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PREFACE

This book is intended essentially as an “Introduction,” and
does not aim at giving an exhaustive discussion of the problems
with which it deals. It seemed desirable to set forth certain
results, hitherto only available to those who have mastered log-
ical symbolism, in a form offering the minimum of difficulty to
the beginner. The utmost endeavour has been made to avoid
dogmatism on such questions as are still open to serious doubt,
and this endeavour has to some extent dominated the choice
of topics considered. The beginnings of mathematical logic are
less definitely known than its later portions, but are of at least
equal philosophical interest. Much of what is set forth in the
following chapters is not properly to be called “philosophy,”
though the matters concerned were included in philosophy so
long as no satisfactory science of them existed. The nature of
infinity and continuity, for example, belonged in former days
to philosophy, but belongs now to mathematics. Mathemati-
cal philosophy, in the strict sense, cannot, perhaps, be held to
include such definite scientific results as have been obtained in
this region; the philosophy of mathematics will naturally be
expected to deal with questions on the frontier of knowledge, as
to which comparative certainty is not yet attained. But spec-
ulation on such questions is hardly likely to be fruitful unless
the more scientific parts of the principles of mathematics are
known. A book dealing with those parts may, therefore, claim
to be an introduction to mathematical philosophy, though it
can hardly claim, except where it steps outside its province,
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Preface iv

to be actually dealing with a part of philosophy. It does deal,
however, with a body of knowledge which, to those who ac-
cept it, appears to invalidate much traditional philosophy, and
even a good deal of what is current in the present day. In
this way, as well as by its bearing on still unsolved problems,
mathematical logic is relevant to philosophy. For this reason,
as well as on account of the intrinsic importance of the sub-
ject, some purpose may be served by a succinct account of the
main results of mathematical logic in a form requiring neither
a knowledge of mathematics nor an aptitude for mathematical
symbolism. Here, however, as elsewhere, the method is more
important than the results, from the point of view of further
research; and the method cannot well be explained within the
framework of such a book as the following. It is to be hoped
that some readers may be sufficiently interested to advance to
a study of the method by which mathematical logic can be
made helpful in investigating the traditional problems of phi-
losophy. But that is a topic with which the following pages
have not attempted to deal.

BERTRAND RUSSELL.



EDITOR’S NOTE

Those who, relying on the distinction between Mathematical
Philosophy and the Philosophy of Mathematics, think that this
book is out of place in the present Library, may be referred
to what the author himself says on this head in the Preface.
It is not necessary to agree with what he there suggests as
to the readjustment of the field of philosophy by the transfer-
ence from it to mathematics of such problems as those of class,
continuity, infinity, in order to perceive the bearing of the defi-
nitions and discussions that follow on the work of “traditional
philosophy.” If philosophers cannot consent to relegate the
criticism of these categories to any of the special sciences, it
is essential, at any rate, that they should know the precise
meaning that the science of mathematics, in which these con-
cepts play so large a part, assigns to them. If, on the other
hand, there be mathematicians to whom these definitions and
discussions seem to be an elaboration and complication of the
simple, it may be well to remind them from the side of philos-
ophy that here, as elsewhere, apparent simplicity may conceal
a complexity which it is the business of somebody, whether
philosopher or mathematician, or, like the author of this vol-
ume, both in one, to unravel.
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Introduction to

Mathematical Philosophy

CHAPTER I

THE SERIES OF NATURAL NUMBERS

Mathematics is a study which, when we start from its most
familiar portions, may be pursued in either of two opposite di-
rections. The more familiar direction is constructive, towards
gradually increasing complexity: from integers to fractions,
real numbers, complex numbers; from addition and multiplica-
tion to differentiation and integration, and on to higher math-
ematics. The other direction, which is less familiar, proceeds,
by analysing, to greater and greater abstractness and logical
simplicity; instead of asking what can be defined and deduced
from what is assumed to begin with, we ask instead what more
general ideas and principles can be found, in terms of which
what was our starting-point can be defined or deduced. It is
the fact of pursuing this opposite direction that characterises
mathematical philosophy as opposed to ordinary mathemat-
ics. But it should be understood that the distinction is one,
not in the subject matter, but in the state of mind of the in-
vestigator. Early Greek geometers, passing from the empirical
rules of Egyptian land-surveying to the general propositions by
which those rules were found to be justifiable, and thence to
Euclid’s axioms and postulates, were engaged in mathematical
philosophy, according to the above definition; but when once
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The Series of Natural Numbers 2

the axioms and postulates had been reached, their deductive
employment, as we find it in Euclid, belonged to mathematics
in the ordinary sense. The distinction between mathematics
and mathematical philosophy is one which depends upon the
interest inspiring the research, and upon the stage which the
research has reached; not upon the propositions with which
the research is concerned.

We may state the same distinction in another way. The
most obvious and easy things in mathematics are not those
that come logically at the beginning; they are things that,
from the point of view of logical deduction, come somewhere
in the middle. Just as the easiest bodies to see are those
that are neither very near nor very far, neither very small nor
very great, so the easiest conceptions to grasp are those that
are neither very complex nor very simple (using “simple” in
a logical sense). And as we need two sorts of instruments,
the telescope and the microscope, for the enlargement of our
visual powers, so we need two sorts of instruments for the en-
largement of our logical powers, one to take us forward to the
higher mathematics, the other to take us backward to the log-
ical foundations of the things that we are inclined to take for
granted in mathematics. We shall find that by analysing our
ordinary mathematical notions we acquire fresh insight, new
powers, and the means of reaching whole new mathematical
subjects by adopting fresh lines of advance after our backward
journey. It is the purpose of this book to explain mathemat-
ical philosophy simply and untechnically, without enlarging
upon those portions which are so doubtful or difficult that an
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elementary treatment is scarcely possible. A full treatment
will be found in Principia Mathematica;1 the treatment in the
present volume is intended merely as an introduction.

To the average educated person of the present day, the
obvious starting-point of mathematics would be the series of
whole numbers,

1, 2, 3, 4, . . . etc.

Probably only a person with some mathematical knowledge
would think of beginning with 0 instead of with 1, but we will
presume this degree of knowledge; we will take as our starting-
point the series:

0, 1, 2, 3, . . . n, n+ 1, . . .

and it is this series that we shall mean when we speak of the
“series of natural numbers.”

It is only at a high stage of civilisation that we could take
this series as our starting-point. It must have required many
ages to discover that a brace of pheasants and a couple of days
were both instances of the number 2: the degree of abstraction
involved is far from easy. And the discovery that 1 is a number
must have been difficult. As for 0, it is a very recent addition;
the Greeks and Romans had no such digit. If we had been
embarking upon mathematical philosophy in earlier days, we
should have had to start with something less abstract than the
series of natural numbers, which we should reach as a stage

1Cambridge University Press, vol. i., 1910; vol. ii., 1911; vol. iii., 1913.
By Whitehead and Russell.
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on our backward journey. When the logical foundations of
mathematics have grown more familiar, we shall be able to
start further back, at what is now a late stage in our analysis.
But for the moment the natural numbers seem to represent
what is easiest and most familiar in mathematics.

But though familiar, they are not understood. Very few
people are prepared with a definition of what is meant by
“number,” or “0,” or “1.” It is not very difficult to see that,
starting from 0, any other of the natural numbers can be
reached by repeated additions of 1, but we shall have to define
what we mean by “adding 1,” and what we mean by “re-
peated.” These questions are by no means easy. It was be-
lieved until recently that some, at least, of these first notions of
arithmetic must be accepted as too simple and primitive to be
defined. Since all terms that are defined are defined by means
of other terms, it is clear that human knowledge must always
be content to accept some terms as intelligible without defini-
tion, in order to have a starting-point for its definitions. It is
not clear that there must be terms which are incapable of def-
inition: it is possible that, however far back we go in defining,
we always might go further still. On the other hand, it is also
possible that, when analysis has been pushed far enough, we
can reach terms that really are simple, and therefore logically
incapable of the sort of definition that consists in analysing.
This is a question which it is not necessary for us to decide;
for our purposes it is sufficient to observe that, since human
powers are finite, the definitions known to us must always be-
gin somewhere, with terms undefined for the moment, though
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perhaps not permanently.
All traditional pure mathematics, including analytical ge-

ometry, may be regarded as consisting wholly of propositions
about the natural numbers. That is to say, the terms which
occur can be defined by means of the natural numbers, and
the propositions can be deduced from the properties of the
natural numbers—with the addition, in each case, of the ideas
and propositions of pure logic.

That all traditional pure mathematics can be derived from
the natural numbers is a fairly recent discovery, though it had
long been suspected. Pythagoras, who believed that not only
mathematics, but everything else could be deduced from num-
bers, was the discoverer of the most serious obstacle in the
way of what is called the “arithmetising” of mathematics. It
was Pythagoras who discovered the existence of incommensu-
rables, and, in particular, the incommensurability of the side
of a square and the diagonal. If the length of the side is 1 inch,
the number of inches in the diagonal is the square root of 2,
which appeared not to be a number at all. The problem thus
raised was solved only in our own day, and was only solved
completely by the help of the reduction of arithmetic to logic,
which will be explained in following chapters. For the present,
we shall take for granted the arithmetisation of mathematics,
though this was a feat of the very greatest importance.

Having reduced all traditional pure mathematics to the
theory of the natural numbers, the next step in logical analysis
was to reduce this theory itself to the smallest set of premisses
and undefined terms from which it could be derived. This
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work was accomplished by Peano. He showed that the entire
theory of the natural numbers could be derived from three
primitive ideas and five primitive propositions in addition to
those of pure logic. These three ideas and five propositions
thus became, as it were, hostages for the whole of traditional
pure mathematics. If they could be defined and proved in
terms of others, so could all pure mathematics. Their logical
“weight,” if one may use such an expression, is equal to that of
the whole series of sciences that have been deduced from the
theory of the natural numbers; the truth of this whole series is
assured if the truth of the five primitive propositions is guar-
anteed, provided, of course, that there is nothing erroneous in
the purely logical apparatus which is also involved. The work
of analysing mathematics is extraordinarily facilitated by this
work of Peano’s.

The three primitive ideas in Peano’s arithmetic are:

0, number, successor.

By “successor” he means the next number in the natural order.
That is to say, the successor of 0 is 1, the successor of 1 is 2,
and so on. By “number” he means, in this connection, the
class of the natural numbers.1 He is not assuming that we
know all the members of this class, but only that we know
what we mean when we say that this or that is a number, just
as we know what we mean when we say “Jones is a man,”
though we do not know all men individually.

1We shall use “number” in this sense in the present chapter. After-
wards the word will be used in a more general sense.
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The five primitive propositions which Peano assumes are:

(1) 0 is a number.

(2) The successor of any number is a number.

(3) No two numbers have the same successor.

(4) 0 is not the successor of any number.

(5) Any property which belongs to 0, and also to the suc-
cessor of every number which has the property, belongs
to all numbers.

The last of these is the principle of mathematical induction.
We shall have much to say concerning mathematical induction
in the sequel; for the present, we are concerned with it only as
it occurs in Peano’s analysis of arithmetic.

Let us consider briefly the kind of way in which the the-
ory of the natural numbers results from these three ideas and
five propositions. To begin with, we define 1 as “the successor
of 0,” 2 as “the successor of 1,” and so on. We can obviously
go on as long as we like with these definitions, since, in virtue
of (2), every number that we reach will have a successor, and,
in virtue of (3), this cannot be any of the numbers already
defined, because, if it were, two different numbers would have
the same successor; and in virtue of (4) none of the numbers
we reach in the series of successors can be 0. Thus the series of
successors gives us an endless series of continually new num-
bers. In virtue of (5) all numbers come in this series, which
begins with 0 and travels on through successive successors: for
(a) 0 belongs to this series, and (b) if a number n belongs to
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it, so does its successor, whence, by mathematical induction,
every number belongs to the series.

Suppose we wish to define the sum of two numbers. Taking
any number m, we define m+ 0 as m, and m+ (n+ 1) as the
successor of m+n. In virtue of (5) this gives a definition of the
sum of m and n, whatever number n may be. Similarly we can
define the product of any two numbers. The reader can easily
convince himself that any ordinary elementary proposition of
arithmetic can be proved by means of our five premisses, and
if he has any difficulty he can find the proof in Peano.

It is time now to turn to the considerations which make
it necessary to advance beyond the standpoint of Peano, who
represents the last perfection of the “arithmetisation” of math-
ematics, to that of Frege, who first succeeded in “logicising”
mathematics, i.e. in reducing to logic the arithmetical notions
which his predecessors had shown to be sufficient for math-
ematics. We shall not, in this chapter, actually give Frege’s
definition of number and of particular numbers, but we shall
give some of the reasons why Peano’s treatment is less final
than it appears to be.

In the first place, Peano’s three primitive ideas—namely,
“0,” “number,” and “successor”—are capable of an infinite
number of different interpretations, all of which will satisfy
the five primitive propositions. We will give some examples.

(1) Let “0” be taken to mean 100, and let “number” be
taken to mean the numbers from 100 onward in the series
of natural numbers. Then all our primitive propositions are
satisfied, even the fourth, for, though 100 is the successor of 99,
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99 is not a “number” in the sense which we are now giving to
the word “number.” It is obvious that any number may be
substituted for 100 in this example.

(2) Let “0” have its usual meaning, but let “number” mean
what we usually call “even numbers,” and let the “successor”
of a number be what results from adding two to it. Then
“1” will stand for the number two, “2” will stand for the num-
ber four, and so on; the series of “numbers” now will be

0, two, four, six, eight . . . .

All Peano’s five premisses are satisfied still.
(3) Let “0” mean the number one, let “number” mean the

set
1, 1

2
, 1

4
, 1

8
, 1

16
, . . .

and let “successor” mean “half.” Then all Peano’s five axioms
will be true of this set.

It is clear that such examples might be multiplied indefi-
nitely. In fact, given any series

x0, x1, x2, x3, . . . xn, . . .

which is endless, contains no repetitions, has a beginning, and
has no terms that cannot be reached from the beginning in a
finite number of steps, we have a set of terms verifying Peano’s
axioms. This is easily seen, though the formal proof is some-
what long. Let “0” mean x0, let “number” mean the whole set
of terms, and let the “successor” of xn mean xn+1. Then

(1) “0 is a number,” i.e. x0 is a member of the set.
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(2) “The successor of any number is a number,” i.e. taking
any term xn in the set, xn+1 is also in the set.

(3) “No two numbers have the same successor,” i.e. if xm
and xn are two different members of the set, xm+1 and xn+1

are different; this results from the fact that (by hypothesis)
there are no repetitions in the set.

(4) “0 is not the successor of any number,” i.e. no term in
the set comes before x0.

(5) This becomes: Any property which belongs to x0, and
belongs to xn+1 provided it belongs to xn, belongs to all the x’s.

This follows from the corresponding property for numbers.
A series of the form

x0, x1, x2, . . . xn, . . .

in which there is a first term, a successor to each term (so that
there is no last term), no repetitions, and every term can be
reached from the start in a finite number of steps, is called a
progression. Progressions are of great importance in the prin-
ciples of mathematics. As we have just seen, every progression
verifies Peano’s five axioms. It can be proved, conversely, that
every series which verifies Peano’s five axioms is a progression.
Hence these five axioms may be used to define the class of pro-
gressions: “progressions” are “those series which verify these
five axioms.” Any progression may be taken as the basis of
pure mathematics: we may give the name “0” to its first term,
the name “number” to the whole set of its terms, and the
name “successor” to the next in the progression. The progres-
sion need not be composed of numbers: it may be composed
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of points in space, or moments of time, or any other terms
of which there is an infinite supply. Each different progression
will give rise to a different interpretation of all the propositions
of traditional pure mathematics; all these possible interpreta-
tions will be equally true.

In Peano’s system there is nothing to enable us to distin-
guish between these different interpretations of his primitive
ideas. It is assumed that we know what is meant by “0,”
and that we shall not suppose that this symbol means 100 or
Cleopatra’s Needle or any of the other things that it might
mean.

This point, that “0” and “number” and “successor” can-
not be defined by means of Peano’s five axioms, but must be
independently understood, is important. We want our num-
bers not merely to verify mathematical formulæ, but to apply
in the right way to common objects. We want to have ten
fingers and two eyes and one nose. A system in which “1”
meant 100, and “2” meant 101, and so on, might be all right
for pure mathematics, but would not suit daily life. We want
“0” and “number” and “successor” to have meanings which
will give us the right allowance of fingers and eyes and noses.
We have already some knowledge (though not sufficiently ar-
ticulate or analytic) of what we mean by “1” and “2” and so
on, and our use of numbers in arithmetic must conform to this
knowledge. We cannot secure that this shall be the case by
Peano’s method; all that we can do, if we adopt his method,
is to say “we know what we mean by ‘0’ and ‘number’ and
‘successor,’ though we cannot explain what we mean in terms
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of other simpler concepts.” It is quite legitimate to say this
when we must, and at some point we all must; but it is the
object of mathematical philosophy to put off saying it as long
as possible. By the logical theory of arithmetic we are able to
put it off for a very long time.

It might be suggested that, instead of setting up “0” and
“number” and “successor” as terms of which we know the
meaning although we cannot define them, we might let them
stand for any three terms that verify Peano’s five axioms.
They will then no longer be terms which have a meaning that
is definite though undefined: they will be “variables,” terms
concerning which we make certain hypotheses, namely, those
stated in the five axioms, but which are otherwise undeter-
mined. If we adopt this plan, our theorems will not be proved
concerning an ascertained set of terms called “the natural num-
bers,” but concerning all sets of terms having certain proper-
ties. Such a procedure is not fallacious; indeed for certain
purposes it represents a valuable generalisation. But from two
points of view it fails to give an adequate basis for arithmetic.
In the first place, it does not enable us to know whether there
are any sets of terms verifying Peano’s axioms; it does not even
give the faintest suggestion of any way of discovering whether
there are such sets. In the second place, as already observed,
we want our numbers to be such as can be used for counting
common objects, and this requires that our numbers should
have a definite meaning, not merely that they should have
certain formal properties. This definite meaning is defined by
the logical theory of arithmetic.



CHAPTER II

DEFINITION OF NUMBER

The question “What is a number?” is one which has been
often asked, but has only been correctly answered in our own
time. The answer was given by Frege in 1884, in his Grund-
lagen der Arithmetik.1 Although this book is quite short, not
difficult, and of the very highest importance, it attracted al-
most no attention, and the definition of number which it con-
tains remained practically unknown until it was rediscovered
by the present author in 1901.

In seeking a definition of number, the first thing to be clear
about is what we may call the grammar of our inquiry. Many
philosophers, when attempting to define number, are really
setting to work to define plurality, which is quite a different
thing. Number is what is characteristic of numbers, as man is
what is characteristic of men. A plurality is not an instance
of number, but of some particular number. A trio of men, for
example, is an instance of the number 3, and the number 3
is an instance of number; but the trio is not an instance of
number. This point may seem elementary and scarcely worth
mentioning; yet it has proved too subtle for the philosophers,
with few exceptions.

A particular number is not identical with any collection
of terms having that number: the number 3 is not identical

1The same answer is given more fully and with more development in
his Grundgesetze der Arithmetik, vol. i., 1893.

13



Definition of Number 14

with the trio consisting of Brown, Jones, and Robinson. The
number 3 is something which all trios have in common, and
which distinguishes them from other collections. A number is
something that characterises certain collections, namely, those
that have that number.

Instead of speaking of a “collection,” we shall as a rule
speak of a “class,” or sometimes a “set.” Other words used in
mathematics for the same thing are “aggregate” and “mani-
fold.” We shall have much to say later on about classes. For
the present, we will say as little as possible. But there are
some remarks that must be made immediately.

A class or collection may be defined in two ways that at
first sight seem quite distinct. We may enumerate its mem-
bers, as when we say, “The collection I mean is Brown, Jones,
and Robinson.” Or we may mention a defining property, as
when we speak of “mankind” or “the inhabitants of London.”
The definition which enumerates is called a definition by “ex-
tension,” and the one which mentions a defining property is
called a definition by “intension.” Of these two kinds of defini-
tion, the one by intension is logically more fundamental. This
is shown by two considerations: (1) that the extensional def-
inition can always be reduced to an intensional one; (2) that
the intensional one often cannot even theoretically be reduced
to the extensional one. Each of these points needs a word of
explanation.

(1) Brown, Jones, and Robinson all of them possess a cer-
tain property which is possessed by nothing else in the whole
universe, namely, the property of being either Brown or Jones
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or Robinson. This property can be used to give a definition
by intension of the class consisting of Brown and Jones and
Robinson. Consider such a formula as “x is Brown or x is
Jones or x is Robinson.” This formula will be true for just
three x’s, namely, Brown and Jones and Robinson. In this
respect it resembles a cubic equation with its three roots. It
may be taken as assigning a property common to the mem-
bers of the class consisting of these three men, and peculiar
to them. A similar treatment can obviously be applied to any
other class given in extension.

(2) It is obvious that in practice we can often know a great
deal about a class without being able to enumerate its mem-
bers. No one man could actually enumerate all men, or even
all the inhabitants of London, yet a great deal is known about
each of these classes. This is enough to show that definition
by extension is not necessary to knowledge about a class. But
when we come to consider infinite classes, we find that enu-
meration is not even theoretically possible for beings who only
live for a finite time. We cannot enumerate all the natural
numbers: they are 0, 1, 2, 3, and so on. At some point we
must content ourselves with “and so on.” We cannot enumer-
ate all fractions or all irrational numbers, or all of any other
infinite collection. Thus our knowledge in regard to all such
collections can only be derived from a definition by intension.

These remarks are relevant, when we are seeking the def-
inition of number, in three different ways. In the first place,
numbers themselves form an infinite collection, and cannot
therefore be defined by enumeration. In the second place, the
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collections having a given number of terms themselves pre-
sumably form an infinite collection: it is to be presumed, for
example, that there are an infinite collection of trios in the
world, for if this were not the case the total number of things
in the world would be finite, which, though possible, seems un-
likely. In the third place, we wish to define “number” in such
a way that infinite numbers may be possible; thus we must be
able to speak of the number of terms in an infinite collection,
and such a collection must be defined by intension, i.e. by a
property common to all its members and peculiar to them.

For many purposes, a class and a defining characteristic of
it are practically interchangeable. The vital difference between
the two consists in the fact that there is only one class having a
given set of members, whereas there are always many different
characteristics by which a given class may be defined. Men
may be defined as featherless bipeds, or as rational animals,
or (more correctly) by the traits by which Swift delineates
the Yahoos. It is this fact that a defining characteristic is
never unique which makes classes useful; otherwise we could
be content with the properties common and peculiar to their
members.1 Any one of these properties can be used in place
of the class whenever uniqueness is not important.

Returning now to the definition of number, it is clear
that number is a way of bringing together certain collections,
namely, those that have a given number of terms. We can

1As will be explained later, classes may be regarded as logical fictions,
manufactured out of defining characteristics. But for the present it will
simplify our exposition to treat classes as if they were real.
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suppose all couples in one bundle, all trios in another, and
so on. In this way we obtain various bundles of collections,
each bundle consisting of all the collections that have a certain
number of terms. Each bundle is a class whose members are
collections, i.e. classes; thus each is a class of classes. The
bundle consisting of all couples, for example, is a class of
classes: each couple is a class with two members, and the
whole bundle of couples is a class with an infinite number of
members, each of which is a class of two members.

How shall we decide whether two collections are to belong
to the same bundle? The answer that suggests itself is: “Find
out how many members each has, and put them in the same
bundle if they have the same number of members.” But this
presupposes that we have defined numbers, and that we know
how to discover how many terms a collection has. We are
so used to the operation of counting that such a presupposi-
tion might easily pass unnoticed. In fact, however, counting,
though familiar, is logically a very complex operation; more-
over it is only available, as a means of discovering how many
terms a collection has, when the collection is finite. Our defi-
nition of number must not assume in advance that all numbers
are finite; and we cannot in any case, without a vicious circle,
use counting to define numbers, because numbers are used in
counting. We need, therefore, some other method of deciding
when two collections have the same number of terms.

In actual fact, it is simpler logically to find out whether two
collections have the same number of terms than it is to define
what that number is. An illustration will make this clear. If
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there were no polygamy or polyandry anywhere in the world,
it is clear that the number of husbands living at any moment
would be exactly the same as the number of wives. We do not
need a census to assure us of this, nor do we need to know what
is the actual number of husbands and of wives. We know the
number must be the same in both collections, because each
husband has one wife and each wife has one husband. The
relation of husband and wife is what is called “one-one.”

A relation is said to be “one-one” when, if x has the relation
in question to y, no other term x′ has the same relation to y,
and x does not have the same relation to any term y′ other
than y. When only the first of these two conditions is fulfilled,
the relation is called “one-many”; when only the second is
fulfilled, it is called “many-one.” It should be observed that
the number 1 is not used in these definitions.

In Christian countries, the relation of husband to wife is
one-one; in Mahometan countries it is one-many; in Tibet it
is many-one. The relation of father to son is one-many; that
of son to father is many-one, but that of eldest son to father
is one-one. If n is any number, the relation of n to n + 1
is one-one; so is the relation of n to 2n or to 3n. When we
are considering only positive numbers, the relation of n to n2

is one-one; but when negative numbers are admitted, it be-
comes two-one, since n and −n have the same square. These
instances should suffice to make clear the notions of one-one,
one-many, and many-one relations, which play a great part
in the principles of mathematics, not only in relation to the
definition of numbers, but in many other connections.



Introduction to Mathematical Philosophy 19

Two classes are said to be “similar” when there is a one-
one relation which correlates the terms of the one class each
with one term of the other class, in the same manner in which
the relation of marriage correlates husbands with wives. A few
preliminary definitions will help us to state this definition more
precisely. The class of those terms that have a given relation
to something or other is called the domain of that relation:
thus fathers are the domain of the relation of father to child,
husbands are the domain of the relation of husband to wife,
wives are the domain of the relation of wife to husband, and
husbands and wives together are the domain of the relation
of marriage. The relation of wife to husband is called the
converse of the relation of husband to wife. Similarly less is
the converse of greater, later is the converse of earlier, and so
on. Generally, the converse of a given relation is that relation
which holds between y and x whenever the given relation holds
between x and y. The converse domain of a relation is the
domain of its converse: thus the class of wives is the converse
domain of the relation of husband to wife. We may now state
our definition of similarity as follows:—

One class is said to be “similar” to another when there is
a one-one relation of which the one class is the domain, while
the other is the converse domain.

It is easy to prove (1) that every class is similar to itself,
(2) that if a class α is similar to a class β, then β is similar
to α, (3) that if α is similar to β and β to γ, then α is similar
to γ. A relation is said to be reflexive when it possesses the
first of these properties, symmetrical when it possesses the
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second, and transitive when it possesses the third. It is obvious
that a relation which is symmetrical and transitive must be
reflexive throughout its domain. Relations which possess these
properties are an important kind, and it is worth while to note
that similarity is one of this kind of relations.

It is obvious to common sense that two finite classes have
the same number of terms if they are similar, but not other-
wise. The act of counting consists in establishing a one-one
correlation between the set of objects counted and the nat-
ural numbers (excluding 0) that are used up in the process.
Accordingly common sense concludes that there are as many
objects in the set to be counted as there are numbers up to the
last number used in the counting. And we also know that, so
long as we confine ourselves to finite numbers, there are just
n numbers from 1 up to n. Hence it follows that the last num-
ber used in counting a collection is the number of terms in the
collection, provided the collection is finite. But this result, be-
sides being only applicable to finite collections, depends upon
and assumes the fact that two classes which are similar have
the same number of terms; for what we do when we count
(say) 10 objects is to show that the set of these objects is sim-
ilar to the set of numbers 1 to 10. The notion of similarity
is logically presupposed in the operation of counting, and is
logically simpler though less familiar. In counting, it is nec-
essary to take the objects counted in a certain order, as first,
second, third, etc., but order is not of the essence of number:
it is an irrelevant addition, an unnecessary complication from
the logical point of view. The notion of similarity does not
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demand an order: for example, we saw that the number of
husbands is the same as the number of wives, without having
to establish an order of precedence among them. The notion of
similarity also does not require that the classes which are sim-
ilar should be finite. Take, for example, the natural numbers
(excluding 0) on the one hand, and the fractions which have
1 for their numerator on the other hand: it is obvious that we
can correlate 2 with 1

2
, 3 with 1

3
, and so on, thus proving that

the two classes are similar.
We may thus use the notion of “similarity” to decide when

two collections are to belong to the same bundle, in the sense
in which we were asking this question earlier in this chapter.
We want to make one bundle containing the class that has
no members: this will be for the number 0. Then we want a
bundle of all the classes that have one member: this will be
for the number 1. Then, for the number 2, we want a bundle
consisting of all couples; then one of all trios; and so on. Given
any collection, we can define the bundle it is to belong to as
being the class of all those collections that are “similar” to it.
It is very easy to see that if (for example) a collection has three
members, the class of all those collections that are similar to
it will be the class of trios. And whatever number of terms a
collection may have, those collections that are “similar” to it
will have the same number of terms. We may take this as a
definition of “having the same number of terms.” It is obvious
that it gives results conformable to usage so long as we confine
ourselves to finite collections.

So far we have not suggested anything in the slightest de-
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gree paradoxical. But when we come to the actual definition
of numbers we cannot avoid what must at first sight seem a
paradox, though this impression will soon wear off. We natu-
rally think that the class of couples (for example) is something
different from the number 2. But there is no doubt about the
class of couples: it is indubitable and not difficult to define,
whereas the number 2, in any other sense, is a metaphysical
entity about which we can never feel sure that it exists or
that we have tracked it down. It is therefore more prudent to
content ourselves with the class of couples, which we are sure
of, than to hunt for a problematical number 2 which must
always remain elusive. Accordingly we set up the following
definition:—

The number of a class is the class of all those classes that
are similar to it.

Thus the number of a couple will be the class of all cou-
ples. In fact, the class of all couples will be the number 2,
according to our definition. At the expense of a little oddity,
this definition secures definiteness and indubitableness; and it
is not difficult to prove that numbers so defined have all the
properties that we expect numbers to have.

We may now go on to define numbers in general as any one
of the bundles into which similarity collects classes. A number
will be a set of classes such as that any two are similar to each
other, and none outside the set are similar to any inside the
set. In other words, a number (in general) is any collection
which is the number of one of its members; or, more simply
still:
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A number is anything which is the number of some class.
Such a definition has a verbal appearance of being circular,

but in fact it is not. We define “the number of a given class”
without using the notion of number in general; therefore we
may define number in general in terms of “the number of a
given class” without committing any logical error.

Definitions of this sort are in fact very common. The class
of fathers, for example, would have to be defined by first defin-
ing what it is to be the father of somebody; then the class of
fathers will be all those who are somebody’s father. Similarly
if we want to define square numbers (say), we must first de-
fine what we mean by saying that one number is the square
of another, and then define square numbers as those that are
the squares of other numbers. This kind of procedure is very
common, and it is important to realise that it is legitimate and
even often necessary.

We have now given a definition of numbers which will serve
for finite collections. It remains to be seen how it will serve for
infinite collections. But first we must decide what we mean by
“finite” and “infinite,” which cannot be done within the limits
of the present chapter.



CHAPTER III

FINITUDE AND MATHEMATICAL INDUCTION

The series of natural numbers, as we saw in Chapter I., can all
be defined if we know what we mean by the three terms “0,”
“number,” and “successor.” But we may go a step farther:
we can define all the natural numbers if we know what we
mean by “0” and “successor.” It will help us to understand
the difference between finite and infinite to see how this can
be done, and why the method by which it is done cannot be
extended beyond the finite. We will not yet consider how “0”
and “successor” are to be defined: we will for the moment
assume that we know what these terms mean, and show how
thence all other natural numbers can be obtained.

It is easy to see that we can reach any assigned number,
say 30,000. We first define “1” as “the successor of 0,” then we
define “2” as “the successor of 1,” and so on. In the case of an
assigned number, such as 30,000, the proof that we can reach
it by proceeding step by step in this fashion may be made,
if we have the patience, by actual experiment: we can go on
until we actually arrive at 30,000. But although the method
of experiment is available for each particular natural number,
it is not available for proving the general proposition that all
such numbers can be reached in this way, i.e. by proceeding
from 0 step by step from each number to its successor. Is there
any other way by which this can be proved?

Let us consider the question the other way round. What
are the numbers that can be reached, given the terms “0”

24
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and “successor”? Is there any way by which we can define the
whole class of such numbers? We reach 1, as the successor of 0;
2, as the successor of 1; 3, as the successor of 2; and so on. It
is this “and so on” that we wish to replace by something less
vague and indefinite. We might be tempted to say that “and
so on” means that the process of proceeding to the successor
may be repeated any finite number of times; but the problem
upon which we are engaged is the problem of defining “finite
number,” and therefore we must not use this notion in our
definition. Our definition must not assume that we know what
a finite number is.

