = 2
3
p

1
2 . Therefore the differential coefficient of 2

3
p

1
2x

3
2

is p
1
2x

1
2 , and conversely, the integral of p

1
2x

1
2 dx is 2

3
p

1
2x

3
2 .

The area MPP′M′ of the parabola is therefore
2
3
p

1
2 b

3
2 − 2

3
p

1
2a

3
2 . If we begin the integral at the vertex O, in

which case a = 0, we have for the area OM′P′, 2
3
p

1
2 b

3
2 , where

b = OM′. This is 2
3
p

1
2 b

1
2 × b, which, since p

1
2 b

1
2 = M′P′ is

2
3
P′M′ ×OM′, or two-thirds of the rectangle∗ contained by

OM′ and M′P′.

METHOD OF INDIVISIBLES.

We may mention, in illustration of the preceding prob-
lem, a method of establishing the principles of the Integral

and ordinate are connected by the equation y2 = px. This, to him,
must be the definition of parabola: by which word he must understand,
a curve whose equation is y2 = px.

∗This proposition is famous as having been discovered by
Archimedes at a time when such a step was one of no small
magnitude.
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Calculus, which generally goes by the name of the Method
of Indivisibles. A line is considered as the sum of an infinite
number of points, a surface of an infinite number of lines,
and a solid of an infinite number of surfaces. One line twice
as long as another would be said to contain twice as many
points, though the number of points in each is unlimited.
To this there are two objections. First, the word infinite,
in this absolute sense, really has no meaning, since it will
be admitted that the mind has no conception of a number
greater than any number. The word infinite∗ can only be
justifiably used as an abbreviation of a distinct and intelligi-

ble proposition; for example, when we say that a+
1

x
is equal

to a when x is infinite, we only mean that as x is increased,

a+
1

x
becomes nearer to a, and may be made as near to it as

we please, if x may be as great as we please. The second ob-
jection is, that the notion of a line being the sum of a number
of points is not true, nor does it approach nearer the truth as
we increase the number of points. If twenty points be taken
on a straight line, the sum of the twenty-one lines which lie
between point and point is equal to the whole line; which
cannot be if the points by themselves constitute any part of
the line, however small. Nor will the sum of the points be
a part of the line, if twenty thousand be taken instead of
twenty. There is then, in this method, neither the rigor of

∗See Study of Mathematics (Chicago: The Open Court Publish-
ing Co.), page 123 et seq.
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geometry, nor that approach to truth, which, in the method
of Leibnitz, may be carried to any extent we please, short
of absolute correctness. We would therefore recommend to
the student not to regard any proposition derived from this
method as true on that account; for falsehoods, as well as
truths, may be deduced from it. Indeed, the primary no-
tion, that the number of points in a line is proportional to
its length, is manifestly incorrect. Suppose (Fig. 6, page 55)
that the point Q moves from A to P. It is evident that in
whatever number of points OQ cuts AP, it cuts MP in the
same number. But PM and PA are not equal. A defender of
the system of indivisibles, if there were such a person, would
say something equivalent to supposing that the points on the
two lines are of different sizes, which would, in fact, be an
abandonment of the method, and an adoption of the idea
of Leibnitz, using the word point to stand for the infinitely
small line.

This notion of indivisibles, or at least a way of speaking
which looks like it, prevails in many works on mechanics.
Though a point is not treated as a length, or as any part of
space whatever, it is considered as having weight; and two
points are spoken of as having different weights. The same
is said of a line and a surface, neither of which can correctly
be supposed to possess weight. If a solid be of the same
density throughout, that is, if the weight of a cubic inch of it
be the same from whatever part it is cut, it is plain that the
weight may be found by finding the number of cubic inches
in the whole, and multiplying this number by the weight of
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one cubic inch. But if the weight of every two cubic inches
is different, we can only find the weight of the whole by the
integral calculus.

Let AB (Fig. 11) be a line possessing weight, or a very
thin parallelepiped of matter, which is such, that if we were
to divide it into any number of equal parts, as in the fig-
ure, the weight of the several parts would be different. We
suppose the weight to vary continuously, that is, if two con-
tiguous parts of equal length be taken, as pq and qr, the
ratio of the weights of these two parts may, by taking them
sufficiently small, be as near to equality as we please.

The density of a body is a mathematical term, which may
be explained as follows: A cubic inch of gold weighs more
than a cubic inch of water; hence gold is denser than water.
If the first weighs 19 times as much as the second, gold is
said to be 19 times more dense than water, or the density
of gold is 19 times that of water. Hence we might define
the density by the weight of a cubic inch of the substance,
but it is usual to take, not this weight, but the proportion
which it bears to the same weight of water. Thus, when
we say the density, or specific gravity (these terms are used
indifferently), of cast iron is 7.207, we mean that if any vessel
of pure water were emptied and filled with cast iron, the iron
would weigh 7.207 times as much as the water.