The key to our problem lies in mathematical induction. It
will be remembered that, in Chapter I., this was the fifth of the
five primitive propositions which we laid down about the nat-
ural numbers. It stated that any property which belongs to 0,
and to the successor of any number which has the property,
belongs to all the natural numbers. This was then presented
as a principle, but we shall now adopt it as a definition. It is
not difficult to see that the terms obeying it are the same as
the numbers that can be reached from 0 by successive steps
from next to next, but as the point is important we will set
forth the matter in some detail.

We shall do well to begin with some definitions, which will
be useful in other connections also.

A property is said to be “hereditary” in the natural-number
series if, whenever it belongs to a number n, it also belongs
to n + 1, the successor of n. Similarly a class is said to be
“hereditary” if, whenever n is a member of the class, so is n+1.
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It is easy to see, though we are not yet supposed to know, that
to say a property is hereditary is equivalent to saying that it
belongs to all the natural numbers not less than some one of
them, e.g. it must belong to all that are not less than 100, or
all that are less than 1000, or it may be that it belongs to all
that are not less than 0, i.e. to all without exception.

A property is said to be “inductive” when it is a hereditary
property which belongs to 0. Similarly a class is “inductive”
when it is a hereditary class of which 0 is a member.

Given a hereditary class of which 0 is a member, it follows
that 1 is a member of it, because a hereditary class contains
the successors of its members, and 1 is the successor of 0.
Similarly, given a hereditary class of which 1 is a member, it
follows that 2 is a member of it; and so on. Thus we can prove
by a step-by-step procedure that any assigned natural number,
say 30,000, is a member of every inductive class.

We will define the “posterity” of a given natural number
with respect to the relation “immediate predecessor” (which
is the converse of “successor”) as all those terms that belong
to every hereditary class to which the given number belongs.
It is again easy to see that the posterity of a natural number
consists of itself and all greater natural numbers; but this also
we do not yet officially know.

By the above definitions, the posterity of 0 will consist of
those terms which belong to every inductive class.

It is now not difficult to make it obvious that the posterity
of 0 is the same set as those terms that can be reached from 0
by successive steps from next to next. For, in the first place,
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0 belongs to both these sets (in the sense in which we have
defined our terms); in the second place, if n belongs to both
sets, so does n + 1. It is to be observed that we are dealing
here with the kind of matter that does not admit of precise
proof, namely, the comparison of a relatively vague idea with
a relatively precise one. The notion of “those terms that can
be reached from 0 by successive steps from next to next” is
vague, though it seems as if it conveyed a definite meaning;
on the other hand, “the posterity of 0” is precise and explicit
just where the other idea is hazy. It may be taken as giving
what we meant to mean when we spoke of the terms that can
be reached from 0 by successive steps.

We now lay down the following definition:—
The “natural numbers” are the posterity of 0 with respect

to the relation “immediate predecessor” (which is the converse
of “successor”).

We have thus arrived at a definition of one of Peano’s three
primitive ideas in terms of the other two. As a result of this
definition, two of his primitive propositions—namely, the one
asserting that 0 is a number and the one asserting mathemati-
cal induction—become unnecessary, since they result from the
definition. The one asserting that the successor of a natural
number is a natural number is only needed in the weakened
form “every natural number has a successor.”

We can, of course, easily define “0” and “successor” by
means of the definition of number in general which we arrived
at in Chapter II. The number 0 is the number of terms in a
class which has no members, i.e. in the class which is called the
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“null-class.” By the general definition of number, the number
of terms in the null-class is the set of all classes similar to
the null-class, i.e. (as is easily proved) the set consisting of
the null-class all alone, i.e. the class whose only member is
the null-class. (This is not identical with the null-class: it
has one member, namely, the null-class, whereas the null-class
itself has no members. A class which has one member is never
identical with that one member, as we shall explain when we
come to the theory of classes.) Thus we have the following
purely logical definition:—

0 is the class whose only member is the null-class.
It remains to define “successor.” Given any number n, let

α be a class which has n members, and let x be a term which
is not a member of α. Then the class consisting of α with x
added on will have n+1 members. Thus we have the following
definition:—

The successor of the number of terms in the class α is the
number of terms in the class consisting of a together with x,
where x is any term not belonging to the class.

Certain niceties are required to make this definition perfect,
but they need not concern us.1 It will be remembered that we
have already given (in Chapter II.) a logical definition of the
number of terms in a class, namely, we defined it as the set of
all classes that are similar to the given class.

We have thus reduced Peano’s three primitive ideas to ideas
of logic: we have given definitions of them which make them

1See Principia Mathematica, vol. ii. * 110.
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definite, no longer capable of an infinity of different meanings,
as they were when they were only determinate to the extent
of obeying Peano’s five axioms. We have removed them from
the fundamental apparatus of terms that must be merely ap-
prehended, and have thus increased the deductive articulation
of mathematics.

As regards the five primitive propositions, we have already
succeeded in making two of them demonstrable by our defini-
tion of “natural number.” How stands it with the remaining
three? It is very easy to prove that 0 is not the successor of any
number, and that the successor of any number is a number.
But there is a difficulty about the remaining primitive proposi-
tion, namely, “no two numbers have the same successor.” The
difficulty does not arise unless the total number of individuals
in the universe is finite; for given two numbers m and n, nei-
ther of which is the total number of individuals in the universe,
it is easy to prove that we cannot have m + 1 = n + 1 unless
we have m = n. But let us suppose that the total number
of individuals in the universe were (say) 10; then there would
be no class of 11 individuals, and the number 11 would be
the null-class. So would the number 12. Thus we should have
11 = 12; therefore the successor of 10 would be the same as
the successor of 11, although 10 would not be the same as 11.
Thus we should have two different numbers with the same suc-
cessor. This failure of the third axiom cannot arise, however,
if the number of individuals in the world is not finite. We shall
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return to this topic at a later stage.1

Assuming that the number of individuals in the universe is
not finite, we have now succeeded not only in defining Peano’s
three primitive ideas, but in seeing how to prove his five primi-
tive propositions, by means of primitive ideas and propositions
belonging to logic. It follows that all pure mathematics, in so
far as it is deducible from the theory of the natural numbers,
is only a prolongation of logic. The extension of this result
to those modern branches of mathematics which are not de-
ducible from the theory of the natural numbers offers no diffi-
culty of principle, as we have shown elsewhere.2

The process of mathematical induction, by means of which
we defined the natural numbers, is capable of generalisation.
We defined the natural numbers as the “posterity” of 0 with
respect to the relation of a number to its immediate successor.
If we call this relation N, any number m will have this relation
to m + 1. A property is “hereditary with respect to N,” or
simply “N-hereditary,” if, whenever the property belongs to
a number m, it also belongs to m + 1, i.e. to the number to
which m has the relation N. And a number n will be said to
belong to the “posterity” of m with respect to the relation N
if n has every N-hereditary property belonging to m. These
definitions can all be applied to any other relation just as well
as to N. Thus if R is any relation whatever, we can lay down

1See Chapter XIII.
2For geometry, in so far as it is not purely analytical, see Principles

of Mathematics, part vi.; for rational dynamics, ibid., part vii.
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the following definitions:1—
A property is called “R-hereditary” when, if it belongs to

a term x, and x has the relation R to y, then it belongs to y.
A class is R-hereditary when its defining property is R-

hereditary.
A term x is said to be an “R-ancestor” of the term y if y has

every R-hereditary property that x has, provided x is a term
which has the relation R to something or to which something
has the relation R. (This is only to exclude trivial cases.)

The “R-posterity” of x is all the terms of which x is an
R-ancestor.

We have framed the above definitions so that if a term is
the ancestor of anything it is its own ancestor and belongs to
its own posterity. This is merely for convenience.

It will be observed that if we take for R the relation “par-
ent,” “ancestor” and “posterity” will have the usual meanings,
except that a person will be included among his own ancestors
and posterity. It is, of course, obvious at once that “ancestor”
must be capable of definition in terms of “parent,” but until
Frege developed his generalised theory of induction, no one
could have defined “ancestor” precisely in terms of “parent.”
A brief consideration of this point will serve to show the im-
portance of the theory. A person confronted for the first time
with the problem of defining “ancestor” in terms of “parent”

1These definitions, and the generalised theory of induction, are due
to Frege, and were published so long ago as 1879 in his Begriffsschrift.
In spite of the great value of this work, I was, I believe, the first person
who ever read it—more than twenty years after its publication.
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would naturally say that A is an ancestor of Z if, between A
and Z, there are a certain number of people, B, C, . . . , of
whom B is a child of A, each is a parent of the next, until the
last, who is a parent of Z. But this definition is not adequate
unless we add that the number of intermediate terms is to be
finite. Take, for example, such a series as the following:—

1, − 1
2
, − 1

4
, − 1

8
, . . . 1

8
, 1

4
, 1

2
, 1.

Here we have first a series of negative fractions with no end,
and then a series of positive fractions with no beginning. Shall
we say that, in this series, −1

8
is an ancestor of 1

8
? It will be so

according to the beginner’s definition suggested above, but it
will not be so according to any definition which will give the
kind of idea that we wish to define. For this purpose, it is es-
sential that the number of intermediaries should be finite. But,
as we saw, “finite” is to be defined by means of mathemati-
cal induction, and it is simpler to define the ancestral relation
generally at once than to define it first only for the case of the
relation of n to n+ 1, and then extend it to other cases. Here,
as constantly elsewhere, generality from the first, though it
may require more thought at the start, will be found in the
long run to economise thought and increase logical power.

The use of mathematical induction in demonstrations was,
in the past, something of a mystery. There seemed no reason-
able doubt that it was a valid method of proof, but no one
quite knew why it was valid. Some believed it to be really
a case of induction, in the sense in which that word is used
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in logic. Poincaré1 considered it to be a principle of the ut-
most importance, by means of which an infinite number of
syllogisms could be condensed into one argument. We now
know that all such views are mistaken, and that mathemati-
cal induction is a definition, not a principle. There are some
numbers to which it can be applied, and there are others (as
we shall see in Chapter VIII.) to which it cannot be applied.
We define the “natural numbers” as those to which proofs by
mathematical induction can be applied, i.e. as those that pos-
sess all inductive properties. It follows that such proofs can
be applied to the natural numbers, not in virtue of any mys-
terious intuition or axiom or principle, but as a purely verbal
proposition. If “quadrupeds” are defined as animals having
four legs, it will follow that animals that have four legs are
quadrupeds; and the case of numbers that obey mathematical
induction is exactly similar.

We shall use the phrase “inductive numbers” to mean the
same set as we have hitherto spoken of as the “natural num-
bers.” The phrase “inductive numbers” is preferable as af-
fording a reminder that the definition of this set of numbers is
obtained from mathematical induction.

Mathematical induction affords, more than anything else,
the essential characteristic by which the finite is distinguished
from the infinite. The principle of mathematical induction
might be stated popularly in some such form as “what can be
inferred from next to next can be inferred from first to last.”

1Science and Method, chap. iv.
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This is true when the number of intermediate steps between
first and last is finite, not otherwise. Anyone who has ever
watched a goods train beginning to move will have noticed
how the impulse is communicated with a jerk from each truck
to the next, until at last even the hindmost truck is in motion.
When the train is very long, it is a very long time before the
last truck moves. If the train were infinitely long, there would
be an infinite succession of jerks, and the time would never
come when the whole train would be in motion. Nevertheless,
if there were a series of trucks no longer than the series of in-
ductive numbers (which, as we shall see, is an instance of the
smallest of infinites), every truck would begin to move sooner
or later if the engine persevered, though there would always
be other trucks further back which had not yet begun to move.
This image will help to elucidate the argument from next to
next, and its connection with finitude. When we come to infi-
nite numbers, where arguments from mathematical induction
will be no longer valid, the properties of such numbers will
help to make clear, by contrast, the almost unconscious use
that is made of mathematical induction where finite numbers
are concerned.



CHAPTER IV

THE DEFINITION OF ORDER

We have now carried our analysis of the series of natural num-
bers to the point where we have obtained logical definitions of
the members of this series, of the whole class of its members,
and of the relation of a number to its immediate successor. We
must now consider the serial character of the natural numbers
in the order 0, 1, 2, 3, . . . . We ordinarily think of the num-
bers as in this order, and it is an essential part of the work of
analysing our data to seek a definition of “order” or “series”
in logical terms.

The notion of order is one which has enormous importance
in mathematics. Not only the integers, but also rational frac-
tions and all real numbers have an order of magnitude, and
this is essential to most of their mathematical properties. The
order of points on a line is essential to geometry; so is the
slightly more complicated order of lines through a point in a
plane, or of planes through a line. Dimensions, in geometry,
are a development of order. The conception of a limit, which
underlies all higher mathematics, is a serial conception. There
are parts of mathematics which do not depend upon the no-
tion of order, but they are very few in comparison with the
parts in which this notion is involved.

In seeking a definition of order, the first thing to realise
is that no set of terms has just one order to the exclusion of
others. A set of terms has all the orders of which it is capable.
Sometimes one order is so much more familiar and natural to

35
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our thoughts that we are inclined to regard it as the order of
that set of terms; but this is a mistake. The natural numbers—
or the “inductive” numbers, as we shall also call them—occur
to us most readily in order of magnitude; but they are capable
of an infinite number of other arrangements. We might, for
example, consider first all the odd numbers and then all the
even numbers; or first 1, then all the even numbers, then all
the odd multiples of 3, then all the multiples of 5 but not of
2 or 3, then all the multiples of 7 but not of 2 or 3 or 5, and
so on through the whole series of primes. When we say that
we “arrange” the numbers in these various orders, that is an
inaccurate expression: what we really do is to turn our atten-
tion to certain relations between the natural numbers, which
themselves generate such-and-such an arrangement. We can
no more “arrange” the natural numbers than we can the starry
heavens; but just as we may notice among the fixed stars ei-
ther their order of brightness or their distribution in the sky,
so there are various relations among numbers which may be
observed, and which give rise to various different orders among
numbers, all equally legitimate. And what is true of numbers is
equally true of points on a line or of the moments of time: one
order is more familiar, but others are equally valid. We might,
for example, take first, on a line, all the points that have inte-
gral co-ordinates, then all those that have non-integral rational
co-ordinates, then all those that have algebraic non-rational
co-ordinates, and so on, through any set of complications we
please. The resulting order will be one which the points of the
line certainly have, whether we choose to notice it or not; the
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only thing that is arbitrary about the various orders of a set of
terms is our attention, for the terms themselves have always
all the orders of which they are capable.

One important result of this consideration is that we must
not look for the definition of order in the nature of the set of
terms to be ordered, since one set of terms has many orders.
The order lies, not in the class of terms, but in a relation
among the members of the class, in respect of which some
appear as earlier and some as later. The fact that a class
may have many orders is due to the fact that there can be
many relations holding among the members of one single class.
What properties must a relation have in order to give rise to
an order?

The essential characteristics of a relation which is to give
rise to order may be discovered by considering that in respect
of such a relation we must be able to say, of any two terms in
the class which is to be ordered, that one “precedes” and the
other “follows.” Now, in order that we may be able to use these
words in the way in which we should naturally understand
them, we require that the ordering relation should have three
properties:—

(1) If x precedes y, y must not also precede x. This is
an obvious characteristic of the kind of relations that lead to
series. If x is less than y, y is not also less than x. If x is earlier
in time than y, y is not also earlier than x. If x is to the left
of y, y is not to the left of x. On the other hand, relations
which do not give rise to series often do not have this property.
If x is a brother or sister of y, y is a brother or sister of x. If
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x is of the same height as y, y is of the same height as x. If x is
of a different height from y, y is of a different height from x.
In all these cases, when the relation holds between x and y, it
also holds between y and x. But with serial relations such a
thing cannot happen. A relation having this first property is
called asymmetrical.

(2) If x precedes y and y precedes z, x must precede z.
This may be illustrated by the same instances as before: less,
earlier, left of. But as instances of relations which do not
have this property only two of our previous three instances
will serve. If x is brother or sister of y, and y of z, x may
not be brother or sister of z, since x and z may be the same
person. The same applies to difference of height, but not to
sameness of height, which has our second property but not our
first. The relation “father,” on the other hand, has our first
property but not our second. A relation having our second
property is called transitive.

(3) Given any two terms of the class which is to be ordered,
there must be one which precedes and the other which follows.
For example, of any two integers, or fractions, or real numbers,
one is smaller and the other greater; but of any two complex
numbers this is not true. Of any two moments in time, one
must be earlier than the other; but of events, which may be
simultaneous, this cannot be said. Of two points on a line, one
must be to the left of the other. A relation having this third
property is called connected.

When a relation possesses these three properties, it is of the
sort to give rise to an order among the terms between which
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it holds; and wherever an order exists, some relation having
these three properties can be found generating it.

Before illustrating this thesis, we will introduce a few def-
initions.

(1) A relation is said to be an aliorelative,1 or to be con-
tained in or imply diversity, if no term has this relation
to itself. Thus, for example, “greater,” “different in size,”
“brother,” “husband,” “father” are aliorelatives; but “equal,”
“born of the same parents,” “dear friend” are not.

(2) The square of a relation is that relation which holds
between two terms x and z when there is an intermediate
term y such that the given relation holds between x and y and
between y and z. Thus “paternal grandfather” is the square
of “father,” “greater by 2” is the square of “greater by 1,” and
so on.

(3) The domain of a relation consists of all those terms
that have the relation to something or other, and the converse
domain consists of all those terms to which something or other
has the relation. These words have been already defined, but
are recalled here for the sake of the following definition:—

(4) The field of a relation consists of its domain and con-
verse domain together.

(5) One relation is said to contain or be implied by another
if it holds whenever the other holds.

It will be seen that an asymmetrical relation is the same
thing as a relation whose square is an aliorelative. It often hap-

1This term is due to C. S. Peirce.
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pens that a relation is an aliorelative without being asymmetri-
cal, though an asymmetrical relation is always an aliorelative.
For example, “spouse” is an aliorelative, but is symmetrical,
since if x is the spouse of y, y is the spouse of x. But among
transitive relations, all aliorelatives are asymmetrical as well
as vice versa.

From the definitions it will be seen that a transitive rela-
tion is one which is implied by its square, or, as we also say,
“contains” its square. Thus “ancestor” is transitive, because
an ancestor’s ancestor is an ancestor; but “father” is not tran-
sitive, because a father’s father is not a father. A transitive
aliorelative is one which contains its square and is contained
in diversity; or, what comes to the same thing, one whose
square implies both it and diversity—because, when a relation
is transitive, asymmetry is equivalent to being an aliorelative.

A relation is connected when, given any two different terms
of its field, the relation holds between the first and the second
or between the second and the first (not excluding the possi-
bility that both may happen, though both cannot happen if
the relation is asymmetrical).

It will be seen that the relation “ancestor,” for example, is
an aliorelative and transitive, but not connected; it is because
it is not connected that it does not suffice to arrange the human
race in a series.

The relation “less than or equal to,” among numbers, is
transitive and connected, but not asymmetrical or an aliorel-
ative.

The relation “greater or less” among numbers is an aliorel-
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ative and is connected, but is not transitive, for if x is greater
or less than y, and y is greater or less than z, it may happen
that x and z are the same number.

Thus the three properties of being (1) an aliorelative,
(2) transitive, and (3) connected, are mutually independent,
since a relation may have any two without having the third.

We now lay down the following definition:—
A relation is serial when it is an aliorelative, transitive,

and connected; or, what is equivalent, when it is asymmetrical,
transitive, and connected.

A series is the same thing as a serial relation.
It might have been thought that a series should be the field

of a serial relation, not the serial relation itself. But this would
be an error. For example,

1, 2, 3; 1, 3, 2; 2, 3, 1; 2, 1, 3; 3, 1, 2; 3, 2, 1

are six different series which all have the same field. If the
field were the series, there could only be one series with a
given field. What distinguishes the above six series is simply
the different ordering relations in the six cases. Given the
ordering relation, the field and the order are both determinate.
Thus the ordering relation may be taken to be the series, but
the field cannot be so taken.

Given any serial relation, say P, we shall say that, in re-
spect of this relation, x “precedes” y if x has the relation P
to y, which we shall write “xPy” for short. The three charac-
teristics which P must have in order to be serial are:
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(1) We must never have xPx, i.e. no term must precede
itself.

(2) P2 must imply P, i.e. if x precedes y and y precedes z,
x must precede z.

(3) If x and y are two different terms in the field of P, we
shall have xPy or yPx, i.e. one of the two must precede
the other.

The reader can easily convince himself that, where these three
properties are found in an ordering relation, the characteristics
we expect of series will also be found, and vice versa. We are
therefore justified in taking the above as a definition of order
or series. And it will be observed that the definition is effected
in purely logical terms.

Although a transitive asymmetrical connected relation al-
ways exists wherever there is a series, it is not always the rela-
tion which would most naturally be regarded as generating the
series. The natural-number series may serve as an illustration.
The relation we assumed in considering the natural numbers
was the relation of immediate succession, i.e. the relation be-
tween consecutive integers. This relation is asymmetrical, but
not transitive or connected. We can, however, derive from
it, by the method of mathematical induction, the “ancestral”
relation which we considered in the preceding chapter. This
relation will be the same as “less than or equal to” among
inductive integers. For purposes of generating the series of
natural numbers, we want the relation “less than,” excluding
“equal to.” This is the relation of m to n when m is an ances-
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tor of n but not identical with n, or (what comes to the same
thing) when the successor of m is an ancestor of n in the sense
in which a number is its own ancestor. That is to say, we shall
lay down the following definition:—

An inductive numberm is said to be less than another num-
ber n when n possesses every hereditary property possessed by
the successor of m.

It is easy to see, and not difficult to prove, that the relation
“less than,” so defined, is asymmetrical, transitive, and con-
nected, and has the inductive numbers for its field. Thus by
means of this relation the inductive numbers acquire an order
in the sense in which we defined the term “order,” and this
order is the so-called “natural” order, or order of magnitude.

The generation of series by means of relations more or less
resembling that of n to n + 1 is very common. The series of
the Kings of England, for example, is generated by relations of
each to his successor. This is probably the easiest way, where
it is applicable, of conceiving the generation of a series. In
this method we pass on from each term to the next, as long as
there is a next, or back to the one before, as long as there is
one before. This method always requires the generalised form
of mathematical induction in order to enable us to define “ear-
lier” and “later” in a series so generated. On the analogy of
“proper fractions,” let us give the name “proper posterity of x
with respect to R” to the class of those terms that belong to
the R-posterity of some term to which x has the relation R, in
the sense which we gave before to “posterity,” which includes
a term in its own posterity. Reverting to the fundamental def-
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initions, we find that the “proper posterity” may be defined
as follows:—

The “proper posterity” of x with respect to R consists of
all terms that possess every R-hereditary property possessed
by every term to which x has the relation R.

It is to be observed that this definition has to be so framed
as to be applicable not only when there is only one term to
which x has the relation R, but also in cases (as e.g. that of
father and child) where there may be many terms to which
x has the relation R. We define further:

A term x is a “proper ancestor” of y with respect to R if
y belongs to the proper posterity of x with respect to R.

We shall speak for short of “R-posterity” and “R-ancestors”
when these terms seem more convenient.

Reverting now to the generation of series by the relation R
between consecutive terms, we see that, if this method is to be
possible, the relation “proper R-ancestor” must be an aliorela-
tive, transitive, and connected. Under what circumstances will
this occur? It will always be transitive: no matter what sort of
relation R may be, “R-ancestor” and “proper R-ancestor” are
always both transitive. But it is only under certain circum-
stances that it will be an aliorelative or connected. Consider,
for example, the relation to one’s left-hand neighbour at a
round dinner-table at which there are twelve people. If we call
this relation R, the proper R-posterity of a person consists of
all who can be reached by going round the table from right to
left. This includes everybody at the table, including the person
himself, since twelve steps bring us back to our starting-point.
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Thus in such a case, though the relation “proper R-ancestor”
is connected, and though R itself is an aliorelative, we do not
get a series because “proper R-ancestor” is not an aliorelative.
It is for this reason that we cannot say that one person comes
before another with respect to the relation “right of” or to its
ancestral derivative.

The above was an instance in which the ancestral relation
was connected but not contained in diversity. An instance
where it is contained in diversity but not connected is derived
from the ordinary sense of the word “ancestor.” If x is a proper
ancestor of y, x and y cannot be the same person; but it is not
true that of any two persons one must be an ancestor of the
other.

The question of the circumstances under which series can
be generated by ancestral relations derived from relations of
consecutiveness is often important. Some of the most impor-
tant cases are the following: Let R be a many-one relation, and
let us confine our attention to the posterity of some term x.
When so confined, the relation “proper R-ancestor” must be
connected; therefore all that remains to ensure its being serial
is that it shall be contained in diversity. This is a generalisa-
tion of the instance of the dinner-table. Another generalisation
consists in taking R to be a one-one relation, and including the
ancestry of x as well as the posterity. Here again, the one con-
dition required to secure the generation of a series is that the
relation “proper R-ancestor” shall be contained in diversity.

The generation of order by means of relations of consec-
utiveness, though important in its own sphere, is less gen-
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eral than the method which uses a transitive relation to define
the order. It often happens in a series that there are an infi-
nite number of intermediate terms between any two that may
be selected, however near together these may be. Take, for
instance, fractions in order of magnitude. Between any two
fractions there are others—for example, the arithmetic mean
of the two. Consequently there is no such thing as a pair of
consecutive fractions. If we depended upon consecutiveness
for defining order, we should not be able to define the order of
magnitude among fractions. But in fact the relations of greater
and less among fractions do not demand generation from rela-
tions of consecutiveness, and the relations of greater and less
among fractions have the three characteristics which we need
for defining serial relations. In all such cases the order must
be defined by means of a transitive relation, since only such a
relation is able to leap over an infinite number of intermediate
terms. The method of consecutiveness, like that of counting
for discovering the number of a collection, is appropriate to
the finite; it may even be extended to certain infinite series,
namely, those in which, though the total number of terms is
infinite, the number of terms between any two is always finite;
but it must not be regarded as general. Not only so, but care
must be taken to eradicate from the imagination all habits of
thought resulting from supposing it general. If this is not done,
series in which there are no consecutive terms will remain dif-
ficult and puzzling. And such series are of vital importance
for the understanding of continuity, space, time, and motion.

There are many ways in which series may be generated, but
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all depend upon the finding or construction of an asymmet-
rical transitive connected relation. Some of these ways have
considerable importance. We may take as illustrative the gen-
eration of series by means of a three-term relation which we
may call “between.” This method is very useful in geometry,
and may serve as an introduction to relations having more than
two terms; it is best introduced in connection with elementary
geometry.

Given any three points on a straight line in ordinary space,
there must be one of them which is between the other two. This
will not be the case with the points on a circle or any other
closed curve, because, given any three points on a circle, we can
travel from any one to any other without passing through the
third. In fact, the notion “between” is characteristic of open
series—or series in the strict sense—as opposed to what may
be called “cyclic” series, where, as with people at the dinner-
table, a sufficient journey brings us back to our starting-point.
This notion of “between” may be chosen as the fundamental
notion of ordinary geometry; but for the present we will only
consider its application to a single straight line and to the
ordering of the points on a straight line.1 Taking any two
points a, b, the line (ab) consists of three parts (besides a and
b themselves):

(1) Points between a and b.
(2) Points x such that a is between x and b.
(3) Points y such that b is between y and a.

1Cf. Rivista di Matematica, iv. pp. 55 ff.; Principles of Mathematics,
p. 394 (§ 375).
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Thus the line (ab) can be defined in terms of the relation
“between.”

In order that this relation “between” may arrange the
points of the line in an order from left to right, we need
certain assumptions, namely, the following:—

(1) If anything is between a and b, a and b are not identical.
(2) Anything between a and b is also between b and a.
(3) Anything between a and b is not identical with a (nor,

consequently, with b, in virtue of (2)).
(4) If x is between a and b, anything between a and x is

also between a and b.
(5) If x is between a and b, and b is between x and y, then

b is between a and y.
(6) If x and y are between a and b, then either x and y are

identical, or x is between a and y, or x is between y and b.
(7) If b is between a and x and also between a and y, then

either x and y are identical, or x is between b and y, or y is
between b and x.

These seven properties are obviously verified in the case of
points on a straight line in ordinary space. Any three-term
relation which verifies them gives rise to series, as may be seen
from the following definitions. For the sake of definiteness, let
us assume that a is to the left of b. Then the points of the
line (ab) are (1) those between which and b, a lies—these we
will call to the left of a; (2) a itself; (3) those between a and b;
(4) b itself; (5) those between which and a lies b—these we will
call to the right of b. We may now define generally that of two
points x, y, on the line (ab), we shall say that x is “to the left



Introduction to Mathematical Philosophy 49

of” y in any of the following cases:—

(1) When x and y are both to the left of a, and y is be-
tween x and a;

(2) When x is to the left of a, and y is a or b or between
a and b or to the right of b;

(3) When x is a, and y is between a and b or is b or is to
the right of b;

(4) When x and y are both between a and b, and y is
between x and b;

(5) When x is between a and b, and y is b or to the right
of b;

(6) When x is b and y is to the right of b;

(7) When x and y are both to the right of b and x is
between b and y.

It will be found that, from the seven properties which we
have assigned to the relation “between,” it can be deduced
that the relation “to the left of,” as above defined, is a serial
relation as we defined that term. It is important to notice that
nothing in the definitions or the argument depends upon our
meaning by “between” the actual relation of that name which
occurs in empirical space: any three-term relation having the
above seven purely formal properties will serve the purpose of
the argument equally well.

Cyclic order, such as that of the points on a circle, cannot
be generated by means of three-term relations of “between.”
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We need a relation of four terms, which may be called “separa-
tion of couples.” The point may be illustrated by considering
a journey round the world. One may go from England to New
Zealand by way of Suez or by way of San Francisco; we can-
not say definitely that either of these two places is “between”
England and New Zealand. But if a man chooses that route to
go round the world, whichever way round he goes, his times in
England and New Zealand are separated from each other by his
times in Suez and San Francisco, and conversely. Generalising,
if we take any four points on a circle, we can separate them
into two couples, say a and b and x and y, such that, in order
to get from a to b one must pass through either x or y, and in
order to get from x to y one must pass through either a or b.
Under these circumstances we say that the couple (a, b) are
“separated” by the couple (x, y). Out of this relation a cyclic
order can be generated, in a way resembling that in which we
generated an open order from “between,” but somewhat more
complicated.1

The purpose of the latter half of this chapter has been to
suggest the subject which one may call “generation of serial
relations.” When such relations have been defined, the gen-
eration of them from other relations possessing only some of
the properties required for series becomes very important, es-
pecially in the philosophy of geometry and physics. But we
cannot, within the limits of the present volume, do more than
make the reader aware that such a subject exists.

1Cf. Principles of Mathematics, p. 205 (§ 194), and references there
given.



CHAPTER V

KINDS OF RELATIONS

A great part of the philosophy of mathematics is concerned
with relations, and many different kinds of relations have dif-
ferent kinds of uses. It often happens that a property which
belongs to all relations is only important as regards relations
of certain sorts; in these cases the reader will not see the bear-
ing of the proposition asserting such a property unless he has
in mind the sorts of relations for which it is useful. For reasons
of this description, as well as from the intrinsic interest of the
subject, it is well to have in our minds a rough list of the more
mathematically serviceable varieties of relations.

We dealt in the preceding chapter with a supremely impor-
tant class, namely, serial relations. Each of the three proper-
ties which we combined in defining series—namely, asymme-
try, transitiveness, and connexity—has its own importance.
We will begin by saying something on each of these three.

Asymmetry, i.e. the property of being incompatible with
the converse, is a characteristic of the very greatest interest
and importance. In order to develop its functions, we will con-
sider various examples. The relation husband is asymmetrical,
and so is the relation wife; i.e. if a is husband of b, b cannot be
husband of a, and similarly in the case of wife. On the other
hand, the relation “spouse” is symmetrical: if a is spouse of b,
then b is spouse of a. Suppose now we are given the relation
spouse, and we wish to derive the relation husband. Husband
is the same as male spouse or spouse of a female; thus the re-

51



Kinds of Relations 52

lation husband can be derived from spouse either by limiting
the domain to males or by limiting the converse to females.
We see from this instance that, when a symmetrical relation
is given, it is sometimes possible, without the help of any fur-
ther relation, to separate it into two asymmetrical relations.
But the cases where this is possible are rare and exceptional:
they are cases where there are two mutually exclusive classes,
say α and β, such that whenever the relation holds between
two terms, one of the terms is a member of α and the other
is a member of β—as, in the case of spouse, one term of the
relation belongs to the class of males and one to the class of
females. In such a case, the relation with its domain confined
to α will be asymmetrical, and so will the relation with its
domain confined to β. But such cases are not of the sort that
occur when we are dealing with series of more than two terms;
for in a series, all terms, except the first and last (if these ex-
ist), belong both to the domain and to the converse domain of
the generating relation, so that a relation like husband, where
the domain and converse domain do not overlap, is excluded.

The question how to construct relations having some use-
ful property by means of operations upon relations which only
have rudiments of the property is one of considerable impor-
tance. Transitiveness and connexity are easily constructed in
many cases where the originally given relation does not pos-
sess them: for example, if R is any relation whatever, the
ancestral relation derived from R by generalised induction is
transitive; and if R is a many-one relation, the ancestral rela-
tion will be connected if confined to the posterity of a given
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term. But asymmetry is a much more difficult property to
secure by construction. The method by which we derived hus-
band from spouse is, as we have seen, not available in the most
important cases, such as greater, before, to the right of, where
domain and converse domain overlap. In all these cases, we can
of course obtain a symmetrical relation by adding together the
given relation and its converse, but we cannot pass back from
this symmetrical relation to the original asymmetrical relation
except by the help of some asymmetrical relation. Take, for
example, the relation greater : the relation greater or less—i.e.
unequal—is symmetrical, but there is nothing in this relation
to show that it is the sum of two asymmetrical relations. Take
such a relation as “differing in shape.” This is not the sum of
an asymmetrical relation and its converse, since shapes do not
form a single series; but there is nothing to show that it dif-
fers from “differing in magnitude” if we did not already know
that magnitudes have relations of greater and less. This illus-
trates the fundamental character of asymmetry as a property
of relations.

From the point of view of the classification of relations,
being asymmetrical is a much more important characteristic
than implying diversity. Asymmetrical relations imply diver-
sity, but the converse is not the case. “Unequal,” for example,
implies diversity, but is symmetrical. Broadly speaking, we
may say that, if we wished as far as possible to dispense with
relational propositions and replace them by such as ascribed
predicates to subjects, we could succeed in this so long as we
confined ourselves to symmetrical relations: those that do not
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imply diversity, if they are transitive, may be regarded as as-
serting a common predicate, while those that do imply diver-
sity may be regarded as asserting incompatible predicates. For
example, consider the relation of similarity between classes, by
means of which we defined numbers. This relation is symmet-
rical and transitive and does not imply diversity. It would be
possible, though less simple than the procedure we adopted, to
regard the number of a collection as a predicate of the collec-
tion: then two similar classes will be two that have the same
numerical predicate, while two that are not similar will be two
that have different numerical predicates. Such a method of
replacing relations by predicates is formally possible (though
often very inconvenient) so long as the relations concerned
are symmetrical; but it is formally impossible when the rela-
tions are asymmetrical, because both sameness and difference
of predicates are symmetrical. Asymmetrical relations are, we
may say, the most characteristically relational of relations, and
the most important to the philosopher who wishes to study the
ultimate logical nature of relations.

Another class of relations that is of the greatest use is the
class of one-many relations, i.e. relations which at most one
term can have to a given term. Such are father, mother, hus-
band (except in Tibet), square of, sine of, and so on. But
parent, square root, and so on, are not one-many. It is pos-
sible, formally, to replace all relations by one-many relations
by means of a device. Take (say) the relation less among the
inductive numbers. Given any number n greater than 1, there
will not be only one number having the relation less to n, but
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we can form the whole class of numbers that are less than n.
This is one class, and its relation to n is not shared by any
other class. We may call the class of numbers that are less
than n the “proper ancestry” of n, in the sense in which we
spoke of ancestry and posterity in connection with mathemat-
ical induction. Then “proper ancestry” is a one-many relation
(one-many will always be used so as to include one-one), since
each number determines a single class of numbers as consti-
tuting its proper ancestry. Thus the relation less than can be
replaced by being a member of the proper ancestry of. In this
way a one-many relation in which the one is a class, together
with membership of this class, can always formally replace a
relation which is not one-many. Peano, who for some reason
always instinctively conceives of a relation as one-many, deals
in this way with those that are naturally not so. Reduction to
one-many relations by this method, however, though possible
as a matter of form, does not represent a technical simpli-
fication, and there is every reason to think that it does not
represent a philosophical analysis, if only because classes must
be regarded as “logical fictions.” We shall therefore continue
to regard one-many relations as a special kind of relations.

One-many relations are involved in all phrases of the form
“the so-and-so of such-and-such.” “The King of England,”
“the wife of Socrates,” “the father of John Stuart Mill,” and so
on, all describe some person by means of a one-many relation
to a given term. A person cannot have more than one father,
therefore “the father of John Stuart Mill” described some one
person, even if we did not know whom. There is much to
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say on the subject of descriptions, but for the present it is
relations that we are concerned with, and descriptions are only
relevant as exemplifying the uses of one-many relations. It
should be observed that all mathematical functions result from
one-many relations: the logarithm of x, the cosine of x, etc.,
are, like the father of x, terms described by means of a one-
many relation (logarithm, cosine, etc.) to a given term (x).
The notion of function need not be confined to numbers, or
to the uses to which mathematicians have accustomed us; it
can be extended to all cases of one-many relations, and “the
father of x” is just as legitimately a function of which x is
the argument as is “the logarithm of x.” Functions in this
sense are descriptive functions. As we shall see later, there are
functions of a still more general and more fundamental sort,
namely, propositional functions; but for the present we shall
confine our attention to descriptive functions, i.e. “the term
having the relation R to x,” or, for short, “the R of x,” where
R is any one-many relation.

It will be observed that if “the R of x” is to describe a
definite term, x must be a term to which something has the
relation R, and there must not be more than one term having
the relation R to x, since “the,” correctly used, must imply
uniqueness. Thus we may speak of “the father of x” if x is
any human being except Adam and Eve; but we cannot speak
of “the father of x” if x is a table or a chair or anything else
that does not have a father. We shall say that the R of x
“exists” when there is just one term, and no more, having the
relation R to x. Thus if R is a one-many relation, the R of x
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exists whenever x belongs to the converse domain of R, and
not otherwise. Regarding “the R of x” as a function in the
mathematical sense, we say that x is the “argument” of the
function, and if y is the term which has the relation R to x, i.e.
if y is the R of x, then y is the “value” of the function for the
argument x. If R is a one-many relation, the range of possible
arguments to the function is the converse domain of R, and
the range of values is the domain. Thus the range of possible
arguments to the function “the father of x” is all who have
fathers, i.e. the converse domain of the relation father, while
the range of possible values for the function is all fathers, i.e.
the domain of the relation.

Many of the most important notions in the logic of rela-
tions are descriptive functions, for example: converse, domain,
converse domain, field. Other examples will occur as we pro-
ceed.

Among one-many relations, one-one relations are a spe-
cially important class. We have already had occasion to speak
of one-one relations in connection with the definition of num-
ber, but it is necessary to be familiar with them, and not
merely to know their formal definition. Their formal definition
may be derived from that of one-many relations: they may be
defined as one-many relations which are also the converses of
one-many relations, i.e. as relations which are both one-many
and many-one. One-many relations may be defined as rela-
tions such that, if x has the relation in question to y, there is
no other term x′ which also has the relation to y. Or, again,
they may be defined as follows: Given two terms x and x′, the
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terms to which x has the given relation and those to which
x′ has it have no member in common. Or, again, they may
be defined as relations such that the relative product of one
of them and its converse implies identity, where the “relative
product” of two relations R and S is that relation which holds
between x and z when there is an intermediate term y, such
that x has the relation R to y and y has the relation S to z.
Thus, for example, if R is the relation of father to son, the rel-
ative product of R and its converse will be the relation which
holds between x and a man z when there is a person y, such
that x is the father of y and y is the son of z. It is obvious that
x and z must be the same person. If, on the other hand, we
take the relation of parent and child, which is not one-many,
we can no longer argue that, if x is a parent of y and y is a
child of z, x and z must be the same person, because one may
be the father of y and the other the mother. This illustrates
that it is characteristic of one-many relations when the rela-
tive product of a relation and its converse implies identity. In
the case of one-one relations this happens, and also the rela-
tive product of the converse and the relation implies identity.
Given a relation R, it is convenient, if x has the relation R
to y, to think of y as being reached from x by an “R-step”
or an “R-vector.” In the same case x will be reached from y
by a “backward R-step.” Thus we may state the character-
istic of one-many relations with which we have been dealing
by saying that an R-step followed by a backward R-step must
bring us back to our starting-point. With other relations, this
is by no means the case; for example, if R is the relation of
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child to parent, the relative product of R and its converse is
the relation “self or brother or sister,” and if R is the relation
of grandchild to grandparent, the relative product of R and
its converse is “self or brother or sister or first cousin.” It will
be observed that the relative product of two relations is not
in general commutative, i.e. the relative product of R and S
is not in general the same relation as the relative product of
S and R. E.g. the relative product of parent and brother is
uncle, but the relative product of brother and parent is parent.

One-one relations give a correlation of two classes, term for
term, so that each term in either class has its correlate in the
other. Such correlations are simplest to grasp when the two
classes have no members in common, like the class of husbands
and the class of wives; for in that case we know at once whether
a term is to be considered as one from which the correlating
relation R goes, or as one to which it goes. It is convenient
to use the word referent for the term from which the relation
goes, and the term relatum for the term to which it goes.
Thus if x and y are husband and wife, then, with respect to
the relation “husband,” x is referent and y relatum, but with
respect to the relation “wife,” y is referent and x relatum. We
say that a relation and its converse have opposite “senses”;
thus the “sense” of a relation that goes from x to y is the
opposite of that of the corresponding relation from y to x. The
fact that a relation has a “sense” is fundamental, and is part
of the reason why order can be generated by suitable relations.
It will be observed that the class of all possible referents to a
given relation is its domain, and the class of all possible relata
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is its converse domain.
But it very often happens that the domain and converse

domain of a one-one relation overlap. Take, for example, the
first ten integers (excluding 0), and add 1 to each; thus instead
of the first ten integers we now have the integers

2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

These are the same as those we had before, except that 1 has
been cut off at the beginning and 11 has been joined on at
the end. There are still ten integers: they are correlated with
the previous ten by the relation of n to n + 1, which is a
one-one relation. Or, again, instead of adding 1 to each of our
original ten integers, we could have doubled each of them, thus
obtaining the integers

2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

Here we still have five of our previous set of integers, namely,
2, 4, 6, 8, 10. The correlating relation in this case is the relation
of a number to its double, which is again a one-one relation.
Or we might have replaced each number by its square, thus
obtaining the set

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

On this occasion only three of our original set are left, namely,
1, 4, 9. Such processes of correlation may be varied endlessly.

The most interesting case of the above kind is the case
where our one-one relation has a converse domain which is
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part, but not the whole, of the domain. If, instead of confin-
ing the domain to the first ten integers, we had considered the
whole of the inductive numbers, the above instances would
have illustrated this case. We may place the numbers con-
cerned in two rows, putting the correlate directly under the
number whose correlate it is. Thus when the correlator is the
relation of n to n+ 1, we have the two rows:

1, 2, 3, 4, 5, . . . n, . . .

2, 3, 4, 5, 6, . . . n+ 1, . . . .

When the correlator is the relation of a number to its double,
we have the two rows:

1, 2, 3, 4, 5, . . . n, . . .

2, 4, 6, 8, 10, . . . 2n, . . . .

When the correlator is the relation of a number to its square,
the rows are:

1, 2, 3, 4, 5, . . . n, . . .

1, 4, 9, 16, 25, . . . n2, . . . .

In all these cases, all inductive numbers occur in the top row,
and only some in the bottom row.

Cases of this sort, where the converse domain is a “proper
part” of the domain (i.e. a part not the whole), will occupy us
again when we come to deal with infinity. For the present, we
wish only to note that they exist and demand consideration.
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Another class of correlations which are often important is
the class called “permutations,” where the domain and con-
verse domain are identical. Consider, for example, the six
possible arrangements of three letters:

a, b, c;

a, c, b;

b, c, a;

b, a, c;

c, a, b;

c, b, a.

Each of these can be obtained from any one of the others
by means of a correlation. Take, for example, the first and
last, (a, b, c) and (c, b, a). Here a is correlated with c, b with
itself, and c with a. It is obvious that the combination of two
permutations is again a permutation, i.e. the permutations of
a given class form what is called a “group.”

These various kinds of correlations have importance in vari-
ous connections, some for one purpose, some for another. The
general notion of one-one correlations has boundless impor-
tance in the philosophy of mathematics, as we have partly
seen already, but shall see much more fully as we proceed.
One of its uses will occupy us in our next chapter.



CHAPTER VI

SIMILARITY OF RELATIONS

We saw in Chapter II. that two classes have the same number
of terms when they are “similar,” i.e. when there is a one-
one relation whose domain is the one class and whose converse
domain is the other. In such a case we say that there is a
“one-one correlation” between the two classes.

In the present chapter we have to define a relation between
relations, which will play the same part for them that sim-
ilarity of classes plays for classes. We will call this relation
“similarity of relations,” or “likeness” when it seems desirable
to use a different word from that which we use for classes. How
is likeness to be defined?

We shall employ still the notion of correlation: we shall
assume that the domain of the one relation can be correlated
with the domain of the other, and the converse domain with
the converse domain; but that is not enough for the sort of
resemblance which we desire to have between our two relations.
What we desire is that, whenever either relation holds between
two terms, the other relation shall hold between the correlates
of these two terms. The easiest example of the sort of thing
we desire is a map. When one place is north of another, the
place on the map corresponding to the one is above the place
on the map corresponding to the other; when one place is west
of another, the place on the map corresponding to the one is
to the left of the place on the map corresponding to the other;
and so on. The structure of the map corresponds with that

63
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of the country of which it is a map. The space-relations in
the map have “likeness” to the space-relations in the country
mapped. It is this kind of connection between relations that
we wish to define.

We may, in the first place, profitably introduce a certain
restriction. We will confine ourselves, in defining likeness, to
such relations as have “fields,” i.e. to such as permit of the
formation of a single class out of the domain and the converse
domain. This is not always the case. Take, for example, the
relation “domain,” i.e. the relation which the domain of a re-
lation has to the relation. This relation has all classes for its
domain, since every class is the domain of some relation; and
it has all relations for its converse domain, since every relation
has a domain. But classes and relations cannot be added to-
gether to form a new single class, because they are of different
logical “types.” We do not need to enter upon the difficult
doctrine of types, but it is well to know when we are abstain-
ing from entering upon it. We may say, without entering upon
the grounds for the assertion, that a relation only has a “field”
when it is what we call “homogeneous,” i.e. when its domain
and converse domain are of the same logical type; and as a
rough-and-ready indication of what we mean by a “type,” we
may say that individuals, classes of individuals, relations be-
tween individuals, relations between classes, relations of classes
to individuals, and so on, are different types. Now the notion
of likeness is not very useful as applied to relations that are not
homogeneous; we shall, therefore, in defining likeness, simplify
our problem by speaking of the “field” of one of the relations
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concerned. This somewhat limits the generality of our defi-
nition, but the limitation is not of any practical importance.
And having been stated, it need no longer be remembered.
We may define two relations P and Q as “similar,” or as hav-
ing “likeness,” when there is a one-one relation S whose do-
main is the field of P and whose converse domain is the field
of Q, and which is such that, if one term has the relation P
to another, the correlate of the one has the relation Q to the
correlate of the other, and vice versa. A figure will make this

x y

wz

P

S S

Q

clearer. Let x and y be two
terms having the relation P.
Then there are to be two terms
z, w, such that x has the re-
lation S to z, y has the rela-
tion S to w, and z has the re-
lation Q to w. If this happens
with every pair of terms such as
x and y, and if the converse hap-
pens with every pair of terms
such as z and w, it is clear that for every instance in which the
relation P holds there is a corresponding instance in which the
relation Q holds, and vice versa; and this is what we desire to
secure by our definition. We can eliminate some redundancies
in the above sketch of a definition, by observing that, when
the above conditions are realised, the relation P is the same
as the relative product of S and Q and the converse of S, i.e.
the P-step from x to y may be replaced by the succession of
the S-step from x to z, the Q-step from z to w, and the back-
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ward S-step from w to y. Thus we may set up the following
definitions:—

A relation S is said to be a “correlator” or an “ordinal
correlator” of two relations P and Q if S is one-one, has the
field of Q for its converse domain, and is such that P is the
relative product of S and Q and the converse of S.

Two relations P and Q are said to be “similar,” or to have
“likeness,” when there is at least one correlator of P and Q.

These definitions will be found to yield what we above de-
cided to be necessary.

It will be found that, when two relations are similar, they
share all properties which do not depend upon the actual terms
in their fields. For instance, if one implies diversity, so does
the other; if one is transitive, so is the other; if one is con-
nected, so is the other. Hence if one is serial, so is the other.
Again, if one is one-many or one-one, the other is one-many
or one-one; and so on, through all the general properties of
relations. Even statements involving the actual terms of the
field of a relation, though they may not be true as they stand
when applied to a similar relation, will always be capable of
translation into statements that are analogous. We are led by
such considerations to a problem which has, in mathematical
philosophy, an importance by no means adequately recognised
hitherto. Our problem may be stated as follows:—

Given some statement in a language of which we know the
grammar and the syntax, but not the vocabulary, what are
the possible meanings of such a statement, and what are the
meanings of the unknown words that would make it true?
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The reason that this question is important is that it rep-
resents, much more nearly than might be supposed, the state
of our knowledge of nature. We know that certain scientific
propositions—which, in the most advanced sciences, are ex-
pressed in mathematical symbols—are more or less true of the
world, but we are very much at sea as to the interpretation
to be put upon the terms which occur in these propositions.
We know much more (to use, for a moment, an old-fashioned
pair of terms) about the form of nature than about the mat-
ter. Accordingly, what we really know when we enunciate a
law of nature is only that there is probably some interpreta-
tion of our terms which will make the law approximately true.
Thus great importance attaches to the question: What are the
possible meanings of a law expressed in terms of which we do
not know the substantive meaning, but only the grammar and
syntax? And this question is the one suggested above.

For the present we will ignore the general question, which
will occupy us again at a later stage; the subject of likeness
itself must first be further investigated.

Owing to the fact that, when two relations are similar,
their properties are the same except when they depend upon
the fields being composed of just the terms of which they are
composed, it is desirable to have a nomenclature which collects
together all the relations that are similar to a given relation.
Just as we called the set of those classes that are similar to a
given class the “number” of that class, so we may call the set
of all those relations that are similar to a given relation the
“number” of that relation. But in order to avoid confusion
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with the numbers appropriate to classes, we will speak, in
this case, of a “relation-number.” Thus we have the following
definitions:—

The “relation-number” of a given relation is the class of all
those relations that are similar to the given relation.

“Relation-numbers” are the set of all those classes of rela-
tions that are relation-numbers of various relations; or, what
comes to the same thing, a relation number is a class of rela-
tions consisting of all those relations that are similar to one
member of the class.

When it is necessary to speak of the numbers of classes in a
way which makes it impossible to confuse them with relation-
numbers, we shall call them “cardinal numbers.” Thus car-
dinal numbers are the numbers appropriate to classes. These
include the ordinary integers of daily life, and also certain in-
finite numbers, of which we shall speak later. When we speak
of “numbers” without qualification, we are to be understood
as meaning cardinal numbers. The definition of a cardinal
number, it will be remembered, is as follows:—

The “cardinal number” of a given class is the set of all
those classes that are similar to the given class.

The most obvious application of relation-numbers is to se-
ries. Two series may be regarded as equally long when they
have the same relation-number. Two finite series will have the
same relation-number when their fields have the same cardinal
number of terms, and only then—i.e. a series of (say) 15 terms
will have the same relation-number as any other series of fif-
teen terms, but will not have the same relation-number as a
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series of 14 or 16 terms, nor, of course, the same relation-
number as a relation which is not serial. Thus, in the quite
special case of finite series, there is parallelism between car-
dinal and relation-numbers. The relation-numbers applicable
to series may be called “serial numbers” (what are commonly
called “ordinal numbers” are a sub-class of these); thus a finite
serial number is determinate when we know the cardinal num-
ber of terms in the field of a series having the serial number in
question. If n is a finite cardinal number, the relation-number
of a series which has n terms is called the “ordinal” number n.
(There are also infinite ordinal numbers, but of them we shall
speak in a later chapter.) When the cardinal number of terms
in the field of a series is infinite, the relation-number of the se-
ries is not determined merely by the cardinal number, indeed
an infinite number of relation-numbers exist for one infinite
cardinal number, as we shall see when we come to consider
infinite series. When a series is infinite, what we may call its
“length,” i.e. its relation-number, may vary without change in
the cardinal number; but when a series is finite, this cannot
happen.

We can define addition and multiplication for relation-
numbers as well as for cardinal numbers, and a whole arith-
metic of relation-numbers can be developed. The manner in
which this is to be done is easily seen by considering the case
of series. Suppose, for example, that we wish to define the sum
of two non-overlapping series in such a way that the relation-
number of the sum shall be capable of being defined as the sum
of the relation-numbers of the two series. In the first place,
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it is clear that there is an order involved as between the two
series: one of them must be placed before the other. Thus if
P and Q are the generating relations of the two series, in the
series which is their sum with P put before Q, every member
of the field of P will precede every member of the field of Q.
Thus the serial relation which is to be defined as the sum of
P and Q is not “P or Q” simply, but “P or Q or the relation
of any member of the field of P to any member of the field
of Q.” Assuming that P and Q do not overlap, this relation is
serial, but “P or Q” is not serial, being not connected, since
it does not hold between a member of the field of P and a
member of the field of Q. Thus the sum of P and Q, as above
defined, is what we need in order to define the sum of two
relation-numbers. Similar modifications are needed for prod-
ucts and powers. The resulting arithmetic does not obey the
commutative law: the sum or product of two relation-numbers
generally depends upon the order in which they are taken. But
it obeys the associative law, one form of the distributive law,
and two of the formal laws for powers, not only as applied to
serial numbers, but as applied to relation-numbers generally.
Relation-arithmetic, in fact, though recent, is a thoroughly
respectable branch of mathematics.

It must not be supposed, merely because series afford the
most obvious application of the idea of likeness, that there are
no other applications that are important. We have already
mentioned maps, and we might extend our thoughts from this
illustration to geometry generally. If the system of relations
by which a geometry is applied to a certain set of terms can be
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brought fully into relations of likeness with a system applying
to another set of terms, then the geometry of the two sets is
indistinguishable from the mathematical point of view, i.e. all
the propositions are the same, except for the fact that they
are applied in one case to one set of terms and in the other
to another. We may illustrate this by the relations of the sort
that may be called “between,” which we considered in Chap-
ter IV. We there saw that, provided a three-term relation has
certain formal logical properties, it will give rise to series, and
may be called a “between-relation.” Given any two points,
we can use the between-relation to define the straight line de-
termined by those two points; it consists of a and b together
with all points x, such that the between-relation holds between
the three points a, b, x in some order or other. It has been
shown by O. Veblen that we may regard our whole space as
the field of a three-term between-relation, and define our ge-
ometry by the properties we assign to our between-relation.1

Now likeness is just as easily definable between three-term re-
lations as between two-term relations. If B and B′ are two
between-relations, so that “xB(y, z)” means “x is between y
and z with respect to B,” we shall call S a correlator of B and
B′ if it has the field of B′ for its converse domain, and is such
that the relation B holds between three terms when B′ holds
between their S-correlates, and only then. And we shall say

1This does not apply to elliptic space, but only to spaces in which the
straight line is an open series. Modern Mathematics, edited by J. W. A.
Young, pp. 3–51 (monograph by O. Veblen on “The Foundations of Ge-
ometry”).



Similarity of Relations 72

that B is like B′ when there is at least one correlator of B
with B′. The reader can easily convince himself that, if B is
like B′ in this sense, there can be no difference between the
geometry generated by B and that generated by B′.

It follows from this that the mathematician need not con-
cern himself with the particular being or intrinsic nature of
his points, lines, and planes, even when he is speculating as
an applied mathematician. We may say that there is empirical
evidence of the approximate truth of such parts of geometry
as are not matters of definition. But there is no empirical ev-
idence as to what a “point” is to be. It has to be something
that as nearly as possible satisfies our axioms, but it does not
have to be “very small” or “without parts.” Whether or not it
is those things is a matter of indifference, so long as it satisfies
the axioms. If we can, out of empirical material, construct a
logical structure, no matter how complicated, which will sat-
isfy our geometrical axioms, that structure may legitimately
be called a “point.” We must not say that there is nothing
else that could legitimately be called a “point”; we must only
say: “This object we have constructed is sufficient for the ge-
ometer; it may be one of many objects, any of which would
be sufficient, but that is no concern of ours, since this object
is enough to vindicate the empirical truth of geometry, in so
far as geometry is not a matter of definition.” This is only
an illustration of the general principle that what matters in
mathematics, and to a very great extent in physical science, is
not the intrinsic nature of our terms, but the logical nature of
their interrelations.
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We may say, of two similar relations, that they have the
same “structure.” For mathematical purposes (though not for
those of pure philosophy) the only thing of importance about a
relation is the cases in which it holds, not its intrinsic nature.
Just as a class may be defined by various different but co-
extensive concepts—e.g. “man” and “featherless biped,”—so
two relations which are conceptually different may hold in the
same set of instances. An “instance” in which a relation holds
is to be conceived as a couple of terms, with an order, so that
one of the terms comes first and the other second; the couple
is to be, of course, such that its first term has the relation in
question to its second. Take (say) the relation “father”: we
can define what we may call the “extension” of this relation
as the class of all ordered couples (x, y) which are such that
x is the father of y. From the mathematical point of view, the
only thing of importance about the relation “father” is that it
defines this set of ordered couples. Speaking generally, we say:

The “extension” of a relation is the class of those ordered
couples (x, y) which are such that x has the relation in question
to y.

We can now go a step further in the process of abstrac-
tion, and consider what we mean by “structure.” Given any
relation, we can, if it is a sufficiently simple one, construct a
map of it. For the sake of definiteness, let us take a relation
of which the extension is the following couples: ab, ac, ad, bc,
ce, dc, de, where a, b, c, d, e are five terms, no matter what.
We may make a “map” of this relation by taking five points
on a plane and connecting them by arrows, as in the accom-
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panying figure. What is revealed by the map is what we call
the “structure” of the relation.

a b

cd

It is clear that the “structure” of
the relation does not depend upon the
particular terms that make up the field
of the relation. The field may be
changed without changing the structure,
and the structure may be changed with-
out changing the field—for example, if
we were to add the couple ae in the above
illustration we should alter the structure but not the field.
Two relations have the same “structure,” we shall say, when
the same map will do for both—or, what comes to the same
thing, when either can be a map for the other (since every rela-
tion can be its own map). And that, as a moment’s reflection
shows, is the very same thing as what we have called “likeness.”
That is to say, two relations have the same structure when they
have likeness, i.e. when they have the same relation-number.
Thus what we defined as the “relation-number” is the very
same thing as is obscurely intended by the word “structure”—
a word which, important as it is, is never (so far as we know)
defined in precise terms by those who use it.

There has been a great deal of speculation in traditional
philosophy which might have been avoided if the importance
of structure, and the difficulty of getting behind it, had been
realised. For example, it is often said that space and time are
subjective, but they have objective counterparts; or that phe-
nomena are subjective, but are caused by things in themselves,
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which must have differences inter se corresponding with the
differences in the phenomena to which they give rise. Where
such hypotheses are made, it is generally supposed that we can
know very little about the objective counterparts. In actual
fact, however, if the hypotheses as stated were correct, the ob-
jective counterparts would form a world having the same struc-
ture as the phenomenal world, and allowing us to infer from
phenomena the truth of all propositions that can be stated in
abstract terms and are known to be true of phenomena. If the
phenomenal world has three dimensions, so must the world
behind phenomena; if the phenomenal world is Euclidean, so
must the other be; and so on. In short, every proposition hav-
ing a communicable significance must be true of both worlds
or of neither: the only difference must lie in just that essence
of individuality which always eludes words and baffles descrip-
tion, but which, for that very reason, is irrelevant to science.
Now the only purpose that philosophers have in view in con-
demning phenomena is in order to persuade themselves and
others that the real world is very different from the world of
appearance. We can all sympathise with their wish to prove
such a very desirable proposition, but we cannot congratulate
them on their success. It is true that many of them do not
assert objective counterparts to phenomena, and these escape
from the above argument. Those who do assert counterparts
are, as a rule, very reticent on the subject, probably because
they feel instinctively that, if pursued, it will bring about too
much of a rapprochement between the real and the phenome-
nal world. If they were to pursue the topic, they could hardly
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avoid the conclusions which we have been suggesting. In such
ways, as well as in many others, the notion of structure or
relation-number is important.



CHAPTER VII

RATIONAL, REAL, AND COMPLEX NUMBERS

We have now seen how to define cardinal numbers, and also
relation-numbers, of which what are commonly called ordinal
numbers are a particular species. It will be found that each
of these kinds of number may be infinite just as well as fi-
nite. But neither is capable, as it stands, of the more familiar
extensions of the idea of number, namely, the extensions to
negative, fractional, irrational, and complex numbers. In the
present chapter we shall briefly supply logical definitions of
these various extensions.

One of the mistakes that have delayed the discovery of cor-
rect definitions in this region is the common idea that each ex-
tension of number included the previous sorts as special cases.
It was thought that, in dealing with positive and negative inte-
gers, the positive integers might be identified with the original
signless integers. Again it was thought that a fraction whose
denominator is 1 may be identified with the natural number
which is its numerator. And the irrational numbers, such as
the square root of 2, were supposed to find their place among
rational fractions, as being greater than some of them and less
than the others, so that rational and irrational numbers could
be taken together as one class, called “real numbers.” And
when the idea of number was further extended so as to in-
clude “complex” numbers, i.e. numbers involving the square
root of −1, it was thought that real numbers could be regarded
as those among complex numbers in which the imaginary part

77
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(i.e. the part which was a multiple of the square root of −1)
was zero. All these suppositions were erroneous, and must
be discarded, as we shall find, if correct definitions are to be
given.

Let us begin with positive and negative integers. It is obvi-
ous on a moment’s consideration that +1 and −1 must both
be relations, and in fact must be each other’s converses. The
obvious and sufficient definition is that +1 is the relation of
n + 1 to n, and −1 is the relation of n to n + 1. Generally, if
m is any inductive number, +m will be the relation of n+m
to n (for any n), and −m will be the relation of n to n + m.
According to this definition, +m is a relation which is one-one
so long as n is a cardinal number (finite or infinite) and m is an
inductive cardinal number. But +m is under no circumstances
capable of being identified with m, which is not a relation, but
a class of classes. Indeed, +m is every bit as distinct from m
as −m is.

Fractions are more interesting than positive or negative
integers. We need fractions for many purposes, but perhaps
most obviously for purposes of measurement. My friend and
collaborator Dr A. N. Whitehead has developed a theory of
fractions specially adapted for their application to measure-
ment, which is set forth in Principia Mathematica.1 But if all
that is needed is to define objects having the required purely
mathematical properties, this purpose can be achieved by a
simpler method, which we shall here adopt. We shall define

1Vol. iii. * 300 ff., especially 303.
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the fraction m/n as being that relation which holds between
two inductive numbers x, y when xn = ym. This definition
enables us to prove that m/n is a one-one relation, provided
neither m or n is zero. And of course n/m is the converse
relation to m/n.

From the above definition it is clear that the fraction m/1
is that relation between two integers x and y which consists in
the fact that x = my. This relation, like the relation +m, is
by no means capable of being identified with the inductive car-
dinal number m, because a relation and a class of classes are
objects of utterly different kinds.1 It will be seen that 0/n is
always the same relation, whatever inductive number n may
be; it is, in short, the relation of 0 to any other inductive cardi-
nal. We may call this the zero of rational numbers; it is not, of
course, identical with the cardinal number 0. Conversely, the
relation m/0 is always the same, whatever inductive number
m may be. There is not any inductive cardinal to correspond
to m/0. We may call it “the infinity of rationals.” It is an
instance of the sort of infinite that is traditional in mathemat-
ics, and that is represented by “∞.” This is a totally different
sort from the true Cantorian infinite, which we shall consider
in our next chapter. The infinity of rationals does not de-
mand, for its definition or use, any infinite classes or infinite

1Of course in practice we shall continue to speak of a fraction as
(say) greater or less than 1, meaning greater or less than the ratio 1/1.
So long as it is understood that the ratio 1/1 and the cardinal number 1
are different, it is not necessary to be always pedantic in emphasising the
difference.
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integers. It is not, in actual fact, a very important notion, and
we could dispense with it altogether if there were any object in
doing so. The Cantorian infinite, on the other hand, is of the
greatest and most fundamental importance; the understand-
ing of it opens the way to whole new realms of mathematics
and philosophy.