If the density of a body were uniform throughout, we
might easily determine it by dividing the weight of any bulk
of the body, by the weight of an equal bulk of water. In the
same manner (pages 60 et seq.) we could, from our defini-
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tion of velocity, determine any uniform velocity by dividing
the length described by the time. But if the density vary
continuously, no such measure can be adopted. For if by the
side of AB (which we will suppose to be of iron) we placed
a similar body of water similarly divided, and if we divided
the weight of the part pq of iron by the weight of the same
part of water, we should get different densities, according
as the part pq is longer or shorter. The water is supposed
to be homogeneous, that is, any part of it pr, being twice
the length of pq, is twice the weight of pq, and so on. The
iron, on the contrary, being supposed to vary in density, the
doubling the length gives either more or less than twice the
weight. But if we suppose q to move towards p, both on the
iron and the water, the limit of the ratio pq of iron to pq of
water, may be chosen as a measure of the density of p, on the
same principle as in pages 63–64, the limit of the ratio of the
length described to the time of describing it, was called the
velocity. If we call k this limit, and if the weight varies con-
tinuously, though no part pq, however small, of iron, would
be exactly k times the same part of water in weight, we may
nevertheless take pq so small that these weights shall be as
nearly as we please in the ratio of k to 1.

Let us now suppose that this density, expressed by the
limiting ratio aforesaid, is always x2 at any point whose dis-
tance from A is x feet; that is, the density at q, 2 feet distance
from A, is 4, and so on. Let the whole distance AB = a. If
we divide a into n equal parts, each of which is dx, so that
n dx = a, and if we call b the area of the section of the par-
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allelepiped, (b being a fraction of a square foot,) the solid
content of each of the parts will be b dx in cubic feet; and if
w be the weight of a cubic foot of water, the weight of the
same bulk of water will be wb dx. If the solid AB were homo-
geneous in the immediate neighborhood of the point p, the
density being then x2, would give x2 × bw dx for the weight
of the same part of the substance. This is not true, but can
be brought as near to the truth as we please, by taking dx
sufficiently small, or dividing AB into a sufficient number of
parts. Hence the real weight of pq may be represented by
bwx2 dx + α, where α may be made as small a part as we
please of the term which precedes it.

In the sum of any number of these terms, the sum arising
from the term α diminishes without limit as compared with
the sum arising from the term bwx2 dx; for if α be less than
the thousandth part of p, α′ less than the thousandth part
of p′, etc., then α+α′+etc. will be less than the thousandth
part of p + p′ + etc.: which is also true of any number of
quantities, and of any fraction, however small, which each
term of one set is of its corresponding term in the other.
Hence the taking of the integral of bwx2 dx dispenses with
the necessity of considering the term α; for in taking the
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integral, we find a limit which supposes dx to have decreased
without limit, and the integral which would arise from α has
therefore diminished without limit.

The integral of bwx2 dx is 1
3
bwx3, which taken from x = 0

to x = a is 1
3
bwa3. This is therefore the weight in pounds of

the bar whose length is a feet, and whose section is b square
feet, when the density at any point distant by x feet from
the beginning is x2; w being the weight in pounds of a cubic
foot of water.

CONCLUDING REMARKS ON THE STUDY OF THE
CALCULUS.

We would recommend it to the student, in pursuing any
problem of the Integral Calculus, never for one moment to
lose sight of the manner in which he would do it, if a rough
solution for practical purposes only were required. Thus, if
he has the area of a curve to find, instead of merely say-
ing that y, the ordinate, being a certain function of the ab-
scissa x,

∫
y dx within the given limits would be the area

required; and then proceeding to the mechanical solution of
the question: let him remark that if an approximate solu-
tion only were required, it might be obtained by dividing
the curvilinear area into a number of four-sided figures, as
in Figure 10, one side of which only is curvilinear, and em-
bracing so small an arc that it may, without visible error, be
considered as rectilinear. The mathematical method begins
with the same principle, investigating upon this supposition,
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not the sum of these rectilinear areas, but the limit towards
which this sum approaches, as the subdivision is rendered
more minute. This limit is shown to be that of which we are
in search, since it is proved that the error diminishes without
limit, as the subdivision is indefinitely continued.

We now leave our reader to any elementary work which
may fall in his way, having done our best to place before him
those considerations, something equivalent to which he must
turn over in his mind before he can understand the subject.
The method so generally followed in our elementary works,
of leading the student at once into the mechanical processes
of the science, postponing entirely all other considerations,
is to many students a source of obscurity at least, if not
an absolute impediment to their progress; since they cannot
imagine what is the object of that which they are required to
do. That they shall understand everything contained in these
treatises, on the first or second reading, we cannot promise;
but that the want of illustration and the preponderance of
technical reasoning are the great causes of the difficulties
which students experience, is the opinion of many who have
had experience in teaching this subject.
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Laurent, H.: Traité d’analyse. 7 vols in—8. Paris: Gauthier-
Villars et fils. 1885–1891. 73 fr. $21.90.

The most extensive existing treatise on the Calculus.
A general handbook and work of reference for the results
contained in the more special works and memoirs.
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