It will be observed that zero and infinity, alone among ra-
tios, are not one-one. Zero is one-many, and infinity is many-
one.

There is not any difficulty in defining greater and less
among ratios (or fractions). Given two ratios m/n and p/q,
we shall say that m/n is less than p/q if mq is less than pn.
There is no difficulty in proving that the relation “less than,”
so defined, is serial, so that the ratios form a series in order of
magnitude. In this series, zero is the smallest term and infin-
ity is the largest. If we omit zero and infinity from our series,
there is no longer any smallest or largest ratio; it is obvious
that if m/n is any ratio other than zero and infinity, m/2n is
smaller and 2m/n is larger, though neither is zero or infin-
ity, so that m/n is neither the smallest nor the largest ratio,
and therefore (when zero and infinity are omitted) there is no
smallest or largest, since m/n was chosen arbitrarily. In like
manner we can prove that however nearly equal two fractions
may be, there are always other fractions between them. For,
let m/n and p/q be two fractions, of which p/q is the greater.
Then it is easy to see (or to prove) that (m + p)/(n + q) will
be greater than m/n and less than p/q. Thus the series of
ratios is one in which no two terms are consecutive, but there
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are always other terms between any two. Since there are other
terms between these others, and so on ad infinitum, it is ob-
vious that there are an infinite number of ratios between any
two, however nearly equal these two may be.1 A series having
the property that there are always other terms between any
two, so that no two are consecutive, is called “compact.” Thus
the ratios in order of magnitude form a “compact” series. Such
series have many important properties, and it is important to
observe that ratios afford an instance of a compact series gen-
erated purely logically, without any appeal to space or time or
any other empirical datum.

Positive and negative ratios can be defined in a way anal-
ogous to that in which we defined positive and negative inte-
gers. Having first defined the sum of two ratios m/n and p/q
as (mq+ pn)/nq, we define +p/q as the relation of m/n+ p/q
to m/n, where m/n is any ratio; and −p/q is of course the
converse of +p/q. This is not the only possible way of defin-
ing positive and negative ratios, but it is a way which, for our
purpose, has the merit of being an obvious adaptation of the
way we adopted in the case of integers.

We come now to a more interesting extension of the idea of
number, i.e. the extension to what are called “real” numbers,
which are the kind that embrace irrationals. In Chapter I.
we had occasion to mention “incommensurables” and their
discovery by Pythagoras. It was through them, i.e. through

1Strictly speaking, this statement, as well as those following to the
end of the paragraph, involves what is called the “axiom of infinity,”
which will be discussed in a later chapter.
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geometry, that irrational numbers were first thought of. A
square of which the side is one inch long will have a diagonal
of which the length is the square root of 2 inches. But, as the
ancients discovered, there is no fraction of which the square
is 2. This proposition is proved in the tenth book of Euclid,
which is one of those books that schoolboys supposed to be
fortunately lost in the days when Euclid was still used as a
text-book. The proof is extraordinarily simple. If possible, let
m/n be the square root of 2, so that m2/n2 = 2, i.e. m2 = 2n2.
Thus m2 is an even number, and therefore m must be an even
number, because the square of an odd number is odd. Now if
m is even, m2 must divide by 4, for if m = 2p, then m2 = 4p2.
Thus we shall have 4p2 = 2n2, where p is half of m. Hence
2p2 = n2, and therefore n/p will also be the square root of 2.
But then we can repeat the argument: if n = 2q, p/q will also
be the square root of 2, and so on, through an unending series
of numbers that are each half of its predecessor. But this is
impossible; if we divide a number by 2, and then halve the half,
and so on, we must reach an odd number after a finite number
of steps. Or we may put the argument even more simply by
assuming that the m/n we start with is in its lowest terms;
in that case, m and n cannot both be even; yet we have seen
that, if m2/n2 = 2, they must be. Thus there cannot be any
fraction m/n whose square is 2.

Thus no fraction will express exactly the length of the di-
agonal of a square whose side is one inch long. This seems
like a challenge thrown out by nature to arithmetic. How-
ever the arithmetician may boast (as Pythagoras did) about
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the power of numbers, nature seems able to baffle him by ex-
hibiting lengths which no numbers can estimate in terms of
the unit. But the problem did not remain in this geometri-
cal form. As soon as algebra was invented, the same problem
arose as regards the solution of equations, though here it took
on a wider form, since it also involved complex numbers.

It is clear that fractions can be found which approach
nearer and nearer to having their square equal to 2. We can
form an ascending series of fractions all of which have their
squares less than 2, but differing from 2 in their later mem-
bers by less than any assigned amount. That is to say, suppose
I assign some small amount in advance, say one-billionth, it
will be found that all the terms of our series after a certain
one, say the tenth, have squares that differ from 2 by less than
this amount. And if I had assigned a still smaller amount,
it might have been necessary to go further along the series,
but we should have reached sooner or later a term in the se-
ries, say the twentieth, after which all terms would have had
squares differing from 2 by less than this still smaller amount.
If we set to work to extract the square root of 2 by the usual
arithmetical rule, we shall obtain an unending decimal which,
taken to so-and-so many places, exactly fulfils the above condi-
tions. We can equally well form a descending series of fractions
whose squares are all greater than 2, but greater by continually
smaller amounts as we come to later terms of the series, and
differing, sooner or later, by less than any assigned amount.
In this way we seem to be drawing a cordon round the square
root of 2, and it may seem difficult to believe that it can per-
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manently escape us. Nevertheless, it is not by this method
that we shall actually reach the square root of 2.

If we divide all ratios into two classes, according as their
squares are less than 2 or not, we find that, among those
whose squares are not less than 2, all have their squares greater
than 2. There is no maximum to the ratios whose square is
less than 2, and no minimum to those whose square is greater
than 2. There is no lower limit short of zero to the difference
between the numbers whose square is a little less than 2 and
the numbers whose square is a little greater than 2. We can,
in short, divide all ratios into two classes such that all the
terms in one class are less than all in the other, there is no
maximum to the one class, and there is no minimum to the
other. Between these two classes, where

√
2 ought to be, there

is nothing. Thus our cordon, though we have drawn it as tight
as possible, has been drawn in the wrong place, and has not
caught

√
2.

The above method of dividing all the terms of a series
into two classes, of which the one wholly precedes the other,
was brought into prominence by Dedekind,1 and is therefore
called a “Dedekind cut.” With respect to what happens at
the point of section, there are four possibilities: (1) there may
be a maximum to the lower section and a minimum to the
upper section, (2) there may be a maximum to the one and no
minimum to the other, (3) there may be no maximum to the
one, but a minimum to the other, (4) there may be neither a

1Stetigkeit und irrationale Zahlen, 2nd edition, Brunswick, 1892.
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maximum to the one nor a minimum to the other. Of these
four cases, the first is illustrated by any series in which there
are consecutive terms: in the series of integers, for instance,
a lower section must end with some number n and the upper
section must then begin with n + 1. The second case will be
illustrated in the series of ratios if we take as our lower section
all ratios up to and including 1, and in our upper section all
ratios greater than 1. The third case is illustrated if we take
for our lower section all ratios less than 1, and for our upper
section all ratios from 1 upward (including 1 itself). The fourth
case, as we have seen, is illustrated if we put in our lower
section all ratios whose square is less than 2, and in our upper
section all ratios whose square is greater than 2.

We may neglect the first of our four cases, since it only
arises in series where there are consecutive terms. In the sec-
ond of our four cases, we say that the maximum of the lower
section is the lower limit of the upper section, or of any set of
terms chosen out of the upper section in such a way that no
term of the upper section is before all of them. In the third of
our four cases, we say that the minimum of the upper section
is the upper limit of the lower section, or of any set of terms
chosen out of the lower section in such a way that no term of
the lower section is after all of them. In the fourth case, we say
that there is a “gap”: neither the upper section nor the lower
has a limit or a last term. In this case, we may also say that
we have an “irrational section,” since sections of the series of
ratios have “gaps” when they correspond to irrationals.

What delayed the true theory of irrationals was a mistaken
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belief that there must be “limits” of series of ratios. The notion
of “limit” is of the utmost importance, and before proceeding
further it will be well to define it.

A term x is said to be an “upper limit” of a class α with
respect to a relation P if (1) α has no maximum in P, (2) every
member of α which belongs to the field of P precedes x, (3) ev-
ery member of the field of P which precedes x precedes some
member of α. (By “precedes” we mean “has the relation P
to.”)

Thispresupposes the followingdefinitionofa“maximum”:—
A term x is said to be a “maximum” of a class α with

respect to a relation P if x is a member of α and of the field
of P and does not have the relation P to any other member
of α.

These definitions do not demand that the terms to which
they are applied should be quantitative. For example, given a
series of moments of time arranged by earlier and later, their
“maximum” (if any) will be the last of the moments; but if
they are arranged by later and earlier, their “maximum” (if
any) will be the first of the moments.

The “minimum” of a class with respect to P is its maximum
with respect to the converse of P; and the “lower limit” with
respect to P is the upper limit with respect to the converse
of P.

The notions of limit and maximum do not essentially de-
mand that the relation in respect to which they are defined
should be serial, but they have few important applications ex-
cept to cases when the relation is serial or quasi-serial. A
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notion which is often important is the notion “upper limit or
maximum,” to which we may give the name “upper bound-
ary.” Thus the “upper boundary” of a set of terms chosen out
of a series is their last member if they have one, but, if not, it is
the first term after all of them, if there is such a term. If there
is neither a maximum nor a limit, there is no upper boundary.
The “lower boundary” is the lower limit or minimum.

Reverting to the four kinds of Dedekind section, we see that
in the case of the first three kinds each section has a boundary
(upper or lower as the case may be), while in the fourth kind
neither has a boundary. It is also clear that, whenever the
lower section has an upper boundary, the upper section has a
lower boundary. In the second and third cases, the two bound-
aries are identical; in the first, they are consecutive terms of
the series.

A series is called “Dedekindian” when every section has a
boundary, upper or lower as the case may be.

We have seen that the series of ratios in order of magnitude
is not Dedekindian.

From the habit of being influenced by spatial imagination,
people have supposed that series must have limits in cases
where it seems odd if they do not. Thus, perceiving that
there was no rational limit to the ratios whose square is less
than 2, they allowed themselves to “postulate” an irrational
limit, which was to fill the Dedekind gap. Dedekind, in the
above-mentioned work, set up the axiom that the gap must
always be filled, i.e. that every section must have a bound-
ary. It is for this reason that series where his axiom is verified



Rational, Real, and Complex Numbers 88

are called “Dedekindian.” But there are an infinite number of
series for which it is not verified.

The method of “postulating” what we want has many ad-
vantages; they are the same as the advantages of theft over
honest toil. Let us leave them to others and proceed with our
honest toil.

It is clear that an irrational Dedekind cut in some way
“represents” an irrational. In order to make use of this, which
to begin with is no more than a vague feeling, we must find
some way of eliciting from it a precise definition; and in order
to do this, we must disabuse our minds of the notion that an
irrational must be the limit of a set of ratios. Just as ratios
whose denominator is 1 are not identical with integers, so those
rational numbers which can be greater or less than irrationals,
or can have irrationals as their limits, must not be identified
with ratios. We have to define a new kind of numbers called
“real numbers,” of which some will be rational and some irra-
tional. Those that are rational “correspond” to ratios, in the
same kind of way in which the ratio n/1 corresponds to the
integer n; but they are not the same as ratios. In order to
decide what they are to be, let us observe that an irrational is
represented by an irrational cut, and a cut is represented by
its lower section. Let us confine ourselves to cuts in which the
lower section has no maximum; in this case we will call the
lower section a “segment.” Then those segments that corre-
spond to ratios are those that consist of all ratios less than the
ratio they correspond to, which is their boundary; while those
that represent irrationals are those that have no boundary.



Introduction to Mathematical Philosophy 89

Segments, both those that have boundaries and those that do
not, are such that, of any two pertaining to one series, one
must be part of the other; hence they can all be arranged in
a series by the relation of whole and part. A series in which
there are Dedekind gaps, i.e. in which there are segments that
have no boundary, will give rise to more segments than it has
terms, since each term will define a segment having that term
for boundary, and then the segments without boundaries will
be extra.

We are now in a position to define a real number and an
irrational number.

A “real number” is a segment of the series of ratios in order
of magnitude.

An “irrational number” is a segment of the series of ratios
which has no boundary.

A “rational real number” is a segment of the series of ratios
which has a boundary.

Thus a rational real number consists of all ratios less than a
certain ratio, and it is the rational real number corresponding
to that ratio. The real number 1, for instance, is the class of
proper fractions.

In the cases in which we naturally supposed that an irra-
tional must be the limit of a set of ratios, the truth is that it
is the limit of the corresponding set of rational real numbers
in the series of segments ordered by whole and part. For ex-
ample,

√
2 is the upper limit of all those segments of the series

of ratios that correspond to ratios whose square is less than 2.
More simply still,

√
2 is the segment consisting of all those
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ratios whose square is less than 2.
It is easy to prove that the series of segments of any series

is Dedekindian. For, given any set of segments, their boundary
will be their logical sum, i.e. the class of all those terms that
belong to at least one segment of the set.1

The above definition of real numbers is an example of “con-
struction” as against “postulation,” of which we had another
example in the definition of cardinal numbers. The great ad-
vantage of this method is that it requires no new assumptions,
but enables us to proceed deductively from the original appa-
ratus of logic.

There is no difficulty in defining addition and multiplica-
tion for real numbers as above defined. Given two real numbers
µ and ν, each being a class of ratios, take any member of µ
and any member of ν and add them together according to the
rule for the addition of ratios. Form the class of all such sums
obtainable by varying the selected members of µ and ν. This
gives a new class of ratios, and it is easy to prove that this
new class is a segment of the series of ratios. We define it as
the sum of µ and ν. We may state the definition more shortly
as follows:—

The arithmetical sum of two real numbers is the class of
the arithmetical sums of a member of the one and a member
of the other chosen in all possible ways.

1For a fuller treatment of the subject of segments and Dedekindian
relations, see Principia Mathematica, vol. ii. * 210–214. For a fuller
treatment of real numbers, see ibid., vol. iii. * 310 ff., and Principles of
Mathematics, chaps. xxxiii. and xxxiv.
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We can define the arithmetical product of two real numbers
in exactly the same way, by multiplying a member of the one
by a member of the other in all possible ways. The class of
ratios thus generated is defined as the product of the two real
numbers. (In all such definitions, the series of ratios is to be
defined as excluding 0 and infinity.)

There is no difficulty in extending our definitions to positive
and negative real numbers and their addition and multiplica-
tion.

It remains to give the definition of complex numbers.
Complex numbers, though capable of a geometrical inter-

pretation, are not demanded by geometry in the same imper-
ative way in which irrationals are demanded. A “complex”
number means a number involving the square root of a neg-
ative number, whether integral, fractional, or real. Since the
square of a negative number is positive, a number whose square
is to be negative has to be a new sort of number. Using the
letter i for the square root of −1, any number involving the
square root of a negative number can be expressed in the form
x+yi, where x and y are real. The part yi is called the “imagi-
nary” part of this number, x being the “real” part. (The reason
for the phrase “real numbers” is that they are contrasted with
such as are “imaginary.”) Complex numbers have been for a
long time habitually used by mathematicians, in spite of the
absence of any precise definition. It has been simply assumed
that they would obey the usual arithmetical rules, and on this
assumption their employment has been found profitable. They
are required less for geometry than for algebra and analysis.
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We desire, for example, to be able to say that every quadratic
equation has two roots, and every cubic equation has three,
and so on. But if we are confined to real numbers, such an
equation as x2+ = 0 has no roots, and such an equation as
x3 − 1 = 0 has only one. Every generalisation of number has
first presented itself as needed for some simple problem: neg-
ative numbers were needed in order that subtraction might be
always possible, since otherwise a− b would be meaningless if
a were less than b; fractions were needed in order that division
might be always possible; and complex numbers are needed in
order that extraction of roots and solution of equations may
be always possible. But extensions of number are not created
by the mere need for them: they are created by the definition,
and it is to the definition of complex numbers that we must
now turn our attention.

A complex number may be regarded and defined as simply
an ordered couple of real numbers. Here, as elsewhere, many
definitions are possible. All that is necessary is that the defi-
nitions adopted shall lead to certain properties. In the case of
complex numbers, if they are defined as ordered couples of real
numbers, we secure at once some of the properties required,
namely, that two real numbers are required to determine a
complex number, and that among these we can distinguish a
first and a second, and that two complex numbers are only
identical when the first real number involved in the one is
equal to the first involved in the other, and the second to the
second. What is needed further can be secured by defining the
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rules of addition and multiplication. We are to have

(x+ yi) + (x′ + y′i) = (x+ x′) + (y + y′)i,

(x+ yi)(x′ + y′i) = (xx′ − yy′) + (xy′ + x′y)i.

Thus we shall define that, given two ordered couples of
real numbers, (x, y) and (x′, y′), their sum is to be the
couple (x+ x′, y + y′), and their product is to be the couple
(xx′ − yy′, xy′ + x′y). By these definitions we shall secure that
our ordered couples shall have the properties we desire. For
example, take the product of the two couples (0, y) and (0, y′).
This will, by the above rule, be the couple (−yy′, 0). Thus
the square of the couple (0, 1) will be the couple (−1, 0). Now
those couples in which the second term is 0 are those which, ac-
cording to the usual nomenclature, have their imaginary part
zero; in the notation x+ yi, they are x+ 0i, which it is natu-
ral to write simply x. Just as it is natural (but erroneous) to
identify ratios whose denominator is unity with integers, so it
is natural (but erroneous) to identify complex numbers whose
imaginary part is zero with real numbers. Although this is an
error in theory, it is a convenience in practice; “x+0i” may be
replaced simply by “x” and “0 + yi” by “yi,” provided we re-
member that the “x” is not really a real number, but a special
case of a complex number. And when y is 1, “yi” may of course
be replaced by “i.” Thus the couple (0, 1) is represented by i,
and the couple (−1, 0) is represented by −1. Now our rules of
multiplication make the square of (0, 1) equal to (−1, 0), i.e.
the square of i is −1. This is what we desired to secure. Thus
our definitions serve all necessary purposes.
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It is easy to give a geometrical interpretation of complex
numbers in the geometry of the plane. This subject was agree-
ably expounded by W. K. Clifford in his Common Sense of the
Exact Sciences, a book of great merit, but written before the
importance of purely logical definitions had been realised.

Complex numbers of a higher order, though much less use-
ful and important than those what we have been defining,
have certain uses that are not without importance in geom-
etry, as may be seen, for example, in Dr Whitehead’s Uni-
versal Algebra. The definition of complex numbers of order n
is obtained by an obvious extension of the definition we have
given. We define a complex number of order n as a one-many
relation whose domain consists of certain real numbers and
whose converse domain consists of the integers from 1 to n.1

This is what would ordinarily be indicated by the notation
(x1, x2, x3, . . . , xn), where the suffixes denote correlation with
the integers used as suffixes, and the correlation is one-many,
not necessarily one-one, because xr and xs may be equal when
r and s are not equal. The above definition, with a suitable
rule of multiplication, will serve all purposes for which complex
numbers of higher orders are needed.

We have now completed our review of those extensions of
number which do not involve infinity. The application of num-
ber to infinite collections must be our next topic.

1Cf. Principles of Mathematics, § 360, p. 379.



CHAPTER VIII

INFINITE CARDINAL NUMBERS

The definition of cardinal numbers which we gave in Chap-
ter II. was applied in Chapter III. to finite numbers, i.e. to the
ordinary natural numbers. To these we gave the name “induc-
tive numbers,” because we found that they are to be defined as
numbers which obey mathematical induction starting from 0.
But we have not yet considered collections which do not have
an inductive number of terms, nor have we inquired whether
such collections can be said to have a number at all. This is an
ancient problem, which has been solved in our own day, chiefly
by Georg Cantor. In the present chapter we shall attempt to
explain the theory of transfinite or infinite cardinal numbers
as it results from a combination of his discoveries with those
of Frege on the logical theory of numbers.

It cannot be said to be certain that there are in fact any
infinite collections in the world. The assumption that there
are is what we call the “axiom of infinity.” Although various
ways suggest themselves by which we might hope to prove this
axiom, there is reason to fear that they are all fallacious, and
that there is no conclusive logical reason for believing it to be
true. At the same time, there is certainly no logical reason
against infinite collections, and we are therefore justified, in
logic, in investigating the hypothesis that there are such col-
lections. The practical form of this hypothesis, for our present
purposes, is the assumption that, if n is any inductive number,
n is not equal to n+ 1. Various subtleties arise in identifying

95
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this form of our assumption with the form that asserts the
existence of infinite collections; but we will leave these out of
account until, in a later chapter, we come to consider the ax-
iom of infinity on its own account. For the present we shall
merely assume that, if n is an inductive number, n is not equal
to n + 1. This is involved in Peano’s assumption that no two
inductive numbers have the same successor; for, if n = n + 1,
then n− 1 and n have the same successor, namely n. Thus we
are assuming nothing that was not involved in Peano’s primi-
tive propositions.

Let us now consider the collection of the inductive num-
bers themselves. This is a perfectly well-defined class. In the
first place, a cardinal number is a set of classes which are all
similar to each other and are not similar to anything except
each other. We then define as the “inductive numbers” those
among cardinals which belong to the posterity of 0 with re-
spect to the relation of n to n + 1, i.e. those which possess
every property possessed by 0 and by the successors of posses-
sors, meaning by the “successor” of n the number n+ 1. Thus
the class of “inductive numbers” is perfectly definite. By our
general definition of cardinal numbers, the number of terms in
the class of inductive numbers is to be defined as “all those
classes that are similar to the class of inductive numbers”—
i.e. this set of classes is the number of the inductive numbers
according to our definitions.

Now it is easy to see that this number is not one of the
inductive numbers. If n is any inductive number, the number
of numbers from 0 to n (both included) is n+ 1; therefore the
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total number of inductive numbers is greater than n, no matter
which of the inductive numbers n may be. If we arrange the
inductive numbers in a series in order of magnitude, this series
has no last term; but if n is an inductive number, every series
whose field has n terms has a last term, as it is easy to prove.
Such differences might be multiplied ad lib. Thus the number
of inductive numbers is a new number, different from all of
them, not possessing all inductive properties. It may happen
that 0 has a certain property, and that if n has it so has n+ 1,
and yet that this new number does not have it. The difficulties
that so long delayed the theory of infinite numbers were largely
due to the fact that some, at least, of the inductive properties
were wrongly judged to be such as must belong to all numbers;
indeed it was thought that they could not be denied without
contradiction. The first step in understanding infinite numbers
consists in realising the mistakenness of this view.

The most noteworthy and astonishing difference between
an inductive number and this new number is that this new
number is unchanged by adding 1 or subtracting 1 or doubling
or halving or any of a number of other operations which we
think of as necessarily making a number larger or smaller.
The fact of being not altered by the addition of 1 is used by
Cantor for the definition of what he calls “transfinite” cardinal
numbers; but for various reasons, some of which will appear as
we proceed, it is better to define an infinite cardinal number
as one which does not possess all inductive properties, i.e.
simply as one which is not an inductive number. Nevertheless,
the property of being unchanged by the addition of 1 is a very
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important one, and we must dwell on it for a time.
To say that a class has a number which is not altered by

the addition of 1 is the same thing as to say that, if we take a
term x which does not belong to the class, we can find a one-
one relation whose domain is the class and whose converse
domain is obtained by adding x to the class. For in that case,
the class is similar to the sum of itself and the term x, i.e. to
a class having one extra term; so that it has the same number
as a class with one extra term, so that if n is this number,
n = n + 1. In this case, we shall also have n = n − 1, i.e.
there will be one-one relations whose domains consist of the
whole class and whose converse domains consist of just one
term short of the whole class. It can be shown that the cases
in which this happens are the same as the apparently more
general cases in which some part (short of the whole) can be
put into one-one relation with the whole. When this can be
done, the correlator by which it is done may be said to “reflect”
the whole class into a part of itself; for this reason, such classes
will be called “reflexive.” Thus:

A “reflexive” class is one which is similar to a proper part
of itself. (A “proper part” is a part short of the whole.)

A “reflexive” cardinal number is the cardinal number of a
reflexive class.

We have now to consider this property of reflexiveness.
One of the most striking instances of a “reflexion” is

Royce’s illustration of the map: he imagines it decided to
make a map of England upon a part of the surface of England.
A map, if it is accurate, has a perfect one-one correspondence
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with its original; thus our map, which is part, is in one-one
relation with the whole, and must contain the same number
of points as the whole, which must therefore be a reflexive
number. Royce is interested in the fact that the map, if it
is correct, must contain a map of the map, which must in
turn contain a map of the map of the map, and so on ad
infinitum. This point is interesting, but need not occupy us
at this moment. In fact, we shall do well to pass from pic-
turesque illustrations to such as are more completely definite,
and for this purpose we cannot do better than consider the
number-series itself.

The relation of n to n+ 1, confined to inductive numbers,
is one-one, has the whole of the inductive numbers for its do-
main, and all except 0 for its converse domain. Thus the whole
class of inductive numbers is similar to what the same class
becomes when we omit 0. Consequently it is a “reflexive” class
according to the definition, and the number of its terms is a
“reflexive” number. Again, the relation of n to 2n, confined
to inductive numbers, is one-one, has the whole of the induc-
tive numbers for its domain, and the even inductive numbers
alone for its converse domain. Hence the total number of in-
ductive numbers is the same as the number of even inductive
numbers. This property was used by Leibniz (and many oth-
ers) as a proof that infinite numbers are impossible; it was
thought self-contradictory that “the part should be equal to
the whole.” But this is one of those phrases that depend for
their plausibility upon an unperceived vagueness: the word
“equal” has many meanings, but if it is taken to mean what
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we have called “similar,” there is no contradiction, since an in-
finite collection can perfectly well have parts similar to itself.
Those who regard this as impossible have, unconsciously as
a rule, attributed to numbers in general properties which can
only be proved by mathematical induction, and which only
their familiarity makes us regard, mistakenly, as true beyond
the region of the finite.

Whenever we can “reflect” a class into a part of itself, the
same relation will necessarily reflect that part into a smaller
part, and so on ad infinitum. For example, we can reflect,
as we have just seen, all the inductive numbers into the even
numbers; we can, by the same relation (that of n to 2n) reflect
the even numbers into the multiples of 4, these into the mul-
tiples of 8, and so on. This is an abstract analogue to Royce’s
problem of the map. The even numbers are a “map” of all the
inductive numbers; the multiples of 4 are a map of the map;
the multiples of 8 are a map of the map of the map; and so
on. If we had applied the same process to the relation of n
to n+ 1, our “map” would have consisted of all the inductive
numbers except 0; the map of the map would have consisted of
all from 2 onward, the map of the map of the map of all from
3 onward; and so on. The chief use of such illustrations is in
order to become familiar with the idea of reflexive classes, so
that apparently paradoxical arithmetical propositions can be
readily translated into the language of reflexions and classes,
in which the air of paradox is much less.

It will be useful to give a definition of the number which is
that of the inductive cardinals. For this purpose we will first
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define the kind of series exemplified by the inductive cardinals
in order of magnitude. The kind of series which is called a
“progression” has already been considered in Chapter I. It is a
series which can be generated by a relation of consecutiveness:
every member of the series is to have a successor, but there is
to be just one which has no predecessor, and every member
of the series is to be in the posterity of this term with respect
to the relation “immediate predecessor.” These characteristics
may be summed up in the following definition:1—

A “progession” is a one-one relation such that there is just
one term belonging to the domain but not to the converse
domain, and the domain is identical with the posterity of this
one term.

It is easy to see that a progression, so defined, satisfies
Peano’s five axioms. The term belonging to the domain but
not to the converse domain will be what he calls “0”; the term
to which a term has the one-one relation will be the “successor”
of the term; and the domain of the one-one relation will be
what he calls “number.” Taking his five axioms in turn, we
have the following translations:—

(1) “0 is a number” becomes: “The member of the domain
which is not a member of the converse domain is a member
of the domain.” This is equivalent to the existence of such
a member, which is given in our definition. We will call this
member “the first term.”

(2) “The successor of any number is a number” becomes:

1Cf. Principia Mathematica, vol. ii. * 123.
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“The term to which a given member of the domain has the
relation in question is again a member of the domain.” This
is proved as follows: By the definition, every member of the
domain is a member of the posterity of the first term; hence
the successor of a member of the domain must be a member of
the posterity of the first term (because the posterity of a term
always contains its own successors, by the general definition of
posterity), and therefore a member of the domain, because by
the definition the posterity of the first term is the same as the
domain.

(3) “No two numbers have the same successor.” This is
only to say that the relation is one-many, which it is by defi-
nition (being one-one).

(4) “0 is not the successor of any number” becomes: “The
first term is not a member of the converse domain,” which is
again an immediate result of the definition.

(5) This is mathematical induction, and becomes: “Every
member of the domain belongs to the posterity of the first
term,” which was part of our definition.

Thus progressions as we have defined them have the five
formal properties from which Peano deduces arithmetic. It is
easy to show that two progessions are “similar” in the sense
defined for similarity of relations in Chapter VI. We can, of
course, derive a relation which is serial from the one-one rela-
tion by which we define a progression: the method used is that
explained in Chapter IV., and the relation is that of a term to
a member of its proper posterity with respect to the original
one-one relation.
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Two transitive asymmetrical relations which generate pro-
gressions are similar, for the same reasons for which the cor-
responding one-one relations are similar. The class of all such
transitive generators of progressions is a “serial number” in the
sense of Chapter VI.; it is in fact the smallest of infinite serial
numbers, the number to which Cantor has given the name ω,
by which he has made it famous.

But we are concerned, for the moment, with cardinal num-
bers. Since two progressions are similar relations, it follows
that their domains (or their fields, which are the same as their
domains) are similar classes. The domains of progressions form
a cardinal number, since every class which is similar to the do-
main of a progression is easily shown to be itself the domain
of a progression. This cardinal number is the smallest of the
infinite cardinal numbers; it is the one to which Cantor has ap-
propriated the Hebrew Aleph with the suffix 0, to distinguish it
from larger infinite cardinals, which have other suffixes. Thus
the name of the smallest of infinite cardinals is ℵ0.

To say that a class has ℵ0 terms is the same thing as to say
that it is a member of ℵ0, and this is the same thing as to say
that the members of the class can be arranged in a progres-
sion. It is obvious that any progression remains a progression
if we omit a finite number of terms from it, or every other
term, or all except every tenth term or every hundredth term.
These methods of thinning out a progression do not make it
cease to be a progression, and therefore do not diminish the
number of its terms, which remains ℵ0. In fact, any selec-
tion from a progression is a progression if it has no last term,
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however sparsely it may be distributed. Take (say) inductive
numbers of the form nn, or nn

n
. Such numbers grow very rare

in the higher parts of the number series, and yet there are just
as many of them as there are inductive numbers altogether,
namely, ℵ0.

Conversely, we can add terms to the inductive numbers
without increasing their number. Take, for example, ratios.
One might be inclined to think that there must be many more
ratios than integers, since ratios whose denominator is 1 cor-
respond to the integers, and seem to be only an infinitesimal
proportion of ratios. But in actual fact the number of ratios
(or fractions) is exactly the same as the number of inductive
numbers, namely, ℵ0. This is easily seen by arranging ratios
in a series on the following plan: If the sum of numerator and
denominator in one is less than in the other, put the one before
the other; if the sum is equal in the two, put first the one with
the smaller numerator. This gives us the series

1, 1/2, 2, 1/3, 3, 1/4, 2/3, 3/2, 4, 1/5, . . . .

This series is a progression, and all ratios occur in it sooner
or later. Hence we can arrange all ratios in a progression, and
their number is therefore ℵ0.

It is not the case, however, that all infinite collections have
ℵ0 terms. The number of real numbers, for example, is greater
than ℵ0; it is, in fact, 2ℵ0 , and it is not hard to prove that 2n is
greater than n even when n is infinite. The easiest way of
proving this is to prove, first, that if a class has n members, it
contains 2n sub-classes—in other words, that there are 2n ways
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of selecting some of its members (including the extreme cases
where we select all or none); and secondly, that the number
of sub-classes contained in a class is always greater than the
number of members of the class. Of these two propositions,
the first is familiar in the case of finite numbers, and is not
hard to extend to infinite numbers. The proof of the second is
so simple and so instructive that we shall give it:

In the first place, it is clear that the number of sub-classes
of a given class (say α) is at least as great as the number
of members, since each member constitutes a sub-class, and
we thus have a correlation of all the members with some of
the sub-classes. Hence it follows that, if the number of sub-
classes is not equal to the number of members, it must be
greater. Now it is easy to prove that the number is not equal,
by showing that, given any one-one relation whose domain is
the members and whose converse domain is contained among
the set of sub-classes, there must be at least one sub-class not
belonging to the converse domain. The proof is as follows:1

When a one-one correlation R is established between all the
members of α and some of the sub-classes, it may happen that
a given member x is correlated with a sub-class of which it
is a member; or, again, it may happen that x is correlated
with a sub-class of which it is not a member. Let us form the
whole class, β say, of those members x which are correlated
with sub-classes of which they are not members. This is a
sub-class of α, and it is not correlated with any member of α.

1This proof is taken from Cantor, with some simplifications: see
Jahresbericht der deutschen Mathematiker-Vereinigung, i. (1892), p. 77.
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For, taking first the members of β, each of them is (by the
definition of β) correlated with some sub-class of which it is
not a member, and is therefore not correlated with β. Taking
next the terms which are not members of β, each of them
(by the definition of β) is correlated with some sub-class of
which it is a member, and therefore again is not correlated
with β. Thus no member of α is correlated with β. Since
R was any one-one correlation of all members with some sub-
classes, it follows that there is no correlation of all members
with all sub-classes. It does not matter to the proof if β has
no members: all that happens in that case is that the sub-class
which is shown to be omitted is the null-class. Hence in any
case the number of sub-classes is not equal to the number of
members, and therefore, by what was said earlier, it is greater.
Combining this with the proposition that, if n is the number of
members, 2n is the number of sub-classes, we have the theorem
that 2n is always greater than n, even when n is infinite.

It follows from this proposition that there is no maximum
to the infinite cardinal numbers. However great an infinite
number n may be, 2n will be still greater. The arithmetic
of infinite numbers is somewhat surprising until one becomes
accustomed to it. We have, for example,

ℵ0 + 1 = ℵ0,
ℵ0 + n = ℵ0,where n is any inductive number,

ℵ20 = ℵ0.

(This follows from the case of the ratios, for, since a ratio is
determined by a pair of inductive numbers, it is easy to see that
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the number of ratios is the square of the number of inductive
numbers, i.e. it is ℵ20; but we saw that it is also ℵ0.)

ℵn0 = ℵ0,where n is any inductive number.

(This follows from ℵ20 = ℵ0 by induction; for if ℵn0 = ℵ0,
then ℵn+1

0 = ℵ20 = ℵ0.)

But
2ℵ0 > ℵ0.

In fact, as we shall see later, 2ℵ0 is a very important number,
namely, the number of terms in a series which has “continuity”
in the sense in which this word is used by Cantor. Assuming
space and time to be continuous in this sense (as we commonly
do in analytical geometry and kinematics), this will be the
number of points in space or of instants in time; it will also be
the number of points in any finite portion of space, whether
line, area, or volume. After ℵ0, 2ℵ0 is the most important and
interesting of infinite cardinal numbers.

Although addition and multiplication are always possible
with infinite cardinals, subtraction and division no longer give
definite results, and cannot therefore be employed as they are
employed in elementary arithmetic. Take subtraction to begin
with: so long as the number subtracted is finite, all goes well;
if the other number is reflexive, it remains unchanged. Thus
ℵ0 − n = ℵ0, if n is finite; so far, subtraction gives a perfectly
definite result. But it is otherwise when we subtract ℵ0 from
itself; we may then get any result, from 0 up to ℵ0. This is
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easily seen by examples. From the inductive, numbers, take
away the following collections of ℵ0 terms:—

(1) All the inductive numbers—remainder, zero.
(2) All the inductive numbers from n onwards—remainder,

the numbers from 0 to n− 1, numbering n terms in all.
(3) All the odd numbers—remainder, all the even numbers,

numbering ℵ0 terms.
All these are different ways of subtracting ℵ0 from ℵ0, and

all give different results.
As regards division, very similar results follow from the fact

that ℵ0 is unchanged when multiplied by 2 or 3 or any finite
number n or by ℵ0. It follows that ℵ0 divided by ℵ0 may have
any value from 1 up to ℵ0.

From the ambiguity of subtraction and division it re-
sults that negative numbers and ratios cannot be extended to
infinite numbers. Addition, multiplication, and exponentia-
tion proceed quite satisfactorily, but the inverse operations—
subtraction, division, and extraction of roots—are ambiguous,
and the notions that depend upon them fail when infinite
numbers are concerned.

The characteristic by which we defined finitude was math-
ematical induction, i.e. we defined a number as finite when it
obeys mathematical induction starting from 0, and a class as fi-
nite when its number is finite. This definition yields the sort of
result that a definition ought to yield, namely, that the finite
numbers are those that occur in the ordinary number-series
0, 1, 2, 3, . . . . But in the present chapter, the infinite num-
bers we have discussed have not merely been non-inductive:
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they have also been reflexive. Cantor used reflexiveness as
the definition of the infinite, and believes that it is equiva-
lent to non-inductiveness; that is to say, he believes that every
class and every cardinal is either inductive or reflexive. This
may be true, and may very possibly be capable of proof; but
the proofs hitherto offered by Cantor and others (including the
present author in former days) are fallacious, for reasons which
will be explained when we come to consider the “multiplica-
tive axiom.” At present, it is not known whether there are
classes and cardinals which are neither reflexive nor inductive.
If n were such a cardinal, we should not have n = n + 1, but
n would not be one of the “natural numbers,” and would be
lacking in some of the inductive properties. All known infinite
classes and cardinals are reflexive; but for the present it is well
to preserve an open mind as to whether there are instances,
hitherto unknown, of classes and cardinals which are neither
reflexive nor inductive. Meanwhile, we adopt the following
definitions:—

A finite class or cardinal is one which is inductive.
An infinite class or cardinal is one which is not inductive.

All reflexive classes and cardinals are infinite; but it is not
known at present whether all infinite classes and cardinals are
reflexive. We shall return to this subject in Chapter XII.



CHAPTER IX

INFINITE SERIES AND ORDINALS

An “infinite series” may be defined as a series of which the
field is an infinite class. We have already had occasion to
consider one kind of infinite series, namely, progressions. In
this chapter we shall consider the subject more generally.

The most noteworthy characteristic of an infinite series is
that its serial number can be altered by merely re-arranging its
terms. In this respect there is a certain oppositeness between
cardinal and serial numbers. It is possible to keep the cardinal
number of a reflexive class unchanged in spite of adding terms
to it; on the other hand, it is possible to change the serial
number of a series without adding or taking away any terms,
by mere re-arrangement. At the same time, in the case of any
infinite series it is also possible, as with cardinals, to add terms
without altering the serial number: everything depends upon
the way in which they are added.

In order to make matters clear, it will be best to begin with
examples. Let us first consider various different kinds of series
which can be made out of the inductive numbers arranged on
various plans. We start with the series

1, 2, 3, 4, . . . n, . . . ,

which, as we have already seen, represents the smallest of in-
finite serial numbers, the sort that Cantor calls ω. Let us
proceed to thin out this series by repeatedly performing the

110
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operation of removing to the end the first even number that
occurs. We thus obtain in succession the various series:

1, 3, 4, 5, . . . n, . . . 2,

1, 3, 5, 6, . . . n+ 1, . . . 2, 4,

1, 3, 5, 7, . . . n+ 2, . . . 2, 4, 6,

and so on. If we imagine this process carried on as long as
possible, we finally reach the series

1, 3, 5, 7, . . . 2n+ 1, . . . 2, 4, 6, 8, . . . 2n, . . . ,

in which we have first all the odd numbers and then all the
even numbers.

The serial numbers of these various series are ω+ 1, ω+ 2,
ω+ 3, . . . 2ω. Each of these numbers is “greater” than any of
its predecessors, in the following sense:—

One serial number is said to be “greater” than another
if any series having the first number contains a part having
the second number, but no series having the second number
contains a part having the first number.

If we compare the two series

1, 2, 3, 4, . . . n, . . . ,

1, 3, 4, 5, . . . n+ 1, . . . 2,

we see that the first is similar to the part of the second which
omits the last term, namely, the number 2, but the second
is not similar to any part of the first. (This is obvious, but
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is easily demonstrated.) Thus the second series has a greater
serial number than the first, according to the definition—i.e.
ω+ 1 is greater than ω. But if we add a term at the beginning
of a progression instead of the end, we still have a progression.
Thus 1 + ω = ω. Thus 1 + ω is not equal to ω + 1. This is
characteristic of relation-arithmetic generally: if µ and ν are
two relation-numbers, the general rule is that µ+ν is not equal
to ν+µ. The case of finite ordinals, in which there is equality,
is quite exceptional.

The series we finally reached just now consisted of first
all the odd numbers and then all the even numbers, and its
serial number is 2ω. This number is greater than ω or ω + n,
where n is finite. It is to be observed that, in accordance
with the general definition of order, each of these arrangements
of integers is to be regarded as resulting from some definite
relation. E.g. the one which merely removes 2 to the end
will be defined by the following relation: “x and y are finite
integers, and either y is 2 and x is not 2, or neither is 2 and x is
less than y.” The one which puts first all the odd numbers and
then all the even ones will be defined by: “x and y are finite
integers, and either x is odd and y is even or x is less than y
and both are odd or both are even.” We shall not trouble, as
a rule, to give these formulæ in future; but the fact that they
could be given is essential.

The number which we have called 2ω, namely, the number
of a series consisting of two progressions, is sometimes called
ω · 2. Multiplication, like addition, depends upon the order of



Introduction to Mathematical Philosophy 113

the factors: a progression of couples gives a series such as

x1, y1, x2, y2, x3, y3, . . . xn, yn, . . . ,

which is itself a progression; but a couple of progressions gives
a series which is twice as long as a progression. It is therefore
necessary to distinguish between 2ω and ω·2. Usage is variable;
we shall use 2ω for a couple of progressions and ω · 2 for a
progression of couples, and this decision of course governs our
general interpretation of “α · β” when α and β are relation-
numbers: “α · β” will have to stand for a suitably constructed
sum of a relations each having β terms.

We can proceed indefinitely with the process of thinning
out the inductive numbers. For example, we can place first
the odd numbers, then their doubles, then the doubles of these,
and so on. We thus obtain the series

1, 3, 5, 7, . . . ; 2, 6, 10, 14, . . . ; 4, 12, 20, 28, . . . ;

8, 24, 40, 56, . . . ,

of which the number is ω2, since it is a progression of progres-
sions. Any one of the progressions in this new series can of
course be thinned out as we thinned out our original progres-
sion. We can proceed to ω3, ω4, . . . ωω, and so on; however
far we have gone, we can always go further.

The series of all the ordinals that can be obtained in this
way, i.e. all that can be obtained by thinning out a progression,
is itself longer than any series that can be obtained by re-
arranging the terms of a progression. (This is not difficult to
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prove.) The cardinal number of the class of such ordinals can
be shown to be greater than ℵ0; it is the number which Cantor
calls ℵ1. The ordinal number of the series of all ordinals that
can be made out of an ℵ0, taken in order of magnitude, is
called ω1. Thus a series whose ordinal number is ω1 has a field
whose cardinal number is ℵ1.

We can proceed from ω1 and ℵ1 to ω2 and ℵ2 by a pro-
cess exactly analogous to that by which we advanced from ω
and ℵ0 to ω1 and ℵ1. And there is nothing to prevent us from
advancing indefinitely in this way to new cardinals and new
ordinals. It is not known whether 2ℵ0 is equal to any of the
cardinals in the series of Alephs. It is not even known whether
it is comparable with them in magnitude; for aught we know,
it may be neither equal to nor greater nor less than any one of
the Alephs. This question is connected with the multiplicative
axiom, of which we shall treat later.

All the series we have been considering so far in this chapter
have been what is called “well-ordered.” A well-ordered series
is one which has a beginning, and has consecutive terms, and
has a term next after any selection of its terms, provided there
are any terms after the selection. This excludes, on the one
hand, compact series, in which there are terms between any
two, and on the other hand series which have no beginning,
or in which there are subordinate parts having no beginning.
The series of negative integers in order of magnitude, having no
beginning, but ending with −1, is not well-ordered; but taken
in the reverse order, beginning with −1, it is well-ordered,
being in fact a progression. The definition is:
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A “well-ordered” series is one in which every sub-class (ex-
cept, of course, the null-class) has a first term.

An “ordinal” number means the relation-number of a well-
ordered series. It is thus a species of serial number.

Among well-ordered series, a generalised form of math-
ematical induction applies. A property may be said to be
“transfinitely hereditary” if, when it belongs to a certain se-
lection of the terms in a series, it belongs to their immediate
successor provided they have one. In a well-ordered series, a
transfinitely hereditary property belonging to the first term of
the series belongs to the whole series. This makes it possible to
prove many propositions concerning well-ordered series which
are not true of all series.

It is easy to arrange the inductive numbers in series which
are not well-ordered, and even to arrange them in compact
series. For example, we can adopt the following plan: consider
the decimals from .1 (inclusive) to 1 (exclusive), arranged in
order of magnitude. These form a compact series; between any
two there are always an infinite number of others. Now omit
the dot at the beginning of each, and we have a compact series
consisting of all finite integers except such as divide by 10. If
we wish to include those that divide by 10, there is no diffi-
culty; instead of starting with .1, we will include all decimals
less than 1, but when we remove the dot, we will transfer to
the right any 0’s that occur at the beginning of our decimal.
Omitting these, and returning to the ones that have no 0’s at
the beginning, we can state the rule for the arrangement of our
integers as follows: Of two integers that do not begin with the



Infinite Series and Ordinals 116

same digit, the one that begins with the smaller digit comes
first. Of two that do begin with the same digit, but differ at
the second digit, the one with the smaller second digit comes
first, but first of all the one with no second digit; and so on.
Generally, if two integers agree as regards the first n digits,
but not as regards the (n + 1)th , that one comes first which
has either no (n + 1)th digit or a smaller one than the other.
This rule of arrangement, as the reader can easily convince
himself, gives rise to a compact series containing all the inte-
gers not divisible by 10; and, as we saw, there is no difficulty
about including those that are divisible by 10. It follows from
this example that it is possible to construct compact series
having ℵ0 terms. In fact, we have already seen that there are
ℵ0 ratios, and ratios in order of magnitude form a compact
series; thus we have here another example. We shall resume
this topic in the next chapter.

Of the usual formal laws of addition, multiplication, and
exponentiation, all are obeyed by transfinite cardinals, but
only some are obeyed by transfinite ordinals, and those that
are obeyed by them are obeyed by all relation-numbers. By
the “usual formal laws” we mean the following:—

I. The commutative law:

α + β = β + α and α× β = β × α.

II. The associative law:

(α+β)+γ = α+(β+γ) and (α×β)×γ = α×(β×γ).
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III. The distributive law:

α(β + γ) = αβ + αγ.

When the commutative law does not hold, the above form
of the distributive law must be distinguished from

(β + γ)α = βα + γα.

As we shall see immediately, one form may be true and the
other false.

IV. The laws of exponentiation:

αβ · αγ = αβ+γ, αγ · βγ = (αβ)γ, (αβ)γ = αβγ.

All these laws hold for cardinals, whether finite or infinite,
and for finite ordinals. But when we come to infinite ordinals,
or indeed to relation-numbers in general, some hold and some
do not. The commutative law does not hold; the associative
law does hold; the distributive law (adopting the convention
we have adopted above as regards the order of the factors in
a product) holds in the form

(β + γ)α = βα + γα,

but not in the form

α(β + γ) = αβ + αγ;
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the exponential laws

αβ · αγ = αβ+γ, and (αβ)γ = αβγ

still hold, but not the law

αγ · βγ = (αβ)γ,

which is obviously connected with the commutative law for
multiplication.

The definitions of multiplication and exponentiation that
are assumed in the above propositions are somewhat compli-
cated. The reader who wishes to know what they are and how
the above laws are proved must consult the second volume of
Principia Mathematica, * 172–176.

Ordinal transfinite arithmetic was developed by Cantor at
an earlier stage than cardinal transfinite arithmetic, because
it has various technical mathematical uses which led him to
it. But from the point of view of the philosophy of mathemat-
ics it is less important and less fundamental than the theory
of transfinite cardinals. Cardinals are essentially simpler than
ordinals, and it is a curious historical accident that they first
appeared as an abstraction from the latter, and only gradu-
ally came to be studied on their own account. This does not
apply to Frege’s work, in which cardinals, finite and transfi-
nite, were treated in complete independence of ordinals; but it
was Cantor’s work that made the world aware of the subject,
while Frege’s remained almost unknown, probably in the main
on account of the difficulty of his symbolism. And mathemati-
cians, like other people, have more difficulty in understanding
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and using notions which are comparatively “simple” in the log-
ical sense than in manipulating more complex notions which
are more akin to their ordinary practice. For these reasons,
it was only gradually that the true importance of cardinals
in mathematical philosophy was recognised. The importance
of ordinals, though by no means small, is distinctly less than
that of cardinals, and is very largely merged in that of the
more general conception of relation-numbers.



CHAPTER X

LIMITS AND CONTINUITY

The conception of a “limit” is one of which the importance
in mathematics has been found continually greater than had
been thought. The whole of the differential and integral cal-
culus, indeed practically everything in higher mathematics,
depends upon limits. Formerly, it was supposed that infinites-
imals were involved in the foundations of these subjects, but
Weierstrass showed that this is an error: wherever infinites-
imals were thought to occur, what really occurs is a set of
finite quantities having zero for their lower limit. It used to
be thought that “limit” was an essentially quantitative notion,
namely, the notion of a quantity to which others approached
nearer and nearer, so that among those others there would be
some differing by less than any assigned quantity. But in fact
the notion of “limit” is a purely ordinal notion, not involving
quantity at all (except by accident when the series concerned
happens to be quantitative). A given point on a line may be
the limit of a set of points on the line, without its being nec-
essary to bring in co-ordinates or measurement or anything
quantitative. The cardinal number ℵ0 is the limit (in the or-
der of magnitude) of the cardinal numbers 1, 2, 3, . . . n, . . . ,
although the numerical difference between ℵ0 and a finite car-
dinal is constant and infinite: from a quantitative point of
view, finite numbers get no nearer to ℵ0 as they grow larger.
What makes ℵ0 the limit of the finite numbers is the fact that,
in the series, it comes immediately after them, which is an

120



Introduction to Mathematical Philosophy 121

ordinal fact, not a quantitative fact.
There are various forms of the notion of “limit,” of increas-

ing complexity. The simplest and most fundamental form,
from which the rest are derived, has been already defined, but
we will here repeat the definitions which lead to it, in a general
form in which they do not demand that the relation concerned
shall be serial. The definitions are as follows:—

The “minima” of a class α with respect to a relation P are
those members of α and the field of P (if any) to which no
member of α has the relation P.

The “maxima” with respect to P are the minima with re-
spect to the converse of P.

The “sequents” of a class α with respect to a relation P are
the minima of the “successors” of α, and the “successors” of α
are those members of the field of P to which every member of
the common part of α and the field of P has the relation P.

The “precedents” with respect to P are the sequents with
respect to the converse of P.

The “upper limits” of α with respect to P are the sequents
provided α has no maximum; but if α has a maximum, it has
no upper limits.

The “lower limits” with respect to P are the upper limits
with respect to the converse of P.

Whenever P has connexity, a class can have at most one
maximum, one minimum, one sequent, etc. Thus, in the cases
we are concerned with in practice, we can speak of “the limit”
(if any).

When P is a serial relation, we can greatly simplify the
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above definition of a limit. We can, in that case, define first
the “boundary” of a class α, i.e. its limits or maximum, and
then proceed to distinguish the case where the boundary is the
limit from the case where it is a maximum. For this purpose
it is best to use the notion of “segment.”

We will speak of the “segment of P defined by a class α”
as all those terms that have the relation P to some one or
more of the members of α. This will be a segment in the sense
defined in Chapter VII.; indeed, every segment in the sense
there defined is the segment defined by some class α. If P is
serial, the segment defined by α consists of all the terms that
precede some term or other of α. If α has a maximum, the
segment will be all the predecessors of the maximum. But if
α has no maximum, every member of α precedes some other
member of α, and the whole of α is therefore included in the
segment defined by α. Take, for example, the class consisting
of the fractions

1
2
, 3

4
, 7

8
, 15

16
, . . . ,

i.e. of all fractions of the form 1 − 1

2n
for different finite val-

ues of n. This series of fractions has no maximum, and it is
clear that the segment which it defines (in the whole series
of fractions in order of magnitude) is the class of all proper
fractions. Or, again, consider the prime numbers, considered
as a selection from the cardinals (finite and infinite) in order
of magnitude. In this case the segment defined consists of all
finite integers.

Assuming that P is serial, the “boundary” of a class α will
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be the term x (if it exists) whose predecessors are the segment
defined by α.

A “maximum” of α is a boundary which is a member of α.
An “upper limit” of α is a boundary which is not a member

of α.
If a class has no boundary, it has neither maximum nor

limit. This is the case of an “irrational” Dedekind cut, or of
what is called a “gap.”

Thus the “upper limit” of a set of terms α with respect to
a series P is that term x (if it exists) which comes after all
the α’s, but is such that every earlier term comes before some
of the α’s.

We may define all the “upper limiting-points” of a set of
terms β as all those that are the upper limits of sets of terms
chosen out of β. We shall, of course, have to distinguish upper
limiting-points from lower limiting-points. If we consider, for
example, the series of ordinal numbers:

1, 2, 3, . . . ω, ω + 1, . . . 2ω, 2ω + 1, 3ω, . . . ω2, . . . ω3, . . . ,

the upper limiting-points of the field of this series are those
that have no immediate predecessors, i.e.

1, ω, 2ω, 3ω, . . . ω2, ω2 + ω, . . . 2ω2, . . . ω3, . . . .

The upper limiting-points of the field of this new series will be

1, ω2, 2ω2, . . . ω3, ω3 + ω2, . . . .

On the other hand, the series of ordinals—and indeed ev-
ery well-ordered series—has no lower limiting-points, because
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there are no terms except the last that have no immediate
successors. But if we consider such a series as the series of
ratios, every member of this series is both an upper and a
lower limiting-point for suitably chosen sets. If we consider
the series of real numbers, and select out of it the rational real
numbers, this set (the rationals) will have all the real numbers
as upper and lower limiting-points. The limiting-points of a
set are called its “first derivative,” and the limiting-points of
the first derivative are called the second derivative, and so on.

With regard to limits, we may distinguish various grades
of what may be called “continuity” in a series. The word
“continuity” had been used for a long time, but had remained
without any precise definition until the time of Dedekind and
Cantor. Each of these two men gave a precise significance to
the term, but Cantor’s definition is narrower than Dedekind’s:
a series which has Cantorian continuity must have Dedekind-
ian continuity, but the converse does not hold.

The first definition that would naturally occur to a man
seeking a precise meaning for the continuity of series would
be to define it as consisting in what we have called “compact-
ness,” i.e. in the fact that between any two terms of the series
there are others. But this would be an inadequate definition,
because of the existence of “gaps” in series such as the series
of ratios. We saw in Chapter VII. that there are innumer-
able ways in which the series of ratios can be divided into two
parts, of which one wholly precedes the other, and of which
the first has no last term, while the second has no first term.
Such a state of affairs seems contrary to the vague feeling we
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have as to what should characterise “continuity,” and, what is
more, it shows that the series of ratios is not the sort of series
that is needed for many mathematical purposes. Take geom-
etry, for example: we wish to be able to say that when two
straight lines cross each other they have a point in common,
but if the series of points on a line were similar to the series
of ratios, the two lines might cross in a “gap” and have no
point in common. This is a crude example, but many others
might be given to show that compactness is inadequate as a
mathematical definition of continuity.

It was the needs of geometry, as much as anything, that
led to the definition of “Dedekindian” continuity. It will be
remembered that we defined a series as Dedekindian when ev-
ery sub-class of the field has a boundary. (It is sufficient to
assume that there is always an upper boundary, or that there
is always a lower boundary. If one of these is assumed, the
other can be deduced.) That is to say, a series is Dedekindian
when there are no gaps. The absence of gaps may arise either
through terms having successors, or through the existence of
limits in the absence of maxima. Thus a finite series or a
well-ordered series is Dedekindian, and so is the series of real
numbers. The former sort of Dedekindian series is excluded
by assuming that our series is compact; in that case our se-
ries must have a property which may, for many purposes, be
fittingly called continuity. Thus we are led to the definition:

A series has “Dedekindian continuity” when it is Dedekind-
ian and compact.

But this definition is still too wide for many purposes. Sup-
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pose, for example, that we desire to be able to assign such
properties to geometrical space as shall make it certain that
every point can be specified by means of co-ordinates which are
real numbers: this is not insured by Dedekindian continuity
alone. We want to be sure that every point which cannot be
specified by rational co-ordinates can be specified as the limit
of a progression of points whose co-ordinates are rational, and
this is a further property which our definition does not enable
us to deduce.

We are thus led to a closer investigation of series with re-
spect to limits. This investigation was made by Cantor and
formed the basis of his definition of continuity, although, in its
simplest form, this definition somewhat conceals the consid-
erations which have given rise to it. We shall, therefore, first
travel through some of Cantor’s conceptions in this subject
before giving his definition of continuity.

Cantor defines a series as “perfect” when all its points are
limiting-points and all its limiting-points belong to it. But this
definition does not express quite accurately what he means.
There is no correction required so far as concerns the property
that all its points are to be limiting-points; this is a property
belonging to compact series, and to no others if all points are
to be upper limiting- or all lower limiting-points. But if it
is only assumed that they are limiting-points one way, with-
out specifying which, there will be other series that will have
the property in question—for example, the series of decimals
in which a decimal ending in a recurring 9 is distinguished
from the corresponding terminating decimal and placed im-
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mediately before it. Such a series is very nearly compact, but
has exceptional terms which are consecutive, and of which the
first has no immediate predecessor, while the second has no im-
mediate successor. Apart from such series, the series in which
every point is a limiting-point are compact series; and this
holds without qualification if it is specified that every point is
to be an upper limiting-point (or that every point is to be a
lower limiting-point).

Although Cantor does not explicitly consider the matter,
we must distinguish different kinds of limiting-points accord-
ing to the nature of the smallest sub-series by which they can
be defined. Cantor assumes that they are to be defined by
progressions, or by regressions (which are the converses of pro-
gressions). When every member of our series is the limit of a
progression or regression, Cantor calls our series “condensed
in itself” (insichdicht).

We come now to the second property by which perfection
was to be defined, namely, the property which Cantor calls
that of being “closed” (abgeschlossen). This, as we saw, was
first defined as consisting in the fact that all the limiting-points
of a series belong to it. But this only has any effective signif-
icance if our series is given as contained in some other larger
series (as is the case, e.g. with a selection of real numbers),
and limiting-points are taken in relation to the larger series.
Otherwise, if a series is considered simply on its own account, it
cannot fail to contain its limiting-points. What Cantor means
is not exactly what he says; indeed, on other occasions he says
something rather different, which is what he means. What he
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really means is that every subordinate series which is of the
sort that might be expected to have a limit does have a limit
within the given series; i.e. every subordinate series which has
no maximum has a limit, i.e. every subordinate series has a
boundary. But Cantor does not state this for every subor-
dinate series, but only for progressions and regressions. (It is
not clear how far he recognises that this is a limitation.) Thus,
finally, we find that the definition we want is the following:—

A series is said to be “closed” (abgeschlossen) when every
progression or regression contained in the series has a limit in
the series.

We then have the further definition:—
A series is “perfect” when it is condensed in itself and

closed, i.e. when every term is the limit of a progression or
regression, and every progression or regression contained in
the series has a limit in the series.

In seeking a definition of continuity, what Cantor has in
mind is the search for a definition which shall apply to the
series of real numbers and to any series similar to that, but to
no others. For this purpose we have to add a further property.
Among the real numbers some are rational, some are irra-
tional; although the number of irrationals is greater than the
number of rationals, yet there are rationals between any two
real numbers, however little the two may differ. The number
of rationals, as we saw, is ℵ0. This gives a further property
which suffices to characterise continuity completely, namely,
the property of containing a class of ℵ0 members in such a
way that some of this class occur between any two terms of
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our series, however near together. This property, added to per-
fection, suffices to define a class of series which are all similar
and are in fact a serial number. This class Cantor defines as
that of continuous series.

We may slightly simplify his definition. To begin with, we
say:

A “median class” of a series is a sub-class of the field such
that members of it are to be found between any two terms of
the series.

Thus the rationals are a median class in the series of real
numbers. It is obvious that there cannot be median classes
except in compact series.

We then find that Cantor’s definition is equivalent to the
following:—

A series is “continuous” when (1) it is Dedekindian, (2) it
contains a median class having ℵ0 terms.

To avoid confusion, we shall speak of this kind as “Can-
torian continuity.” It will be seen that it implies Dedekindian
continuity, but the converse is not the case. All series hav-
ing Cantorian continuity are similar, but not all series having
Dedekindian continuity.

The notions of limit and continuity which we have been
defining must not be confounded with the notions of the limit
of a function for approaches to a given argument, or the con-
tinuity of a function in the neighbourhood of a given argu-
ment. These are different notions, very important, but deriva-
tive from the above and more complicated. The continuity of
motion (if motion is continuous) is an instance of the continu-
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ity of a function; on the other hand, the continuity of space
and time (if they are continuous) is an instance of the continu-
ity of series, or (to speak more cautiously) of a kind of conti-
nuity which can, by sufficient mathematical manipulation, be
reduced to the continuity of series. In view of the fundamental
importance of motion in applied mathematics, as well as for
other reasons, it will be well to deal briefly with the notions of
limits and continuity as applied to functions; but this subject
will be best reserved for a separate chapter.

The definitions of continuity which we have been consider-
ing, namely, those of Dedekind and Cantor, do not correspond
very closely to the vague idea which is associated with the
word in the mind of the man in the street or the philosopher.
They conceive continuity rather as absence of separateness, the
sort of general obliteration of distinctions which characterises
a thick fog. A fog gives an impression of vastness without
definite multiplicity or division. It is this sort of thing that a
metaphysician means by “continuity,” declaring it, very truly,
to be characteristic of his mental life and of that of children
and animals.

The general idea vaguely indicated by the word “continu-
ity” when so employed, or by the word “flux,” is one which is
certainly quite different from that which we have been defin-
ing. Take, for example, the series of real numbers. Each is
what it is, quite definitely and uncompromisingly; it does not
pass over by imperceptible degrees into another; it is a hard,
separate unit, and its distance from every other unit is finite,
though it can be made less than any given finite amount as-
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signed in advance. The question of the relation between the
kind of continuity existing among the real numbers and the
kind exhibited, e.g. by what we see at a given time, is a dif-
ficult and intricate one. It is not to be maintained that the
two kinds are simply identical, but it may, I think, be very
well maintained that the mathematical conception which we
have been considering in this chapter gives the abstract log-
ical scheme to which it must be possible to bring empirical
material by suitable manipulation, if that material is to be
called “continuous” in any precisely definable sense. It would
be quite impossible to justify this thesis within the limits of
the present volume. The reader who is interested may read
an attempt to justify it as regards time in particular by the
present author in the Monist for 1914–5, as well as in parts
of Our Knowledge of the External World. With these indica-
tions, we must leave this problem, interesting as it is, in order
to return to topics more closely connected with mathematics.



CHAPTER XI

LIMITS AND CONTINUITY OF FUNCTIONS

In this chapter we shall be concerned with the definition of
the limit of a function (if any) as the argument approaches a
given value, and also with the definition of what is meant by
a “continuous function.” Both of these ideas are somewhat
technical, and would hardly demand treatment in a mere in-
troduction to mathematical philosophy but for the fact that,
especially through the so-called infinitesimal calculus, wrong
views upon our present topics have become so firmly embedded
in the minds of professional philosophers that a prolonged and
considerable effort is required for their uprooting. It has been
thought ever since the time of Leibniz that the differential and
integral calculus required infinitesimal quantities. Mathemati-
cians (especially Weierstrass) proved that this is an error; but
errors incorporated, e.g. in what Hegel has to say about math-
ematics, die hard, and philosophers have tended to ignore the
work of such men as Weierstrass.

Limits and continuity of functions, in works on ordinary
mathematics, are defined in terms involving number. This is
not essential, as Dr Whitehead has shown.1 We will, however,
begin with the definitions in the text-books, and proceed af-
terwards to show how these definitions can be generalised so
as to apply to series in general, and not only to such as are
numerical or numerically measurable.

1See Principia Mathematica, vol. ii. * 230–234.
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Let us consider any ordinary mathematical function fx,
where x and fx are both real numbers, and fx is one-valued—
i.e. when x is given, there is only one value that fx can have.
We call x the “argument,” and fx the “value for the argu-
ment x.” When a function is what we call “continuous,” the
rough idea for which we are seeking a precise definition is
that small differences in x shall correspond to small differ-
ences in fx, and if we make the differences in x small enough,
we can make the differences in fx fall below any assigned
amount. We do not want, if a function is to be continuous, that
there shall be sudden jumps, so that, for some value of x, any
change, however small, will make a change in fx which exceeds
some assigned finite amount. The ordinary simple functions
of mathematics have this property: it belongs, for example, to
x2, x3, . . . log x, sinx, and so on. But it is not at all difficult to
define discontinuous functions. Take, as a non-mathematical
example, “the place of birth of the youngest person living at
time t.” This is a function of t; its value is constant from the
time of one person’s birth to the time of the next birth, and
then the value changes suddenly from one birthplace to the
other. An analogous mathematical example would be “the in-
teger next below x,” where x is a real number. This function
remains constant from one integer to the next, and then gives
a sudden jump. The actual fact is that, though continuous
functions are more familiar, they are the exceptions: there are
infinitely more discontinuous functions than continuous ones.

Many functions are discontinuous for one or several values
of the variable, but continuous for all other values. Take as an
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example sin 1/x. The function sin θ passes through all values
from −1 to 1 every time that θ passes from −π/2 to π/2, or
from π/2 to 3π/2, or generally from (2n−1)π/2 to (2n+1)π/2,
where n is any integer. Now if we consider 1/x when x is very
small, we see that as x diminishes 1/x grows faster and faster,
so that it passes more and more quickly through the cycle
of values from one multiple of π/2 to another as x becomes
smaller and smaller. Consequently sin 1/x passes more and
more quickly from −1 to 1 and back again, as x grows smaller.
In fact, if we take any interval containing 0, say the interval
from −ε to +ε where ε is some very small number, sin 1/x will
go through an infinite number of oscillations in this interval,
and we cannot diminish the oscillations by making the interval
smaller. Thus round about the argument 0 the function is
discontinuous. It is easy to manufacture functions which are
discontinuous in several places, or in ℵ0 places, or everywhere.
Examples will be found in any book on the theory of functions
of a real variable.

Proceeding now to seek a precise definition of what is meant
by saying that a function is continuous for a given argument,
when argument and value are both real numbers, let us first
define a “neighbourhood” of a number x as all the numbers
from x−ε to x+ε, where ε is some number which, in important
cases, will be very small. It is clear that continuity at a given
point has to do with what happens in any neighbourhood of
that point, however small.

What we desire is this: If a is the argument for which we
wish our function to be continuous, let us first define a neigh-
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bourhood (α say) containing the value fa which the function
has for the argument a; we desire that, if we take a sufficiently
small neighbourhood containing a, all values for arguments
throughout this neighbourhood shall be contained in the neigh-
bourhood α, no matter how small we may have made α. That
is to say, if we decree that our function is not to differ from fa
by more than some very tiny amount, we can always find a
stretch of real numbers, having a in the middle of it, such that
throughout this stretch fx will not differ from fa by more
than the prescribed tiny amount. And this is to remain true
whatever tiny amount we may select. Hence we are led to the
following definition:—

The function fx is said to be “continuous” for the argu-
ment a if, for every positive number σ, different from 0, but as
small as we please, there exists a positive number ε, different
from 0, such that, for all values of δ which are numerically
less1 than ε, the difference f(a + δ)− f(a) is numerically less
than σ.

In this definition, σ first defines a neighbourhood of f(a),
namely, the neighbourhood from f(a) − σ to f(a) + σ. The
definition then proceeds to say that we can (by means of ε)
define a neighbourhood, namely, that from a− ε to a+ ε, such
that, for all arguments within this neighbourhood, the value
of the function lies within the neighbourhood horn f(a)−σ to
f(a) + σ. If this can be done, however σ may be chosen, the
function is “continuous” for the argument a.

1A number is said to be “numerically less” than ε when it lies between
−ε and +ε.
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So far we have not defined the “limit” of a function for a
given argument. If we had done so, we could have defined the
continuity of a function differently: a function is continuous
at a point where its value is the same as the limit of its value
for approaches either from above or from below. But it is only
the exceptionally “tame” function that has a definite limit as
the argument approaches a given point. The general rule is
that a function oscillates, and that, given any neighbourhood
of a given argument, however small, a whole stretch of values
will occur for arguments within this neighbourhood. As this
is the general rule, let us consider it first.

Let us consider what may happen as the argument ap-
proaches some value a from below. That is to say, we wish to
consider what happens for arguments contained in the interval
from a− ε to a, where ε is some number which, in important
cases, will be very small.

The values of the function for arguments from a − ε to a
(a excluded) will be a set of real numbers which will define a
certain section of the set of real numbers, namely, the section
consisting of those numbers that are not greater than all the
values for arguments from a − ε to a. Given any number in
this section, there are values at least as great as this number
for arguments between a− ε and a, i.e. for arguments that fall
very little short of a (if ε is very small). Let us take all possible
ε’s and all possible corresponding sections. The common part
of all these sections we will call the “ultimate section” as the
argument approaches a. To say that a number z belongs to the
ultimate section is to say that, however small we may make ε,
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there are arguments between a − ε and a for which the value
of the function is not less than z.

We may apply exactly the same process to upper sections,
i.e. to sections that go from some point up to the top, instead
of from the bottom up to some point. Here we take those
numbers that are not less than all the values for arguments
from a − ε to a; this defines an upper section which will vary
as ε varies. Taking the common part of all such sections for all
possible ε’s, we obtain the “ultimate upper section.” To say
that a number z belongs to the ultimate upper section is to say
that, however small we make ε, there are arguments between
a − ε and a for which the value of the function is not greater
than z.

If a term z belongs both to the ultimate section and to
the ultimate upper section, we shall say that it belongs to
the “ultimate oscillation.” We may illustrate the matter by
considering once more the function sin 1/x as x approaches
the value 0. We shall assume, in order to fit in with the above
definitions, that this value is approached from below.

Let us begin with the “ultimate section.” Between −ε
and 0, whatever ε may be, the function will assume the value 1
for certain arguments, but will never assume any greater value.
Hence the ultimate section consists of all real numbers, posi-
tive and negative, up to and including 1; i.e. it consists of all
negative numbers together with 0, together with the positive
numbers up to and including 1.

Similarly the “ultimate upper section” consists of all posi-
tive numbers together with 0, together with the negative num-
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bers down to and including −1.
Thus the “ultimate oscillation” consists of all real numbers

from −1 to 1, both included.
We may say generally that the “ultimate oscillation” of a

function as the argument approaches a from below consists
of all those numbers x which are such that, however near we
come to a, we shall still find values as great as x and values as
small as x.

The ultimate oscillation may contain no terms, or one term,
or many terms. In the first two cases the function has a defi-
nite limit for approaches from below. If the ultimate oscillation
has one term, this is fairly obvious. It is equally true if it has
none; for it is not difficult to prove that, if the ultimate oscil-
lation is null, the boundary of the ultimate section is the same
as that of the ultimate upper section, and may be defined as
the limit of the function for approaches from below. But if
the ultimate oscillation has many terms, there is no definite
limit to the function for approaches from below. In this case
we can take the lower and upper boundaries of the ultimate
oscillation (i.e. the lower boundary of the ultimate upper sec-
tion and the upper boundary of the ultimate section) as the
lower and upper limits of its “ultimate” values for approaches
from below. Similarly we obtain lower and upper limits of the
“ultimate” values for approaches from above. Thus we have,
in the general case, four limits to a function for approaches
to a given argument. The limit for a given argument a only
exists when all these four are equal, and is then their common
value. If it is also the value for the argument a, the function is
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continuous for this argument. This may be taken as defining
continuity: it is equivalent to our former definition.

We can define the limit of a function for a given argument
(if it exists) without passing through the ultimate oscillation
and the four limits of the general case. The definition pro-
ceeds, in that case, just as the earlier definition of continuity
proceeded. Let us define the limit for approaches from below.
If there is to be a definite limit for approaches to a from below,
it is necessary and sufficient that, given any small number σ,
two values for arguments sufficiently near to a (but both less
than a) will differ by less than σ; i.e. if ε is sufficiently small,
and our arguments both lie between a− ε and a (a excluded),
then the difference between the values for these arguments will
be less than σ. This is to hold for any σ, however small; in that
case the function has a limit for approaches from below. Sim-
ilarly we define the case when there is a limit for approaches
from above. These two limits, even when both exist, need not
be identical; and if they are identical, they still need not be
identical with the value for the argument a. It is only in this
last case that we call the function continuous for the argu-
ment a.

A function is called “continuous” (without qualification)
when it is continuous for every argument.

Another slightly different method of reaching the definition
of continuity is the following:—

Let us say that a function “ultimately converges into a
class α” if there is some real number such that, for this ar-
gument and all arguments greater than this, the value of the
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function is a member of the class α. Similarly we shall say
that a function “converges into α as the argument approaches
x from below” if there is some argument y less than x such
that throughout the interval from y (included) to x (excluded)
the function has values which are members of α. We may now
say that a function is continuous for the argument a, for which
it has the value fa, if it satisfies four conditions, namely:—

(1) Given any real number less than fa, the function con-
verges into the successors of this number as the argument ap-
proaches a from below;

(2) Given any real number greater than fa, the function
converges into the predecessors of this number as the argument
approaches a from below;

(3) and (4) Similar conditions for approaches to a from
above.

The advantages of this form of definition is that it analyses
the conditions of continuity into four, derived from consider-
ing arguments and values respectively greater or less than the
argument and value for which continuity is to be defined.

We may now generalise our definitions so as to apply to
series which are not numerical or known to be numerically
measurable. The case of motion is a convenient one to bear
in mind. There is a story by H. G. Wells which will illustrate,
from the case of motion, the difference between the limit of a
function for a given argument and its value for the same argu-
ment. The hero of the story, who possessed, without his knowl-
edge, the power of realising his wishes, was being attacked by
a policeman, but on ejaculating “Go to——” he found that
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the policeman disappeared. If f(t) was the policeman’s posi-
tion at time t, and t0 the moment of the ejaculation, the limit
of the policeman’s positions as t approached to t0 from below
would be in contact with the hero, whereas the value for the
argument t0 was —. But such occurrences are supposed to
be rare in the real world, and it is assumed, though without
adequate evidence, that all motions are continuous, i.e. that,
given any body, if f(t) is its position at time t, f(t) is a contin-
uous function of t. It is the meaning of “continuity” involved
in such statements which we now wish to define as simply as
possible.

The definitions given for the case of functions where argu-
ment and value are real numbers can readily be adapted for
more general use.

Let P and Q be two relations, which it is well to imagine
serial, though it is not necessary to our definitions that they
should be so. Let R be a one-many relation whose domain
is contained in the field of P, while its converse domain is
contained in the field of Q. Then R is (in a generalised sense)
a function, whose arguments belong to the field of Q, while
its values belong to the field of P. Suppose, for example, that
we are dealing with a particle moving on a line: let Q be the
time-series, P the series of points on our line from left to right,
R the relation of the position of our particle on the line at
time a to the time a, so that “the R of a” is its position at
time a. This illustration may be borne in mind throughout
our definitions.

We shall say that the function R is continuous for the ar-
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gument a if, given any interval α on the P-series containing
the value of the function for the argument a, there is an inter-
val on the Q-series containing a not as an end-point and such
that, throughout this interval, the function has values which
are members of α. (We mean by an “interval” all the terms
between any two; i.e. if x and y are two members of the field
of P, and x has the relation P to y, we shall mean by the “P-
interval x to y” all terms z such that x has the relation P to x
and z has the relation P to y—together, when so stated, with
x or y themselves.)

We can easily define the “ultimate section” and the “ul-
timate oscillation.” To define the “ultimate section” for ap-
proaches to the argument a from below, take any argument y
which precedes a (i.e. has the relation Q to a), take the values
of the function for all arguments up to and including y, and
form the section of P defined by these values, i.e. those mem-
bers of the P-series which are earlier than or identical with
some of these values. Form all such sections for all y’s that
precede a, and take their common part; this will be the ul-
timate section. The ultimate upper section and the ultimate
oscillation are then defined exactly as in the previous case.

The adaptation of the definition of convergence and the
resulting alternative definition of continuity offers no difficulty
of any kind.

We say that a function R is “ultimately Q-convergent
into α” if there is a member y of the converse domain of R
and the field of Q such that the value of the function for
the argument y and for any argument to which y has the
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relation Q is a member of α. We say that R “Q-converges
into α as the argument approaches a given argument a” if
there is a term y having the relation Q to a and belonging
to the converse domain of R and such that the value of the
function for any argument in the Q-interval from y (inclusive)
to a (exclusive) belongs to α.

Of the four conditions that a function must fulfil in order
to be continuous for the argument a, the first is, putting b for
the value for the argument a:

Given any term having the relation P to b, R Q-converges
into the successors of b (with respect to P) as the argument
approaches a from below.

The second condition is obtained by replacing P by its
converse; the third and fourth are obtained from the first and
second by replacing Q by its converse.

There is thus nothing, in the notions of the limit of a func-
tion or the continuity of a function, that essentially involves
number. Both can be defined generally, and many propositions
about them can be proved for any two series (one being the
argument-series and the other the value-series). It will be seen
that the definitions do not involve infinitesimals. They involve
infinite classes of intervals, growing smaller without any limit
short of zero, but they do not involve any intervals that are not
finite. This is analogous to the fact that if a line an inch long
be halved, then halved again, and so on indefinitely, we never
reach infinitesimals in this way: after n bisections, the length

of our bit is
1

2n
of an inch; and this is finite whatever finite
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number n may be. The process of successive bisection does
not lead to divisions whose ordinal number is infinite, since it
is essentially a one-by-one process. Thus infinitesimals are not
to be reached in this way. Confusions on such topics have had
much to do with the difficulties which have been found in the
discussion of infinity and continuity.



CHAPTER XII

SELECTIONS AND THE MULTIPLICATIVE AXIOM

In this chapter we have to consider an axiom which can be
enunciated, but not proved, in terms of logic, and which is
convenient, though not indispensable, in certain portions of
mathematics. It is convenient, in the sense that many inter-
esting propositions, which it seems natural to suppose true,
cannot be proved without its help; but it is not indispensable,
because even without those propositions the subjects in which
they occur still exist, though in a somewhat mutilated form.

Before enunciating the multiplicative axiom, we must first
explain the theory of selections, and the definition of multipli-
cation when the number of factors may be infinite.

In defining the arithmetical operations, the only correct
procedure is to construct an actual class (or relation, in the
case of relation-numbers) having the required number of terms.
This sometimes demands a certain amount of ingenuity, but
it is essential in order to prove the existence of the number
defined. Take, as the simplest example, the case of addition.
Suppose we are given a cardinal number µ, and a class α which
has µ terms. How shall we define µ + µ? For this purpose
we must have two classes having µ terms, and they must not
overlap. We can construct such classes from α in various ways,
of which the following is perhaps the simplest: Form first all
the ordered couples whose first term is a class consisting of a
single member of α, and whose second term is the null-class;
then, secondly, form all the ordered couples whose first term

145
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is the null-class and whose second term is a class consisting of
a single member of α. These two classes of couples have no
member in common, and the logical sum of the two classes will
have µ + µ terms. Exactly analogously we can define µ + ν,
given that µ is the number of some class α and ν is the number
of some class β.

Such definitions, as a rule, are merely a question of a suit-
able technical device. But in the case of multiplication, where
the number of factors may be infinite, important problems
arise out of the definition.

Multiplication when the number of factors is finite offers
no difficulty. Given two classes α and β, of which the first has
µ terms and the second ν terms, we can define µ × ν as the
number of ordered couples that can be formed by choosing the
first term out of α and the second out of β. It will be seen
that this definition does not require that α and β should not
overlap; it even remains adequate when α and β are identical.
For example, let α be the class whose members are x1, x2, x3.
Then the class which is used to define the product µ×µ is the
class of couples:

(x1, x1), (x1, x2), (x1, x3);

(x2, x1), (x2, x2), (x2, x3);

(x3, x1), (x3, x2), (x3, x3).

This definition remains applicable when µ or ν or both are
infinite, and it can be extended step by step to three or four
or any finite number of factors. No difficulty arises as regards
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this definition, except that it cannot be extended to an infinite
number of factors.

The problem of multiplication when the number of factors
may be infinite arises in this way: Suppose we have a class κ
consisting of classes; suppose the number of terms in each of
these classes is given. How shall we define the product of all
these numbers? If we can frame our definition generally, it
will be applicable whether κ is finite or infinite. It is to be
observed that the problem is to be able to deal with the case
when κ is infinite, not with the case when its members are. If
κ is not infinite, the method defined above is just as applicable
when its members are infinite as when they are finite. It is the
case when κ is infinite, even though its members may be finite,
that we have to find a way of dealing with.

The following method of defining multiplication generally
is due to Dr Whitehead. It is explained and treated at length
in Principia Mathematica, vol. i. * 80 ff., and vol. ii. * 114.

Let us suppose to begin with that κ is a class of classes
no two of which overlap—say the constituencies in a country
where there is no plural voting, each constituency being consid-
ered as a class of voters. Let us now set to work to choose one
term out of each class to be its representative, as constituen-
cies do when they elect members of Parliament, assuming that
by law each constituency has to elect a man who is a voter in
that constituency. We thus arrive at a class of representatives,
who make up our Parliament, one being selected out of each
constituency. How many different possible ways of choosing a
Parliament are there? Each constituency can select any one of
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its voters, and therefore if there are µ voters in a constituency,
it can make µ choices. The choices of the different constituen-
cies are independent; thus it is obvious that, when the total
number of constituencies is finite, the number of possible Par-
liaments is obtained by multiplying together the numbers of
voters in the various constituencies. When we do not know
whether the number of constituencies is finite or infinite, we
may take the number of possible Parliaments as defining the
product of the numbers of the separate constituencies. This is
the method by which infinite products are defined. We must
now drop our illustration, and proceed to exact statements.

Let κ be a class of classes, and let us assume to begin with
that no two members of κ overlap, i.e. that if α and β are two
different members of κ, then no member of the one is a member
of the other. We shall call a class a “selection” from κ when it
consists of just one term from each member of κ; i.e. µ is a “se-
lection” from κ if every member of µ belongs to some member
of κ, and if α be any member of κ, µ and α have exactly one
term in common. The class of all “selections” from κ we shall
call the “multiplicative class” of κ. The number of terms in
the multiplicative class of κ, i.e. the number of possible selec-
tions from κ, is defined as the product of the numbers of the
members of κ. This definition is equally applicable whether
κ is finite or infinite.

Before we can be wholly satisfied with these definitions,
we must remove the restriction that no two members of κ are
to overlap. For this purpose, instead of defining first a class
called a “selection,” we will define first a relation which we
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will call a “selector.” A relation R will be called a “selector”
from κ if, from every member of κ, it picks out one term as
the representative of that member, i.e. if, given any member α
of κ, there is just one term x which is a member of α and has
the relation R to α; and this is to be all that R does. The
formal definition is:

A “selector” from a class of classes κ is a one-many relation,
having κ for its converse domain, and such that, if x has the
relation to α, then x is a member of α.

If R is a selector from κ, and α is a member of κ, and
x is the term which has the relation R to α, we call x the
“representative” of α in respect of the relation R.

A “selection” from κ will now be defined as the domain of
a selector; and the multiplicative class, as before, will be the
class of selections.

But when the members of κ overlap, there may be more
selectors than selections, since a term x which belongs to two
classes α and β may be selected once to represent α and once
to represent β, giving rise to different selectors in the two
cases, but to the same selection. For purposes of defining
multiplication, it is the selectors we require rather than the
selections. Thus we define:

“The product of the numbers of the members of a class of
classes κ” is the number of selectors from κ.

We can define exponentiation by an adaptation of the
above plan. We might, of course, define µν as the number of
selectors from ν classes, each of which has µ terms. But there
are objections to this definition, derived from the fact that
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the multiplicative axiom (of which we shall speak shortly) is
unnecessarily involved if it is adopted. We adopt instead the
following construction:—

Let α be a class having µ terms, and β a class having
ν terms.

Let y be a member of β, and form the class of all ordered
couples that have y for their second term and a member of α
for their first term. There will be µ such couples for a given y,
since any member of α may be chosen for the first term, and α
has µ members. If we now form all the classes of this sort that
result from varying y, we obtain altogether ν classes, since
y may be any member of β, and β has ν members. These
ν classes are each of them a class of couples, namely, all the
couples that can be formed of a variable member of α and a
fixed member of β. We define µν as the number of selectors
from the class consisting of these ν classes. Or we may equally
well define µν as the number of selections, for, since our classes
of couples are mutually exclusive, the number of selectors is the
same as the number of selections. A selection from our class of
classes will be a set of ordered couples, of which there will be
exactly one having any given member of β for its second term,
and the first term may be any member of α. Thus µν is defined
by the selectors from a certain set of ν classes each having
µ terms, but the set is one having a certain structure and
a more manageable composition than is the case in general.
The relevance of this to the multiplicative axiom will appear
shortly.

What applies to exponentiation applies also to the product
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of two cardinals. We might define “µ × ν” as the sum of
the numbers of ν classes each having µ terms, but we prefer
to define it as the number of ordered couples to be formed
consisting of a member of α followed by a member of β, where
α has µ terms and β has ν terms. This definition, also, is
designed to evade the necessity of assuming the multiplicative
axiom.

With our definitions, we can prove the usual formal laws
of multiplication and exponentiation. But there is one thing
we cannot prove: we cannot prove that a product is only zero
when one of its factors is zero. We can prove this when the
number of factors is finite, but not when it is infinite. In other
words, we cannot prove that, given a class of classes none
of which is null, there must be selectors from them; or that,
given a class of mutually exclusive classes, there must be at
least one class consisting of one term out of each of the given
classes. These things cannot be proved; and although, at first
sight, they seem obviously true, yet reflection brings gradually
increasing doubt, until at last we become content to register
the assumption and its consequences, as we register the axiom
of parallels, without assuming that we can know whether it is
true or false. The assumption, loosely worded, is that selectors
and selections exist when we should expect them. There are
many equivalent ways of stating it precisely. We may begin
with the following:—

“Given any class of mutually exclusive classes, of which
none is null, there is at least one class which has exactly one
term in common with each of the given classes.”
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This proposition we will call the “multiplicative axiom.”1

We will first give various equivalent forms of the proposition,
and then consider certain ways in which its truth or falsehood
is of interest to mathematics.

The multiplicative axiom is equivalent to the proposition
that a product is only zero when at least one of its factors is
zero; i.e. that, if any number of cardinal numbers be multiplied
together, the result cannot be 0 unless one of the numbers
concerned is 0.

The multiplicative axiom is equivalent to the proposition
that, if R be any relation, and κ any class contained in the
converse domain of R, then there is at least one one-many
relation implying R and having κ for its converse domain.

The multiplicative axiom is equivalent to the assumption
that if α be any class, and κ all the sub-classes of α with the
exception of the null-class, then there is at least one selector
from κ. This is the form in which the axiom was first brought
to the notice of the learned world by Zermelo, in his “Be-
weis, dass jede Menge wohlgeordnet werden kann.”2 Zermelo
regards the axiom as an unquestionable truth. It must be con-
fessed that, until he made it explicit, mathematicians had used
it without a qualm; but it would seem that they had done so
unconsciously. And the credit due to Zermelo for having made
it explicit is entirely independent of the question whether it is
true or false.

1See Principia Mathematica, vol. i. * 88. Also vol. iii. * 257–258.
2Mathematische Annalen, vol. lix. pp. 514–6. In this form we shall

speak of it as Zermelo’s axiom.
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The multiplicative axiom has been shown by Zermelo, in
the above-mentioned proof, to be equivalent to the proposi-
tion that every class can be well-ordered, i.e. can be arranged
in a series in which every sub-class has a first term (except,
of course, the null-class). The full proof of this proposition
is difficult, but it is not difficult to see the general principle
upon which it proceeds. It uses the form which we call “Zer-
melo’s axiom,” i.e. it assumes that, given any class α, there
is at least one one-many relation R whose converse domain
consists of all existent sub-classes of α and which is such that,
if x has the relation R to ξ, then x is a member of ξ. Such
a relation picks out a “representative” from each sub-class; of
course, it will often happen that two sub-classes have the same
representative. What Zermelo does, in effect, is to count off
the members of α, one by one, by means of R and transfi-
nite induction. We put first the representative of α; call it x1.
Then take the representative of the class consisting of all of α
except x1; call it x2. It must be different from x1, because
every representative is a member of its class, and x1 is shut
out from this class. Proceed similarly to take away x2, and let
x3 be the representative of what is left. In this way we first
obtain a progression x1, x2, . . . xn, . . . , assuming that α is
not finite. We then take away the whole progression; let xω
be the representative of what is left of α. In this way we can
go on until nothing is left. The successive representatives will
form a well-ordered series containing all the members of α.
(The above is, of course, only a hint of the general lines of the
proof.) This proposition is called “Zermelo’s theorem.”
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The multiplicative axiom is also equivalent to the assump-
tion that of any two cardinals which are not equal, one must
be the greater. If the axiom is false, there will be cardinals µ
and ν such that µ is neither less than, equal to, nor greater
than ν. We have seen that ℵ1 and 2ℵ0 possibly form an in-
stance of such a pair.

Many other forms of the axiom might be given, but the
above are the most important of the forms known at present.
As to the truth or falsehood of the axiom in any of its forms,
nothing is known at present.

The propositions that depend upon the axiom, without be-
ing known to be equivalent to it, are numerous and important.
Take first the connection of addition and multiplication. We
naturally think that the sum of ν mutually exclusive classes,
each having µ terms, must have µ × ν terms. When ν is fi-
nite, this can be proved. But when ν is infinite, it cannot be
proved without the multiplicative axiom, except where, owing
to some special circumstance, the existence of certain selectors
can be proved. The way the multiplicative axiom enters in is
as follows: Suppose we have two sets of ν mutually exclusive
classes, each having µ terms, and we wish to prove that the
sum of one set has as many terms as the sum of the other. In
order to prove this, we must establish a one-one relation. Now,
since there are in each case ν classes, there is some one-one re-
lation between the two sets of classes; but what we want is
a one-one relation between their terms. Let us consider some
one-one relation S between the classes. Then if κ and λ are the
two sets of classes, and α is some member of κ, there will be
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a member β of λ which will be the correlate of α with respect
to S. Now α and β each have µ terms, and are therefore sim-
ilar. There are, accordingly, one-one correlations of α and β.
The trouble is that there are so many. In order to obtain a one-
one correlation of the sum of κ with the sum of λ, we have to
pick out one selection from a set of classes of correlators, one
class of the set being all the one-one correlators of α with β.
If κ and λ are infinite, we cannot in general know that such
a selection exists, unless we can know that the multiplicative
axiom is true. Hence we cannot establish the usual kind of
connection between addition and multiplication.

This fact has various curious consequences. To begin with,
we know that ℵ20 = ℵ0 × ℵ0 = ℵ0. It is commonly inferred
from this that the sum of ℵ0 classes each having ℵ0 members
must itself have ℵ0 members, but this inference is fallacious,
since we do not know that the number of terms in such a sum
is ℵ0 × ℵ0, nor consequently that it is ℵ0. This has a bearing
upon the theory of transfinite ordinals. It is easy to prove
that an ordinal which has ℵ0 predecessors must be one of what
Cantor calls the “second class,” i.e. such that a series having
this ordinal number will have ℵ0 terms in its field. It is also
easy to see that, if we take any progression of ordinals of the
second class, the predecessors of their limit form at most the
sum of ℵ0 classes each having ℵ0 terms. It is inferred thence—
fallaciously, unless the multiplicative axiom is true—that the
predecessors of the limit are ℵ0 in number, and therefore that
the limit is a number of the “second class.” That is to say,
it is supposed to be proved that any progression of ordinals
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of the second class has a limit which is again an ordinal of
the second class. This proposition, with the corollary that
ω1 (the smallest ordinal of the third class) is not the limit of
any progression, is involved in most of the recognised theory
of ordinals of the second class. In view of the way in which
the multiplicative axiom is involved, the proposition and its
corollary cannot be regarded as proved. They may be true, or
they may not. All that can be said at present is that we do
not know. Thus the greater part of the theory of ordinals of
the second class must be regarded as unproved.

Another illustration may help to make the point clearer.
We know that 2 × ℵ0 = ℵ0. Hence we might suppose that
the sum of ℵ0 pairs must have ℵ0 terms. But this, though
we can prove that it is sometimes the case, cannot be proved
to happen always unless we assume the multiplicative axiom.
This is illustrated by the millionaire who bought a pair of
socks whenever he bought a pair of boots, and never at any
other time, and who had such a passion for buying both that
at last he had ℵ0 pairs of boots and ℵ0 pairs of socks. The
problem is: How many boots had he, and how many socks?
One would naturally suppose that he had twice as many boots
and twice as many socks as he had pairs of each, and that
therefore he had ℵ0 of each, since that number is not increased
by doubling. But this is an instance of the difficulty, already
noted, of connecting the sum of ν classes each having µ terms
with µ× ν. Sometimes this can be done, sometimes it cannot.
In our case it can be done with the boots, but not with the
socks, except by some very artificial device. The reason for
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the difference is this: Among boots we can distinguish right
and left, and therefore we can make a selection of one out
of each pair, namely, we can choose all the right boots or all
the left boots; but with socks no such principle of selection
suggests itself, and we cannot be sure, unless we assume the
multiplicative axiom, that there is any class consisting of one
sock out of each pair. Hence the problem.

We may put the matter in another way. To prove that a
class has ℵ0 terms, it is necessary and sufficient to find some
way of arranging its terms in a progression. There is no diffi-
culty in doing this with the boots. The pairs are given as form-
ing an ℵ0, and therefore as the field of a progression. Within
each pair, take the left boot first and the right second, keep-
ing the order of the pairs unchanged; in this way we obtain
a progression of all the boots. But with the socks we shall
have to choose arbitrarily, with each pair, which to put first;
and an infinite number of arbitrary choices is an impossibility.
Unless we can find a rule for selecting, i.e. a relation which is a
selector, we do not know that a selection is even theoretically
possible. Of course, in the case of objects in space, like socks,
we always can find some principle of selection. For example,
take the centres of mass of the socks: there will be points p
in space such that, with any pair, the centres of mass of the
two socks are not both at exactly the same distance from p;
thus we can choose, from each pair, that sock which has its
centre of mass nearer to p. But there is no theoretical reason
why a method of selection such as this should always be pos-
sible, and the case of the socks, with a little goodwill on the
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part of the reader, may serve to show how a selection might
be impossible.

It is to be observed that, if it were impossible to select one
out of each pair of socks, it would follow that the socks could
not be arranged in a progression, and therefore that there were
not ℵ0 of them. This case illustrates that, if µ is an infinite
number, one set of µ pairs may not contain the same number
of terms as another set of µ pairs; for, given ℵ0 pairs of boots,
there are certainly ℵ0 boots, but we cannot be sure of this
in the case of the socks unless we assume the multiplicative
axiom or fall back upon some fortuitous geometrical method
of selection such as the above.

Another important problem involving the multiplicative
axiom is the relation of reflexiveness to non-inductiveness. It
will be remembered that in Chapter VIII. we pointed out that
a reflexive number must be non-inductive, but that the con-
verse (so far as is known at present) can only be proved if we
assume the multiplicative axiom. The way in which this comes
about is as follows:—

It is easy to prove that a reflexive class is one which con-
tains sub-classes having ℵ0 terms. (The class may, of course,
itself have ℵ0 terms.) Thus we have to prove, if we can, that,
given any non-inductive class, it is possible to choose a pro-
gression out of its terms. Now there is no difficulty in showing
that a non-inductive class must contain more terms than any
inductive class, or, what comes to the same thing, that if α is
a non-inductive class and ν is any inductive number, there are
sub-classes of α that have ν terms. Thus we can form sets of
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finite sub-classes of α: First one class having no terms, then
classes having 1 term (as many as there are members of α),
then classes having 2 terms, and so on. We thus get a progres-
sion of sets of sub-classes, each set consisting of all those that
have a certain given finite number of terms. So far we have
not used the multiplicative axiom, but we have only proved
that the number of collections of sub-classes of α is a reflexive
number, i.e. that, if µ is the number of members of α, so that
2µ is the number of sub-classes of α and 22µ is the number
of collections of sub-classes, then, provided µ is not inductive,
22µ must be reflexive. But this is a long way from what we set
out to prove.

In order to advance beyond this point, we must employ
the multiplicative axiom. From each set of sub-classes let us
choose out one, omitting the sub-class consisting of the null-
class alone. That is to say, we select one sub-class contain-
ing one term, α1, say; one containing two terms, α2, say; one
containing three, α3, say; and so on. (We can do this if the
multiplicative axiom is assumed; otherwise, we do not know
whether we can always do it or not.) We have now a progres-
sion α1, α2, α3, . . . sub-classes of α, instead of a progression
of collections of sub-classes; thus we are one step nearer to our
goal. We now know that, assuming the multiplicative axiom,
if µ is a non-inductive number, 2µ must be a reflexive number.

The next step is to notice that, although we cannot be sure
that new members of α come in at any one specified stage in
the progression α1, α2, α3, . . . we can be sure that new mem-
bers keep on coming in from time to time. Let us illustrate.
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The class α1, which consists of one term, is a new beginning; let
the one term be x1. The class α2, consisting of two terms, may
or may not contain x1; if it does, it introduces one new term;
and if it does not, it must introduce two new terms, say x2, x3.
In this case it is possible that α3 consists of x1, x2, x3, and so
introduces no new terms, but in that case α4 must introduce a
new term. The first ν classes α1, α2, α3, . . . αν contain, at the
very most, 1+2+3+ · · ·+ν terms, i.e. ν/(ν+1)/2 terms; thus
it would be possible, if there were no repetitions in the first ν
classes, to go on with only repetitions from the (ν + 1)th class
to the ν(ν+1)/2th class. But by that time the old terms would
no longer be sufficiently numerous to form a next class with
the right number of members, i.e. ν(ν+1)/2+1, therefore new
terms must come in at this point if not sooner. It follows that,
if we omit from our progression α1, α2, α3, . . . all those classes
that are composed entirely of members that have occurred in
previous classes, we shall still have a progression. Let our new
progression be called β1, β2, β3, . . . . (We shall have α1 = β1
and α2 = β2, because α1 and α2 must introduce new terms.
We may or may not have α3 = β3, but, speaking generally,
βν will be αν , where ν is some number greater than µ; i.e. the
β’s are some of the α’s.) Now these β’s are such that any one
of them, say βµ, contains members which have not occurred in
any of the previous β’s. Let γµ be the part of βµ which consists
of new members. Thus we get a new progression γ1, γ2, γ3, . . . .
(Again γ1 will be identical with β1 and with α1; if α2 does not
contain the one member of α1, we shall have γ2 = β2 = α2,
but if α2 does contain this one member, γ2 will consist of the
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other member of α2.) This new progression of γ’s consists of
mutually exclusive classes. Hence a selection from them will
be a progression; i.e. if x1 is the member of γ1, x2 is a member
of γ2, x3 is a member of γ3, and so on; then x1, x2, x3, . . . is
a progression, and is a sub-class of α. Assuming the multi-
plicative axiom, such a selection can be made. Thus by twice
using this axiom we can prove that, if the axiom is true, every
non-inductive cardinal must be reflexive. This could also be
deduced from Zermelo’s theorem, that, if the axiom is true,
every class can be well ordered; for a well-ordered series must
have either a finite or a reflexive number of terms in its field.

There is one advantage in the above direct argument, as
against deduction from Zermelo’s theorem, that the above ar-
gument does not demand the universal truth of the multiplica-
tive axiom, but only its truth as applied to a set of ℵ0 classes.
It may happen that the axiom holds for ℵ0 classes, though not
for larger numbers of classes. For this reason it is better, when
it is possible, to content ourselves with the more restricted as-
sumption. The assumption made in the above direct argument
is that a product of ℵ0 factors is never zero unless one of the
factors is zero. We may state this assumption in the form:
“ℵ0 is a multipliable number,” where a number ν is defined
as “multipliable” when a product of ν factors is never zero
unless one of the factors is zero. We can prove that a finite
number is always multipliable, but we cannot prove that any
infinite number is so. The multiplicative axiom is equivalent
to the assumption that all cardinal numbers are multipliable.
But in order to identify the reflexive with the non-inductive,
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or to deal with the problem of the boots and socks, or to show
that any progression of numbers of the second class is of the
second class, we only need the very much smaller assumption
that ℵ0 is multipliable.

It is not improbable that there is much to be discovered in
regard to the topics discussed in the present chapter. Cases
may be found where propositions which seem to involve the
multiplicative axiom can be proved without it. It is conceiv-
able that the multiplicative axiom in its general form may be
shown to be false. From this point of view, Zermelo’s theorem
offers the best hope: the continuum or some still more dense
series might be proved to be incapable of having its terms well
ordered, which would prove the multiplicative axiom false, in
virtue of Zermelo’s theorem. But so far, no method of obtain-
ing such results has been discovered, and the subject remains
wrapped in obscurity.



CHAPTER XIII

THE AXIOM OF INFINITY AND LOGICAL TYPES

The axiom of infinity is an assumption which may be enunci-
ated as follows:—

“If n be any inductive cardinal number, there is at least
one class of individuals having n terms.”

If this is true, it follows, of course, that there are many
classes of individuals having n terms, and that the total num-
ber of individuals in the world is not an inductive number. For,
by the axiom, there is at least one class having n + 1 terms,
from which it follows that there are many classes of n terms
and that n is not the number of individuals in the world. Since
n is any inductive number, it follows that the number of in-
dividuals in the world must (if our axiom be true) exceed any
inductive number. In view of what we found in the preceding
chapter, about the possibility of cardinals which are neither
inductive nor reflexive, we cannot infer from our axiom that
there are at least ℵ0 individuals, unless we assume the mul-
tiplicative axiom. But we do know that there are at least ℵ0
classes of classes, since the inductive cardinals are classes of
classes, and form a progression if our axiom is true. The way
in which the need for this axiom arises may be explained as
follows:—One of Peano’s assumptions is that no two inductive
cardinals have the same successor, i.e. that we shall not have
m+1 = n+1 unless m = n, if m and n are inductive cardinals.
In Chapter VIII. we had occasion to use what is virtually the
same as the above assumption of Peano’s, namely, that, if n is

163



The Axiom of Infinity and Logical Types 164

an inductive cardinal, n is not equal to n + 1. It might be
thought that this could be proved. We can prove that, if α is
an inductive class, and n is the number of members of α, then
n is not equal to n + 1. This proposition is easily proved by
induction, and might be thought to imply the other. But in
fact it does not, since there might be no such class as α. What
it does imply is this: If n is an inductive cardinal such that
there is at least one class having n members, then n is not
equal to n+1. The axiom of infinity assures us (whether truly
or falsely) that there are classes having n members, and thus
enables us to assert that n is not equal to n+ 1. But without
this axiom we should be left with the possibility that n and
n+ 1 might both be the null-class.

Let us illustrate this possibility by an example: Suppose
there were exactly nine individuals in the world. (As to what
is meant by the word “individual,” I must ask the reader to be
patient.) Then the inductive cardinals from 0 up to 9 would
be such as we expect, but 10 (defined as 9 + 1) would be the
null-class. It will be remembered that n+ 1 may be defined as
follows: n+ 1 is the collection of all those classes which have a
term x such that, when x is taken away, there remains a class
of n terms. Now applying this definition, we see that, in the
case supposed, 9 + 1 is a class consisting of no classes, i.e. it is
the null-class. The same will be true of 9 + 2, or generally of
9 + n, unless n is zero. Thus 10 and all subsequent inductive
cardinals will all be identical, since they will all be the null-
class. In such a case the inductive cardinals will not form
a progression, nor will it be true that no two have the same
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successor, for 9 and 10 will both be succeeded by the null-class
(10 being itself the null-class). It is in order to prevent such
arithmetical catastrophes that we require the axiom of infinity.

As a matter of fact, so long as we are content with the
arithmetic of finite integers, and do not introduce either in-
finite integers or infinite classes or series of finite integers or
ratios, it is possible to obtain all desired results without the
axiom of infinity. That is to say, we can deal with the addi-
tion, multiplication, and exponentiation of finite integers and
of ratios, but we cannot deal with infinite integers or with ir-
rationals. Thus the theory of the transfinite and the theory of
real numbers fails us. How these various results come about
must now be explained.

Assuming that the number of individuals in the world is n,
the number of classes of individuals will be 2n. This is in virtue
of the general proposition mentioned in Chapter VIII. that the
number of classes contained in a class which has n members
is 2n. Now 2n is always greater than n. Hence the number of
classes in the world is greater than the number of individuals.
If, now, we suppose the number of individuals to be 9, as we
did just now, the number of classes will be 29, i.e. 512. Thus if
we take our numbers as being applied to the counting of classes
instead of to the counting of individuals, our arithmetic will
be normal until we reach 512: the first number to be null
will be 513. And if we advance to classes of classes we shall
do still better: the number of them will be 2512, a number
which is so large as to stagger imagination, since it has about
153 digits. And if we advance to classes of classes of classes,
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we shall obtain a number represented by 2 raised to a power
which has about 153 digits; the number of digits in this number
will be about three times 10152. In a time of paper shortage
it is undesirable to write out this number, and if we want
larger ones we can obtain them by travelling further along the
logical hierarchy. In this way any assigned inductive cardinal
can be made to find its place among numbers which are not
null, merely by travelling along the hierarchy for a sufficient
distance.1

As regards ratios, we have a very similar state of affairs.
If a ratio µ/ν is to have the expected properties, there must
be enough objects of whatever sort is being counted to insure
that the null-class does not suddenly obtrude itself. But this
can be insured, for any given ratio µ/ν, without the axiom
of infinity, by merely travelling up the hierarchy a sufficient
distance. If we cannot succeed by counting individuals, we can
try counting classes of individuals; if we still do not succeed,
we can try classes of classes, and so on. Ultimately, however
few individuals there may be in the world, we shall reach a
stage where there are many more than µ objects, whatever
inductive number µ may be. Even if there were no individuals
at all, this would still be true, for there would then be one
class, namely, the null-class, 2 classes of classes (namely, the
null-class of classes and the class whose only member is the
null-class of individuals), 4 classes of classes of classes, 16 at
the next stage, 65,536 at the next stage, and so on. Thus no

1On this subject see Principia Mathematica, vol. ii. * 120 ff. On the
corresponding problems as regards ratio, see ibid., vol. iii. * 303 ff.
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such assumption as the axiom of infinity is required in order
to reach any given ratio or any given inductive cardinal.

It is when we wish to deal with the whole class or series of
inductive cardinals or of ratios that the axiom is required. We
need the whole class of inductive cardinals in order to establish
the existence of ℵ0, and the whole series in order to establish
the existence of progressions: for these results, it is necessary
that we should be able to make a single class or series in which
no inductive cardinal is null. We need the whole series of
ratios in order of magnitude in order to define real numbers as
segments: this definition will not give the desired result unless
the series of ratios is compact, which it cannot be if the total
number of ratios, at the stage concerned, is finite.

It would be natural to suppose—as I supposed myself in
former days—that, by means of constructions such as we have
been considering, the axiom of infinity could be proved. It may
be said: Let us assume that the number of individuals is n,
where n may be 0 without spoiling our argument; then if we
form the complete set of individuals, classes, classes of classes,
etc., all taken together, the number of terms in our whole set
will be

n+ 2n + 22n + . . . ad inf.,

which is ℵ0. Thus taking all kinds of objects together, and
not confining ourselves to objects of any one type, we shall
certainly obtain an infinite class, and shall therefore not need
the axiom of infinity. So it might be said.

Now, before going into this argument, the first thing to ob-
serve is that there is an air of hocus-pocus about it: something
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reminds one of the conjurer who brings things out of the hat.
The man who has lent his hat is quite sure there wasn’t a live
rabbit in it before, but he is at a loss to say how the rabbit got
there. So the reader, if he has a robust sense of reality, will feel
convinced that it is impossible to manufacture an infinite col-
lection out of a finite collection of individuals, though he may
be unable to say where the flaw is in the above construction.
It would be a mistake to lay too much stress on such feelings
of hocus-pocus; like other emotions, they may easily lead us
astray. But they afford a prima facie ground for scrutinising
very closely any argument which arouses them. And when the
above argument is scrutinised it will, in my opinion, be found
to be fallacious, though the fallacy is a subtle one and by no
means easy to avoid consistently.

The fallacy involved is the fallacy which may be called
“confusion of types.” To explain the subject of “types” fully
would require a whole volume; moreover, it is the purpose
of this book to avoid those parts of the subjects which are
still obscure and controversial, isolating, for the convenience
of beginners, those parts which can be accepted as embodying
mathematically ascertained truths. Now the theory of types
emphatically does not belong to the finished and certain part
of our subject: much of this theory is still inchoate, confused,
and obscure. But the need of some doctrine of types is less
doubtful than the precise form the doctrine should take; and
in connection with the axiom of infinity it is particularly easy
to see the necessity of some such doctrine.

This necessity results, for example, from the “contradiction
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of the greatest cardinal.” We saw in Chapter VIII. that the
number of classes contained in a given class is always greater
than the number of members of the class, and we inferred that
there is no greatest cardinal number. But if we could, as we
suggested a moment ago, add together into one class the indi-
viduals, classes of individuals, classes of classes of individuals,
etc., we should obtain a class of which its own sub-classes
would be members. The class consisting of all objects that
can be counted, of whatever sort, must, if there be such a
class, have a cardinal number which is the greatest possible.
Since all its sub-classes will be members of it, there cannot be
more of them than there are members. Hence we arrive at a
contradiction.

When I first came upon this contradiction, in the year 1901,
I attempted to discover some flaw in Cantor’s proof that there
is no greatest cardinal, which we gave in Chapter VIII. Apply-
ing this proof to the supposed class of all imaginable objects,
I was led to a new and simpler contradiction, namely, the
following:—

The comprehensive class we are considering, which is to
embrace everything, must embrace itself as one of its mem-
bers. In other words, if there is such a thing as “everything,”
then “everything” is something, and is a member of the class
“everything.” But normally a class is not a member of itself.
Mankind, for example, is not a man. Form now the assem-
blage of all classes which are not members of themselves. This
is a class: is it a member of itself or not? If it is, it is one of
those classes that are not members of themselves, i.e. it is not
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a member of itself. If it is not, it is not one of those classes
that are not members of themselves, i.e. it is a member of it-
self. Thus of the two hypotheses—that it is, and that it is not,
a member of itself—each implies its contradictory. This is a
contradiction.

There is no difficulty in manufacturing similar contradic-
tions ad lib. The solution of such contradictions by the theory
of types is set forth fully in Principia Mathematica,1 and also,
more briefly, in articles by the present author in the American
Journal of Mathematics,2 and in the Revue de Metaphysique
et de Morale.3 For the present an outline of the solution must
suffice.

The fallacy consists in the formation of what we may call
“impure” classes, i.e. classes which are not pure as to “type.”
As we shall see in a later chapter, classes are logical fictions,
and a statement which appears to be about a class will only be
significant if it is capable of translation into a form in which no
mention is made of the class. This places a limitation upon the
ways in which what are nominally, though not really, names
for classes can occur significantly: a sentence or set of symbols
in which such pseudo-names occur in wrong ways is not false,
but strictly devoid of meaning. The supposition that a class
is, or that it is not, a member of itself is meaningless in just

1Vol. i., Introduction, chap. ii., * 12 and * 20; vol. ii., Prefatory
Statement.

2“Mathematical Logic as based on the Theory of Types,” vol. xxx.,
1908, pp. 222–262.

3“Les paradoxes de la logique,” 1906, pp. 627–650.
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this way. And more generally, to suppose that one class of
individuals is a member, or is not a member, of another class
of individuals will be to suppose nonsense; and to construct
symbolically any class whose members are not all of the same
grade in the logical hierarchy is to use symbols in a way which
makes them no longer symbolise anything.

Thus if there are n individuals in the world, and 2n classes
of individuals, we cannot form a new class, consisting of both
individuals and classes and having n + 2n members. In this
way the attempt to escape from the need for the axiom of
infinity breaks down. I do not pretend to have explained the
doctrine of types, or done more than indicate, in rough outline,
why there is need of such a doctrine. I have aimed only at
saying just so much as was required in order to show that we
cannot prove the existence of infinite numbers and classes by
such conjurer’s methods as we have been examining. There
remain, however, certain other possible methods which must
be considered.

Various arguments professing to prove the existence of in-
finite classes are given in the Principles of Mathematics, § 339
(p. 357). In so far as these arguments assume that, if n is an
inductive cardinal, n is not equal to n + 1, they have been
already dealt with. There is an argument, suggested by a pas-
sage in Plato’s Parmenides, to the effect that, if there is such
a number as 1, then 1 has being; but 1 is not identical with
being, and therefore 1 and being are two, and therefore there
is such a number as 2, and 2 together with 1 and being gives
a class of three terms, and so on. This argument is fallacious,
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partly because “being” is not a term having any definite mean-
ing, and still more because, if a definite meaning were invented
for it, it would be found that numbers do not have being—they
are, in fact, what are called “logical fictions,” as we shall see
when we come to consider the definition of classes.

The argument that the number of numbers from 0 to n
(both inclusive) is n + 1 depends upon the assumption that
up to and including n no number is equal to its successor,
which, as we have seen, will not be always true if the axiom
of infinity is false. It must be understood that the equation
n = n + 1, which might be true for a finite n if n exceeded
the total number of individuals in the world, is quite different
from the same equation as applied to a reflexive number. As
applied to a reflexive number, it means that, given a class of
n terms, this class is “similar” to that obtained by adding
another term. But as applied to a number which is too great
for the actual world, it merely means that there is no class of
n individuals, and no class of n + 1 individuals; it does not
mean that, if we mount the hierarchy of types sufficiently far
to secure the existence of a class of n terms, we shall then find
this class “similar” to one of n+ 1 terms, for if n is inductive
this will not be the case, quite independently of the truth or
falsehood of the axiom of infinity.

There is an argument employed by both Bolzano1 and
Dedekind2 to prove the existence of reflexive classes. The ar-
gument, in brief, is this: An object is not identical with the

1Bolzano, Paradoxien des Unendlichen, 13.
2Dedekind, Was sind und was sollen die Zahlen? No. 66.
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idea of the object, but there is (at least in the realm of being)
an idea of any object. The relation of an object to the idea of
it is one-one, and ideas are only some among objects. Hence
the relation “idea of” constitutes a reflexion of the whole class
of objects into a part of itself, namely, into that part which
consists of ideas. Accordingly, the class of objects and the
class of ideas are both infinite. This argument is interesting,
not only on its own account, but because the mistakes in it (or
what I judge to be mistakes) are of a kind which it is instruc-
tive to note. The main error consists in assuming that there
is an idea of every object. It is, of course, exceedingly diffi-
cult to decide what is meant by an “idea”; but let us assume
that we know. We are then to suppose that, starting (say)
with Socrates, there is the idea of Socrates, and so on ad inf.
Now it is plain that this is not the case in the sense that all
these ideas have actual empirical existence in people’s minds.
Beyond the third or fourth stage they become mythical. If
the argument is to be upheld, the “ideas” intended must be
Platonic ideas laid up in heaven, for certainly they are not on
earth. But then it at once becomes doubtful whether there are
such ideas. If we are to know that there are, it must be on the
basis of some logical theory, proving that it is necessary to a
thing that there should be an idea of it. We certainly cannot
obtain this result empirically, or apply it, as Dedekind does,
to “meine Gedankenwelt”—the world of my thoughts.

If we were concerned to examine fully the relation of idea
and object, we should have to enter upon a number of psy-
chological and logical inquiries, which are not relevant to our
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main purpose. But a few further points should be noted. If
“idea” is to be understood logically, it may be identical with
the object, or it may stand for a description (in the sense to
be explained in a subsequent chapter). In the former case
the argument fails, because it was essential to the proof of
reflexiveness that object and idea should be distinct. In the
second case the argument also fails, because the relation of
object and description is not one-one: there are innumerable
correct descriptions of any given object. Socrates (e.g.) may
be described as “the master of Plato,” or as “the philosopher
who drank the hemlock,” or as “the husband of Xantippe.”
If—to take up the remaining hypothesis—“idea” is to be in-
terpreted psychologically, it must be maintained that there is
not any one definite psychological entity which could be called
the idea of the object: there are innumerable beliefs and at-
titudes, each of which could be called an idea of the object
in the sense in which we might say “my idea of Socrates is
quite different from yours,” but there is not any central entity
(except Socrates himself) to bind together various “ideas of
Socrates,” and thus there is not any such one-one relation of
idea and object as the argument supposes. Nor, of course, as
we have already noted, is it true psychologically that there are
ideas (in however extended a sense) of more than a tiny pro-
portion of the things in the world. For all these reasons, the
above argument in favour of the logical existence of reflexive
classes must be rejected.

It might be thought that, whatever may be said of logi-
cal arguments, the empirical arguments derivable from space
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and time, the diversity of colours, etc., are quite sufficient to
prove the actual existence of an infinite number of particulars.
I do not believe this. We have no reason except prejudice for
believing in the infinite extent of space and time, at any rate
in the sense in which space and time are physical facts, not
mathematical fictions. We naturally regard space and time as
continuous, or, at least, as compact; but this again is mainly
prejudice. The theory of “quanta” in physics, whether true or
false, illustrates the fact that physics can never afford proof of
continuity, though it might quite possibly afford disproof. The
senses are not sufficiently exact to distinguish between con-
tinuous motion and rapid discrete succession, as anyone may
discover in a cinema. A world in which all motion consisted of
a series of small finite jerks would be empirically indistinguish-
able from one in which motion was continuous. It would take
up too much space to defend these theses adequately; for the
present I am merely suggesting them for the reader’s consid-
eration. If they are valid, it follows that there is no empirical
reason for believing the number of particulars in the world
to be infinite, and that there never can be; also that there is
at present no empirical reason to believe the number to be fi-
nite, though it is theoretically conceivable that some day there
might be evidence pointing, though not conclusively, in that
direction.

From the fact that the infinite is not self-contradictory, but
is also not demonstrable logically, we must conclude that noth-
ing can be known a priori as to whether the number of things
in the world is finite or infinite. The conclusion is, therefore,
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to adopt a Leibnizian phraseology, that some of the possible
worlds are finite, some infinite, and we have no means of know-
ing to which of these two kinds our actual world belongs. The
axiom of infinity will be true in some possible worlds and false
in others; whether it is true or false in this world, we cannot
tell.

Throughout this chapter the synonyms “individual” and
“particular” have been used without explanation. It would
be impossible to explain them adequately without a longer
disquisition on the theory of types than would be appropriate
to the present work, but a few words before we leave this
topic may do something to diminish the obscurity which would
otherwise envelop the meaning of these words.

In an ordinary statement we can distinguish a verb, ex-
pressing an attribute or relation, from the substantives which
express the subject of the attribute or the terms of the rela-
tion. “Cæsar lived” ascribes an attribute to Cæsar; “Brutus
killed Cæsar” expresses a relation between Brutus and Cæsar.
Using the word “subject” in a generalised sense, we may call
both Brutus and Cæsar subjects of this proposition: the fact
that Brutus is grammatically subject and Cæsar object is log-
ically irrelevant, since the same occurrence may be expressed
in the words “Cæsar was killed by Brutus,” where Cæsar is the
grammatical subject. Thus in the simpler sort of proposition
we shall have an attribute or relation holding of or between
one, two or more “subjects” in the extended sense. (A rela-
tion may have more than two terms: e.g. “A gives B to C”
is a relation of three terms.) Now it often happens that, on a
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closer scrutiny, the apparent subjects are found to be not really
subjects, but to be capable of analysis; the only result of this,
however, is that new subjects take their places. It also hap-
pens that the verb may grammatically be made subject: e.g.
we may say, “Killing is a relation which holds between Brutus
and Cæsar.” But in such cases the grammar is misleading,
and in a straightforward statement, following the rules that
should guide philosophical grammar, Brutus and Cæsar will
appear as the subjects and killing as the verb.

We are thus led to the conception of terms which, when
they occur in propositions, can only occur as subjects, and
never in any other way. This is part of the old scholastic def-
inition of substance; but persistence through time, which be-
longed to that notion, forms no part of the notion with which
we are concerned. We shall define “proper names” as those
terms which can only occur as subjects in propositions (using
“subject” in the extended sense just explained). We shall fur-
ther define “individuals” or “particulars” as the objects that
can be named by proper names. (It would be better to define
them directly, rather than by means of the kind of symbols by
which they are symbolised; but in order to do that we should
have to plunge deeper into metaphysics than is desirable here.)
It is, of course, possible that there is an endless regress: that
whatever appears as a particular is really, on closer scrutiny, a
class or some kind of complex. If this be the case, the axiom
of infinity must of course be true. But if it be not the case,
it must be theoretically possible for analysis to reach ultimate
subjects, and it is these that give the meaning of “particulars”
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or “individuals.” It is to the number of these that the axiom
of infinity is assumed to apply. If it is true of them, it is true
of classes of them, and classes of classes of them, and so on;
similarly if it is false of them, it is false throughout this hier-
archy. Hence it is natural to enunciate the axiom concerning
them rather than concerning any other stage in the hierarchy.
But whether the axiom is true or false, there seems no known
method of discovering.



CHAPTER XIV

INCOMPATIBILITY AND THE THEORY OF
DEDUCTION

We have now explored, somewhat hastily it is true, that part
of the philosophy of mathematics which does not demand a
critical examination of the idea of class. In the preceding chap-
ter, however, we found ourselves confronted by problems which
make such an examination imperative. Before we can under-
take it, we must consider certain other parts of the philosophy
of mathematics, which we have hitherto ignored. In a syn-
thetic treatment, the parts which we shall now be concerned
with come first: they are more fundamental than anything
that we have discussed hitherto. Three topics will concern us
before we reach the theory of classes, namely: (1) the theory
of deduction, (2) propositional functions, (3) descriptions. Of
these, the third is not logically presupposed in the theory of
classes, but it is a simpler example of the kind of theory that is
needed in dealing with classes. It is the first topic, the theory
of deduction, that will concern us in the present chapter.

Mathematics is a deductive science: starting from certain
premisses, it arrives, by a strict process of deduction, at the
various theorems which constitute it. It is true that, in the
past, mathematical deductions were often greatly lacking in
rigour; it is true also that perfect rigour is a scarcely attain-
able ideal. Nevertheless, in so far as rigour is lacking in a
mathematical proof, the proof is defective; it is no defence to
urge that common sense shows the result to be correct, for if
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we were to rely upon that, it would be better to dispense with
argument altogether, rather than bring fallacy to the rescue of
common sense. No appeal to common sense, or “intuition,” or
anything except strict deductive logic, ought to be needed in
mathematics after the premisses have been laid down.

Kant, having observed that the geometers of his day could
not prove their theorems by unaided argument, but required
an appeal to the figure, invented a theory of mathematical
reasoning according to which the inference is never strictly
logical, but always requires the support of what is called “in-
tuition.” The whole trend of modern mathematics, with its
increased pursuit of rigour, has been against this Kantian the-
ory. The things in the mathematics of Kant’s day which cannot
be proved, cannot be known—for example, the axiom of paral-
lels. What can be known, in mathematics and by mathemat-
ical methods, is what can be deduced from pure logic. What
else is to belong to human knowledge must be ascertained
otherwise—empirically, through the senses or through experi-
ence in some form, but not a priori. The positive grounds for
this thesis are to be found in Principia Mathematica, passim;
a controversial defence of it is given in the Principles of Math-
ematics. We cannot here do more than refer the reader to
those works, since the subject is too vast for hasty treatment.
Meanwhile, we shall assume that all mathematics is deductive,
and proceed to inquire as to what is involved in deduction.

In deduction, we have one or more propositions called pre-
misses, from which we infer a proposition called the conclu-
sion. For our purposes, it will be convenient, when there are
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originally several premisses, to amalgamate them into a single
proposition, so as to be able to speak of the premiss as well
as of the conclusion. Thus we may regard deduction as a pro-
cess by which we pass from knowledge of a certain proposition,
the premiss, to knowledge of a certain other proposition, the
conclusion. But we shall not regard such a process as logical
deduction unless it is correct, i.e. unless there is such a rela-
tion between premiss and conclusion that we have a right to
believe the conclusion if we know the premiss to be true. It is
this relation that is chiefly of interest in the logical theory of
deduction.

In order to be able validly to infer the truth of a proposi-
tion, we must know that some other proposition is true, and
that there is between the two a relation of the sort called “im-
plication,” i.e. that (as we say) the premiss “implies” the con-
clusion. (We shall define this relation shortly.) Or we may
know that a certain other proposition is false, and that there
is a relation between the two of the sort called “disjunction,”
expressed by “p or q,”1 so that the knowledge that the one is
false allows us to infer that the other is true. Again, what we
wish to infer may be the falsehood of some proposition, not its
truth. This may be inferred from the truth of another propo-
sition, provided we know that the two are “incompatible,” i.e.
that if one is true, the other is false. It may also be inferred
from the falsehood of another proposition, in just the same
circumstances in which the truth of the other might have been

1We shall use the letters p, q, r, s, t to denote variable propositions.
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inferred from the truth of the one; i.e. from the falsehood of p
we may infer the falsehood of q, when q implies p. All these
four are cases of inference. When our minds are fixed upon in-
ference, it seems natural to take “implication” as the primitive
fundamental relation, since this is the relation which must hold
between p and q if we are to be able to infer the truth of q from
the truth of p. But for technical reasons this is not the best
primitive idea to choose. Before proceeding to primitive ideas
and definitions, let us consider further the various functions
of propositions suggested by the above-mentioned relations of
propositions.

The simplest of such functions is the negative, “not-p.”
This is that function of p which is true when p is false, and
false when p is true. It is convenient to speak of the truth of a
proposition, or its falsehood, as its “truth-value”1; i.e. truth
is the “truth-value” of a true proposition, and falsehood of a
false one. Thus not-p has the opposite truth-value to p.

We may take next disjunction, “p or q.” This is a function
whose truth-value is truth when p is true and also when q is
true, but is falsehood when both p and q are false.

Next we may take conjunction, “p and q” This has truth
for its truth-value when p and q are both true; otherwise it has
falsehood for its truth-value.

Take next incompatibility, i.e. “p and q are not both true.”
This is the negation of conjunction; it is also the disjunction of
the negations of p and q, i.e. it is “not-p or not-q.” Its truth-

1This term is due to Frege.
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value is truth when p is false and likewise when q is false; its
truth-value is falsehood when p and q are both true.

Last take implication, i.e. “p implies q,” or “if p, then q.”
This is to be understood in the widest sense that will allow
us to infer the truth of q if we know the truth of p. Thus we
interpret it as meaning: “Unless p is false, q is true,” or “either
p is false or q is true.” (The fact that “implies” is capable of
other meanings does not concern us; this is the meaning which
is convenient for us.) That is to say, “p implies q” is to mean
“not-p or q”: its truth-value is to be truth if p is false, likewise
if q is true, and is to be falsehood if p is true and q is false.

We have thus five functions: negation, disjunction, con-
junction, incompatibility, and implication. We might have
added others, for example, joint falsehood, “not-p and not-
q,” but the above five will suffice. Negation differs from the
other four in being a function of one proposition, whereas the
others are functions of two. But all five agree in this, that
their truth-value depends only upon that of the propositions
which are their arguments. Given the truth or falsehood of p,
or of p and q (as the case may be), we are given the truth or
falsehood of the negation, disjunction, conjunction, incompat-
ibility, or implication. A function of propositions which has
this property is called a “truth-function.”

The whole meaning of a truth-function is exhausted by the
statement of the circumstances under which it is true or false.
“Not-p,” for example, is simply that function of p which is true
when p is false, and false when p is true: there is no further
meaning to be assigned to it. The same applies to “p or q”
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and the rest. It follows that two truth-functions which have
the same truth-value for all values of the argument are indis-
tinguishable. For example, “p and q” is the negation of “not-p
or not-q” and vice versa; thus either of these may be defined
as the negation of the other. There is no further meaning in
a truth-function over and above the conditions under which it
is true or false.

It is clear that the above five truth-functions are not all
independent. We can define some of them in terms of oth-
ers. There is no great difficulty in reducing the number to
two; the two chosen in Principia Mathematica are negation
and disjunction. Implication is then defined as “not-p or q”;
incompatibility as “not-p or not-q”; conjunction as the nega-
tion of incompatibility. But it has been shown by Sheffer1 that
we can be content with one primitive idea for all five, and by
Nicod2 that this enables us to reduce the primitive proposi-
tions required in the theory of deduction to two non-formal
principles and one formal one. For this purpose, we may take
as our one indefinable either incompatibility or joint falsehood.
We will choose the former.

Our primitive idea, now, is a certain truth-function called
“incompatibility,” which we will denote by p/q. Negation can
be at once defined as the incompatibility of a proposition with
itself, i.e. “not-p” is defined as “p/p.” Disjunction is the in-
compatibility of not-p and not-q, i.e. it is (p/p)|(q/q). Impli-
cation is the incompatibility of p and not-q, i.e. p|(q/q). Con-

1Trans. Am. Math. Soc., vol. xiv. pp. 481–488.
2Proc. Camb. Phil. Soc., vol. xix., i., January 1917.
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junction is the negation of incompatibility, i.e. it is (p/q)|(p/q).
Thus all our four other functions are defined in terms of in-
compatibility.

It is obvious that there is no limit to the manufacture of
truth-functions, either by introducing more arguments or by
repeating arguments. What we are concerned with is the con-
nection of this subject with inference.

If we know that p is true and that p implies q, we can
proceed to assert q. There is always unavoidably something
psychological about inference: inference is a method by which
we arrive at new knowledge, and what is not psychological
about it is the relation which allows us to infer correctly; but
the actual passage from the assertion of p to the assertion of q
is a psychological process, and we must not seek to represent
it in purely logical terms.

In mathematical practice, when we infer, we have always
some expression containing variable propositions, say p and q,
which is known, in virtue of its form, to be true for all values of
p and q; we have also some other expression, part of the former,
which is also known to be true for all values of p and q; and
in virtue of the principles of inference, we are able to drop
this part of our original expression, and assert what is left.
This somewhat abstract account may be made clearer by a
few examples.

Let us assume that we know the five formal principles of
deduction enumerated in Principia Mathematica. (M. Nicod
has reduced these to one, but as it is a complicated proposition,
we will begin with the five.) These five propositions are as
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follows:—
(1) “p or p” implies p—i.e. if either p is true or p is true,

then p is true.
(2) q implies “p or q”—i.e. the disjunction “p or q” is true

when one of its alternatives is true.
(3) “p or q” implies “q or p.” This would not be required

if we had a theoretically more perfect notation, since in the
conception of disjunction there is no order involved, so that
“p or q” and “q or p” should be identical. But since our sym-
bols, in any convenient form, inevitably introduce an order,
we need suitable assumptions for showing that the order is
irrelevant.

(4) If either p is true or “q or r” is true, then either q is
true or “p or r” is true. (The twist in this proposition serves
to increase its deductive power.)

(5) If q implies r, then “p or q” implies “p or r.”
These are the formal principles of deduction employed in

Principia Mathematica. A formal principle of deduction has a
double use, and it is in order to make this clear that we have
cited the above five propositions. It has a use as the premiss of
an inference, and a use as establishing the fact that the premiss
implies the conclusion. In the schema of an inference we have
a proposition p, and a proposition “p implies q,” from which
we infer q. Now when we are concerned with the principles of
deduction, our apparatus of primitive propositions has to yield
both the p and the “p implies q” of our inferences. That is to
say, our rules of deduction are to be used, not only as rules,
which is their use for establishing “p implies q” but also as
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substantive premisses, i.e. as the p of our schema. Suppose, for
example, we wish to prove that if p implies q, then if q implies r
it follows that p implies r. We have here a relation of three
propositions which state implications. Put

p1 = p implies q, p2 = q implies r, and p3 = p implies r.

Then we have to prove that p1 implies that p2 implies p3. Now
take the fifth of our above principles, substitute not-p for p,
and remember that “not-p or q” is by definition the same as
“p implies q.” Thus our fifth principle yields:

“If q implies r, then ‘p implies q’ implies ‘p implies r,’ ”
i.e. “p2 implies that p1 implies p3.” Call this proposi-
tion A.

But the fourth of our principles, when we substitute not-p,
not-q, for p and q, and remember the definition of implication,
becomes:

“If p implies that q implies r, then q implies that p im-
plies r.”

Writing p2 in place of p, p1 in place of q, and p3 in place of r,
this becomes:

“If p2 implies that p1 implies p3, then p1 implies that
p2 implies p3.” Call this B.

Now we proved by means of our fifth principle that
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“p2 implies that p1 implies p3,” which was what we
called A.

Thus we have here an instance of the schema of inference,
since A represents the p of our scheme, and B represents the
“p implies q.” Hence we arrive at q, namely,

“p1 implies that p2 implies p3,”

which was the proposition to be proved. In this proof, the
adaptation of our fifth principle, which yields A, occurs as a
substantive premiss; while the adaptation of our fourth prin-
ciple, which yields B, is used to give the form of the inference.
The formal and material employments of premisses in the the-
ory of deduction are closely intertwined, and it is not very
important to keep them separated, provided we realise that
they are in theory distinct.

The earliest method of arriving at new results from a pre-
miss is one which is illustrated in the above deduction, but
which itself can hardly be called deduction. The primitive
propositions, whatever they may be, are to be regarded as as-
serted for all possible values of the variable propositions p, q, r
which occur in them. We may therefore substitute for (say) p
any expression whose value is always a proposition, e.g. not-p,
“s implies t,” and so on. By means of such substitutions we
really obtain sets of special cases of our original proposition,
but from a practical point of view we obtain what are virtu-
ally new propositions. The legitimacy of substitutions of this
kind has to be insured by means of a non-formal principle of
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inference.1

We may now state the one formal principle of inference to
which M. Nicod has reduced the five given above. For this
purpose we will first show how certain truth-functions can be
defined in terms of incompatibility. We saw already that

p|(q/q) means “p implies q.”

We now observe that

p|(q/r) means “p implies both q and r.”

For this expression means “p is incompatible with the incom-
patibility of q and r,” i.e. “p implies that q and r are not
incompatible,” i.e. “p implies that q and r are both true”—
for, as we saw, the conjunction of q and r is the negation of
their incompatibility.

Observe next that t|(t/t) means “t implies itself.” This is
a particular case of p|(q/q).

Let us write p for the negation of p; thus p/s will mean the
negation of p/s, i.e. it will mean the conjunction of p and s.
It follows that

(s/q)|p/s

expresses the incompatibility of s/q with the conjunction of p
and s; in other words, it states that if p and s are both true,

1No such principle is enunciated in Principia Mathematica, or in
M. Nicod’s article mentioned above. But this would seem to be an omis-
sion.
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s/q is false, i.e. s and q are both true; in still simpler words,
it states that p and s jointly imply s and q jointly.

Now, put

P = p|(q/r),
π = t|(t/t),
Q = (s/q)|p/s.

Then M. Nicod’s sole formal principle of deduction is

P|π/Q,

in other words, P implies both π and Q.
He employs in addition one non-formal principle belonging

to the theory of types (which need not concern us), and one
corresponding to the principle that, given p, and given that
p implies q, we can assert q. This principle is:

“If p|(r/q) is true, and p is true, then q is true.”

From this apparatus the whole theory of deduction follows,
except in so far as we are concerned with deduction from or
to the existence or the universal truth of “propositional func-
tions,” which we shall consider in the next chapter.

There is? if I am not mistaken, a certain confusion in the
minds of some authors as to the relation, between propositions,
in virtue of which an inference is valid. In order that it may
be valid to infer q from p, it is only necessary that p should
be true and that the proposition “not-p or q” should be true.
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Whenever this is the case, it is clear that q must be true.
But inference will only in fact take place when the proposition
“not-p or q” is known otherwise than through knowledge of
not-p or knowledge of q. Whenever p is false, “not-p or q” is
true, but is useless for inference, which requires that p should
be true. Whenever q is already known to be true, “not-p or q”
is of course also known to be true, but is again useless for
inference, since q is already known, and therefore does not
need to be inferred. In fact, inference only arises when “not-p
or q” can be known without our knowing already which of the
two alternatives it is that makes the disjunction true. Now,
the circumstances under which this occurs are those in which
certain relations of form exist between p and q. For example,
we know that if r implies the negation of s, then s implies
the negation of r. Between “r implies not-s” and “s implies
not-r” there is a formal relation which enables us to know
that the first implies the second, without having first to know
that the first is false or to know that the second is true. It
is under such circumstances that the relation of implication is
practically useful for drawing inferences.

But this formal relation is only required in order that we
may be able to know that either the premiss is false or the con-
clusion is true. It is the truth of “not-p or q” that is required
for the validity of the inference; what is required further is only
required for the practical feasibility of the inference. Professor
C. I. Lewis1 has especially studied the narrower, formal rela-

1See Mind, vol. xxi., 1912, pp. 522–531; and vol. xxiii., 1914, pp. 240–
247.
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tion which we may call “formal deducibility.” He urges that
the wider relation, that expressed by “not-p or q” should not
be called “implication.” That is, however, a matter of words.
Provided our use of words is consistent, it matters little how
we define them. The essential point of difference between the
theory which I advocate and the theory advocated by Profes-
sor Lewis is this: He maintains that, when one proposition q
is “formally deducible” from another p, the relation which we
perceive between them is one which he calls “strict implica-
tion,” which is not the relation expressed by “not-p or q” but
a narrower relation, holding only when there are certain formal
connections between p and q. I maintain that, whether or not
there be such a relation as he speaks of, it is in any case one
that mathematics does not need, and therefore one that, on
general grounds of economy, ought not to be admitted into our
apparatus of fundamental notions; that, whenever the relation
of “formal deducibility” holds between two propositions, it is
the case that we can see that either the first is false or the sec-
ond true, and that nothing beyond this fact is necessary to be
admitted into our premisses; and that, finally, the reasons of
detail which Professor Lewis adduces against the view which I
advocate can all be met in detail, and depend for their plausi-
bility upon a covert and unconscious assumption of the point
of view which I reject. I conclude, therefore, that there is no
need to admit as a fundamental notion any form of implication
not expressible as a truth-function.



CHAPTER XV

PROPOSITIONAL FUNCTIONS

When, in the preceding chapter, we were discussing propo-
sitions, we did not attempt to give a definition of the word
“proposition.” But although the word cannot be formally de-
fined, it is necessary to say something as to its meaning, in
order to avoid the very common confusion with “propositional
functions,” which are to be the topic of the present chapter.

We mean by a “proposition” primarily a form of words
which expresses what is either true or false. I say “primarily,”
because I do not wish to exclude other than verbal symbols,
or even mere thoughts if they have a symbolic character. But
I think the word “proposition” should be limited to what may,
in some sense, be called “symbols,” and further to such sym-
bols as give expression to truth and falsehood. Thus “two
and two are four” and “two and two are five” will be proposi-
tions, and so will “Socrates is a man” and “Socrates is not a
man.” The statement: “Whatever numbers a and b may be,
(a+ b)2 = a2 + 2ab+ b2” is a proposition; but the bare formula
“(a + b)2 = a2 + 2ab + b2” alone is not, since it asserts noth-
ing definite unless we are further told, or led to suppose, that
a and b are to have all possible values, or are to have such-and-
such values. The former of these is tacitly assumed, as a rule,
in the enunciation of mathematical formulæ, which thus be-
come propositions; but if no such assumption were made, they
would be “propositional functions.” A “propositional func-
tion,” in fact, is an expression containing one or more unde-
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termined constituents, such that, when values are assigned to
these constituents, the expression becomes a proposition. In
other words, it is a function whose values are propositions. But
this latter definition must be used with caution. A descriptive
function, e.g. “the hardest proposition in A’s mathematical
treatise,” will not be a propositional function, although its
values are propositions. But in such a case the propositions
are only described: in a propositional function, the values must
actually enunciate propositions.

Examples of propositional functions are easy to give: “x is
human” is a propositional function; so long as x remains un-
determined, it is neither true nor false, but when a value is
assigned to x it becomes a true or false proposition. Any
mathematical equation is a propositional function. So long as
the variables have no definite value, the equation is merely an
expression awaiting determination in order to become a true
or false proposition. If it is an equation containing one vari-
able, it becomes true when the variable is made equal to a
root of the equation, otherwise it becomes false; but if it is
an “identity” it will be true when the variable is any number.
The equation to a curve in a plane or to a surface in space
is a propositional function, true for values of the co-ordinates
belonging to points on the curve or surface, false for other val-
ues. Expressions of traditional logic such as “all A is B” are
propositional functions: A and B have to be determined as
definite classes before such expressions become true or false.

The notion of “cases” or “instances” depends upon propo-
sitional functions. Consider, for example, the kind of process
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suggested by what is called “generalisation,” and let us take
some very primitive example, say, “lightning is followed by
thunder.” We have a number of “instances” of this, i.e. a
number of propositions such as: “this is a flash of lightning
and is followed by thunder.” What are these occurrences “in-
stances” of? They are instances of the propositional function:
“If x is a flash of lightning, x is followed by thunder.” The pro-
cess of generalisation (with whose validity we are fortunately
not concerned) consists in passing from a number of such in-
stances to the universal truth of the propositional function:
“If x is a flash of lightning, x is followed by thunder.” It will
be found that, in an analogous way, propositional functions
are always involved whenever we talk of instances or cases or
examples.

We do not need to ask, or attempt to answer, the question:
“What is a propositional function?” A propositional function
standing all alone may be taken to be a mere schema, a mere
shell, an empty receptacle for meaning, not something already
significant. We are concerned with propositional functions,
broadly speaking, in two ways: first, as involved in the no-
tions “true in all cases” and “true in some cases”; secondly, as
involved in the theory of classes and relations. The second of
these topics we will postpone to a later chapter; the first must
occupy us now.

When we say that something is “always true” or “true in
all cases,” it is clear that the “something” involved cannot be a
proposition. A proposition is just true or false, and there is an
end of the matter. There are no instances or cases of “Socrates
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is a man” or “Napoleon died at St Helena.” These are proposi-
tions, and it would be meaningless to speak of their being true
“in all cases.” This phrase is only applicable to propositional
functions. Take, for example, the sort of thing that is often
said when causation is being discussed. (We are net concerned
with the truth or falsehood of what is said, but only with its
logical analysis.) We are told that A is, in every instance,
followed by B. Now if there are “instances” of A, A must be
some general concept of which it is significant to say “x1 is A,”
“x2 is A,” “x3 is A,” and so on, where x1, x2, x3 are particulars
which are not identical one with another. This applies, e.g. to
our previous case of lightning. We say that lightning (A) is
followed by thunder (B). But the separate flashes are particu-
lars, not identical, but sharing the common property of being
lightning. The only way of expressing a common property
generally is to say that a common property of a number of
objects is a propositional function which becomes true when
any one of these objects is taken as the value of the variable.
In this case all the objects are “instances” of the truth of the
propositional function—for a propositional function, though it
cannot itself be true or false, is true in certain instances and
false in certain others, unless it is “always true” or “always
false.” When, to return to our example, we say that A is in
every instance followed by B, we mean that, whatever x may
be, if x is an A, it is followed by a B; that is, we are asserting
that a certain propositional function is “always true.”

Sentences involving such words as “all,” “every,” “a,”
“the,” “some” require propositional functions for their inter-
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pretation. The way in which propositional functions occur
can be explained by means of two of the above words, namely,
“all” and “some.”

There are, in the last analysis, only two things that can
be done with a propositional function: one is to assert that
it is true in all cases, the other to assert that it is true in at
least one case, or in some cases (as we shall say, assuming that
there is to be no necessary implication of a plurality of cases).
All the other uses of propositional functions can be reduced to
these two. When we say that a propositional function is true
“in all cases,” or “always” (as we shall also say, without any
temporal suggestion), we mean that all its values are true. If
“φx” is the function, and a is the right sort of object to be an
argument to “φx,” then φa is to be true, however a may have
been chosen. For example, “if a is human, a is mortal” is true
whether a is human or not; in fact, every proposition of this
form is true. Thus the propositional function “if x is human,
x is mortal” is “always true,” or “true in all cases.” Or, again,
the statement “there are no unicorns” is the same as the state-
ment “the propositional function ‘x is not a unicorn’ is true
in all cases.” The assertions in the preceding chapter about
propositions, e.g. “ ‘p or q’ implies ‘q or p,’ ” are really asser-
tions that certain propositional functions are true in all cases.
We do not assert the above principle, for example, as being
true only of this or that particular p or q, but as being true of
any p or q concerning which it can be made significantly. The
condition that a function is to be significant for a given argu-
ment is the same as the condition that it shall have a value
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for that argument, either true or false. The study of the con-
ditions of significance belongs to the doctrine of types, which
we shall not pursue beyond the sketch given in the preceding
chapter.

Not only the principles of deduction, but all the primitive
propositions of logic, consist of assertions that certain propo-
sitional functions are always true. If this were not the case,
they would have to mention particular things or concepts—
Socrates, or redness, or east and west, or what not,—and
clearly it is not the province of logic to make assertions which
are true concerning one such thing or concept but not con-
cerning another. It is part of the definition of logic (but not
the whole of its definition) that all its propositions are com-
pletely general, i.e. they all consist of the assertion that some
propositional function containing no constant terms is always
true. We shall return in our final chapter to the discussion of
propositional functions containing no constant terms. For the
present we will proceed to the other thing that is to be done
with a propositional function, namely, the assertion that it is
“sometimes true,” i.e. true in at least one instance.

When we say “there are men,” that means that the propo-
sitional function “x is a man” is sometimes true. When we
say “some men are Greeks,” that means that the propositional
function “x is a man and a Greek” is sometimes true. When
we say “cannibals still exist in Africa,” that means that the
propositional function “x is a cannibal now in Africa” is some-
times true, i.e. is true for some values of x. To say “there are
at least n individuals in the world” is to say that the propo-
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sitional function “α is a class of individuals and a member of
the cardinal number n” is sometimes true, or, as we may say,
is true for certain values of α. This form of expression is more
convenient when it is necessary to indicate which is the vari-
able constituent which we are taking as the argument to our
propositional function. For example, the above propositional
function, which we may shorten to “α is a class of n individu-
als,” contains two variables, α and n. The axiom of infinity, in
the language of propositional functions, is: “The propositional
function ‘if n is an inductive number, it is true for some values
of α that α is a class of n individuals’ is true for all possible
values of n.” Here there is a subordinate function, “α is a
class of n individuals,” which is said to be, in respect of α,
sometimes true; and the assertion that this happens if n is an
inductive number is said to be, in respect of n, always true.

The statement that a function φx is always true is the
negation of the statement that not-φx is sometimes true, and
the statement that φx is sometimes true is the negation of the
statement that not-φx is always true. Thus the statement “all
men are mortals” is the negation of the statement that the
function “x is an immortal man” is sometimes true. And the
statement “there are unicorns” is the negation of the state-
ment that the function “x is not a unicorn” is always true.1

We say that φx is “never true” or “always false” if not-φx is
always true. We can, if we choose, take one of the pair “al-
ways,” “sometimes” as a primitive idea, and define the other

1The method of deduction is given in Principia Mathematica, vol. i.
* 9.
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by means of the one and negation. Thus if we choose “some-
times” as our primitive idea, we can define: “ ‘φx is always
true’ is to mean ‘it is false that not-φx is sometimes true.’ ”1

But for reasons connected with the theory of types it seems
more correct to take both “always” and “sometimes” as prim-
itive ideas, and define by their means the negation of propo-
sitions in which they occur. That is to say, assuming that we
have already defined (or adopted as a primitive idea) the nega-
tion of propositions of the type to which x belongs, we define:
“The negation of ‘φx always’ is ‘not-φx sometimes’; and the
negation of ‘φx sometimes’ is ‘not-φx always.’ ” In like manner
we can re-define disjunction and the other truth-functions, as
applied to propositions containing apparent variables, in terms
of the definitions and primitive ideas for propositions contain-
ing no apparent variables. Propositions containing no appar-
ent variables are called “elementary propositions.” From these
we can mount up step by step, using such methods as have just
been indicated, to the theory of truth-functions as applied to
propositions containing one, two, three, . . . variables, or any
number up to n, where n is any assigned finite number.

The forms which are taken as simplest in traditional formal
logic are really far from being so, and all involve the assertion
of all values or some values of a compound propositional func-
tion. Take, to begin with, “all S is P.” We will take it that S is
defined by a propositional function φx, and P by a proposi-

1For linguistic reasons, to avoid suggesting either the plural or the
singular, it is often convenient to say “φx is not always false” rather than
“φx sometimes” or “φx is sometimes true.”
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tional function ψx. E.g. if S is men, φx will be “x is human”;
if P is mortals, ψx will be “there is a time at which x dies.”
Then “all S is P” means: “ ‘φx implies ψx’ is always true.” It
is to be observed that “all S is P” does not apply only to those
terms that actually are S’s; it says something equally about
terms which are not S’s. Suppose we come across an x of which
we do not know whether it is an S or not; still, our statement
“all S is P” tells us something about x, namely, that if x is
an S, then x is a P. And this is every bit as true when x is
not an S as when x is an S. If it were not equally true in both
cases, the reductio ad absurdum would not be a valid method;
for the essence of this method consists in using implications
in cases where (as it afterwards turns out) the hypothesis is
false. We may put the matter another way. In order to under-
stand “all S is P,” it is not necessary to be able to enumerate
what terms are S’s; provided we know what is meant by being
an S and what by being a P, we can understand completely
what is actually affirmed by “all S is P,” however little we may
know of actual instances of either. This shows that it is not
merely the actual terms that are S’s that are relevant in the
statement “all S is P,” but all the terms concerning which the
supposition that they are S’s is significant, i.e. all the terms
that are S’s, together with all the terms that are not S’s—i.e.
the whole of the appropriate logical “type.” What applies to
statements about all applies also to statements about some.
“There are men,” e.g. means that “x is human” is true for
some values of x. Here all values of x (i.e. all values for which
“x is human” is significant, whether true or false) are relevant,
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and not only those that in fact are human. (This becomes
obvious if we consider how we could prove such a statement to
be false.) Every assertion about “all” or “some” thus involves
not only the arguments that make a certain function true, but
all that make it significant, i.e. all for which it has a value at
all, whether true or false.

We may now proceed with our interpretation of the tra-
ditional forms of the old-fashioned formal logic. We assume
that S is those terms x for which φx is true, and P is those
for which ψx is true. (As we shall see in a later chapter, all
classes are derived in this way from propositional functions.)
Then:

“All S is P” means “ ‘φx implies ψx’ is always true.”

“Some S is P” means “ ‘φx and ψx’ is sometimes true.”

“No S is P” means “ ‘φx implies not-ψx’ is always true.”

“Some S is not P” means “ ‘φx and not-ψx’ is sometimes
true.”

It will be observed that the propositional functions which are
here asserted for all or some values are not φx and ψx them-
selves, but truth-functions of φx and ψx for the same argu-
ment x. The easiest way to conceive of the sort of thing that
is intended is to start not from φx and ψx in general, but
from φa and ψa, where a is some constant. Suppose we are
considering “all men are mortal”: we will begin with

“If Socrates is human, Socrates is mortal,”
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and then we will regard “Socrates” as replaced by a variable x
wherever “Socrates” occurs. The object to be secured is that,
although x remains a variable, without any definite value, yet
it is to have the same value in “φx” as in “ψx” when we are
asserting that “φx implies ψx” is always true. This requires
that we shall start with a function whose values are such as
“φa implies ψa,” rather than with two separate functions φx
and ψx; for if we start with two separate functions we can
never secure that the x, while remaining undetermined, shall
have the same value in both.

For brevity we say “φx always implies ψx” when we mean
that “φx implies ψx” is always true. Propositions of the form
“φx always implies ψx” are called “formal implications”; this
name is given equally if there are several variables.

The above definitions show how far removed from the sim-
plest forms are such propositions as “all S is P,” with which
traditional logic begins. It is typical of the lack of analysis in-
volved that traditional logic treats “all S is P” as a proposition
of the same form as “x is P”—e.g. it treats “all men are mor-
tal” as of the same form as “Socrates is mortal.” As we have
just seen, the first is of the form “φx always implies ψx,” while
the second is of the form “ψx.” The emphatic separation of
these two forms, which was effected by Peano and Frege, was
a very vital advance in symbolic logic.

It will be seen that “all S is P” and “no S is P” do not re-
ally differ in form, except by the substitution of not-ψx for ψx,
and that the same applies to “some S is P” and “some S is
not P.” It should also be observed that the traditional rules of
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conversion are faulty, if we adopt the view, which is the only
technically tolerable one, that such propositions as “all S is P”
do not involve the “existence” of S’s, i.e. do not require that
there should be terms which are S’s. The above definitions
lead to the result that, if φx is always false, i.e. if there are
no S’s, then “all S is P” and “no S is P” will both be true,
whatever P may be. For, according to the definition in the
last chapter, “φx implies ψx” means “not-φx or ψx” which
is always true if not-φx is always true. At the first moment,
this result might lead the reader to desire different definitions,
but a little practical experience soon shows that any different
definitions would be inconvenient and would conceal the im-
portant ideas. The proposition “φx always implies ψx, and
φx is sometimes true” is essentially composite, and it would
be very awkward to give this as the definition of “all S is P,”
for then we should have no language left for “φx always im-
plies ψx,” which is needed a hundred times for once that the
other is needed. But, with our definitions, “all S is P” does not
imply “some S is P,” since the first allows the non-existence
of S and the second does not; thus conversion per accidens be-
comes invalid, and some moods of the syllogism are fallacious,
e.g. Darapti: “All M is S, all M is P, therefore some S is P,”
which fails if there is no M.

The notion of “existence” has several forms, one of which
will occupy us in the next chapter; but the fundamental form is
that which is derived immediately from the notion of “some-
times true.” We say that an argument a “satisfies” a func-
tion φx if φa is true; this is the same sense in which the roots
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of an equation are said to satisfy the equation. Now if φx is
sometimes true, we may say there are x’s for which it is true, or
we may say “arguments satisfying φx exist” This is the funda-
mental meaning of the word “existence.” Other meanings are
either derived from this, or embody mere confusion of thought.
We may correctly say “men exist,” meaning that “x is a man”
is sometimes true. But if we make a pseudo-syllogism: “Men
exist, Socrates is a man, therefore Socrates exists,” we are talk-
ing nonsense, since “Socrates” is not, like “men,” merely an
undetermined argument to a given propositional function. The
fallacy is closely analogous to that of the argument: “Men are
numerous, Socrates is a man, therefore Socrates is numerous.”
In this case it is obvious that the conclusion is nonsensical,
but in the case of existence it is not obvious, for reasons which
will appear more fully in the next chapter. For the present
let us merely note the fact that, though it is correct to say
“men exist,” it is incorrect, or rather meaningless, to ascribe
existence to a given particular x who happens to be a man.
Generally, “terms satisfying φx exist” means “φx is sometimes
true”; but “a exists” (where a is a term satisfying φx) is a mere
noise or shape, devoid of significance. It will be found that by
bearing in mind this simple fallacy we can solve many ancient
philosophical puzzles concerning the meaning of existence.

Another set of notions as to which philosophy has allowed
itself to fall into hopeless confusions through not sufficiently
separating propositions and propositional functions are the
notions of “modality”: necessary, possible, and impossible.
(Sometimes contingent or assertoric is used instead of possi-
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ble.) The traditional view was that, among true propositions,
some were necessary, while others were merely contingent or
assertoric; while among false propositions some were impossi-
ble, namely, those whose contradictories were necessary, while
others merely happened not to be true. In fact, however, there
was never any clear account of what was added to truth by the
conception of necessity. In the case of propositional functions,
the three-fold division is obvious. If “φx” is an undetermined
value of a certain propositional function, it will be necessary
if the function is always true, possible if it is sometimes true,
and impossible if it is never true. This sort of situation arises
in regard to probability, for example. Suppose a ball x is
drawn from a bag which contains a number of balls: if all the
balls are white, “x is white” is necessary; if some are white,
it is possible; if none, it is impossible. Here all that is known
about x is that it satisfies a certain propositional function,
namely, “x was a ball in the bag.” This is a situation which
is general in probability problems and not uncommon in prac-
tical life—e.g. when a person calls of whom we know nothing
except that he brings a letter of introduction from our friend
so-and-so. In all such cases, as in regard to modality in gen-
eral, the propositional function is relevant. For clear thinking,
in many very diverse directions, the habit of keeping proposi-
tional functions sharply separated from propositions is of the
utmost importance, and the failure to do so in the past has
been a disgrace to philosophy.



CHAPTER XVI

DESCRIPTIONS

We dealt in the preceding chapter with the words all and
some; in this chapter we shall consider the word the in the
singular, and in the next chapter we shall consider the word
the in the plural. It may be thought excessive to devote two
chapters to one word, but to the philosophical mathematician
it is a word of very great importance: like Browning’s Gram-
marian with the enclitic δε, I would give the doctrine of this
word if I were “dead from the waist down” and not merely in
a prison.

We have already had occasion to mention “descriptive func-
tions,” i.e. such expressions as “the father of x” or “the sine
of x.” These are to be defined by first defining “descriptions.”

A “description” may be of two sorts, definite and indefinite
(or ambiguous). An indefinite description is a phrase of the
form “a so-and-so,” and a definite description is a phrase of
the form “the so-and-so” (in the singular). Let us begin with
the former.

“Who did you meet?” “I met a man.” “That is a very
indefinite description.” We are therefore not departing from
usage in our terminology. Our question is: What do I really
assert when I assert “I met a man”? Let us assume, for the
moment, that my assertion is true, and that in fact I met
Jones. It is clear that what I assert is not “I met Jones.” I
may say “I met a man, but it was not Jones”; in that case,
though I lie, I do not contradict myself, as I should do if when

207
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I say I met a man I really mean that I met Jones. It is clear
also that the person to whom I am speaking can understand
what I say, even if he is a foreigner and has never heard of
Jones.

But we may go further: not only Jones, but no actual
man, enters into my statement. This becomes obvious when
the statement is false, since then there is no more reason why
Jones should be supposed to enter into the proposition than
why anyone else should. Indeed the statement would remain
significant, though it could not possibly be true, even if there
were no man at all. “I met a unicorn” or “I met a sea-serpent”
is a perfectly significant assertion, if we know what it would
be to be a unicorn or a sea-serpent, i.e. what is the definition
of these fabulous monsters. Thus it is only what we may call
the concept that enters into the proposition. In the case of
“unicorn,” for example, there is only the concept: there is not
also, somewhere among the shades, something unreal which
may be called “a unicorn.” Therefore, since it is significant
(though false) to say “I met a unicorn,” it is clear that this
proposition, rightly analysed, does not contain a constituent
“a unicorn,” though it does contain the concept “unicorn.”

The question of “unreality,” which confronts us at this
point, is a very important one. Misled by grammar, the great
majority of those logicians who have dealt with this question
have dealt with it on mistaken lines. They have regarded gram-
matical form as a surer guide in analysis than, in fact, it is.
And they have not known what differences in grammatical
form are important. “I met Jones” and “I met a man” would



Introduction to Mathematical Philosophy 209

count traditionally as propositions of the same form, but in ac-
tual fact they are of quite different forms: the first names an
actual person, Jones; while the second involves a propositional
function, and becomes, when made explicit: “The function ‘I
met x and x is human’ is sometimes true.” (It will be remem-
bered that we adopted the convention of using “sometimes” as
not implying more than once.) This proposition is obviously
not of the form “I met x,” which accounts for the existence
of the proposition “I met a unicorn” in spite of the fact that
there is no such thing as “a unicorn.”

For want of the apparatus of propositional functions, many
logicians have been driven to the conclusion that there are un-
real objects. It is argued, e.g. by Meinong,1 that we can speak
about “the golden mountain,” “the round square,” and so on;
we can make true propositions of which these are the sub-
jects; hence they must have some kind of logical being, since
otherwise the propositions in which they occur would be mean-
ingless. In such theories, it seems to me, there is a failure of
that feeling for reality which ought to be preserved even in the
most abstract studies. Logic, I should maintain, must no more
admit a unicorn than zoology can; for logic is concerned with
the real world just as truly as zoology, though with its more
abstract and general features. To say that unicorns have an
existence in heraldry, or in literature, or in imagination, is a
most pitiful and paltry evasion. What exists in heraldry is not
an animal, made of flesh and blood, moving and breathing of

1Untersuchungen zur Gegenstandstheorie und Psychologie, 1904.
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its own initiative. What exists is a picture, or a description in
words. Similarly, to maintain that Hamlet, for example, exists
in his own world, namely, in the world of Shakespeare’s imagi-
nation, just as truly as (say) Napoleon existed in the ordinary
world, is to say something deliberately confusing, or else con-
fused to a degree which is scarcely credible. There is only one
world, the “real” world: Shakespeare’s imagination is part of
it, and the thoughts that he had in writing Hamlet are real.
So are the thoughts that we have in reading the play. But it is
of the very essence of fiction that only the thoughts, feelings,
etc., in Shakespeare and his readers are real, and that there
is not, in addition to them, an objective Hamlet. When you
have taken account of all the feelings roused by Napoleon in
writers and readers of history, you have not touched the actual
man; but in the case of Hamlet you have come to the end of
him. If no one thought about Hamlet, there would be nothing
left of him; if no one had thought about Napoleon, he would
have soon seen to it that some one did. The sense of reality
is vital in logic, and whoever juggles with it by pretending
that Hamlet has another kind of reality is doing a disservice
to thought. A robust sense of reality is very necessary in fram-
ing a correct analysis of propositions about unicorns, golden
mountains, round squares, and other such pseudo-objects.

In obedience to the feeling of reality, we shall insist that, in
the analysis of propositions, nothing “unreal” is to be admit-
ted. But, after all, if there is nothing unreal, how, it may be
asked, could we admit anything unreal? The reply is that, in
dealing with propositions, we are dealing in the first instance



Introduction to Mathematical Philosophy 211

with symbols, and if we attribute significance to groups of
symbols which have no significance, we shall fall into the error
of admitting unrealities, in the only sense in which this is pos-
sible, namely, as objects described. In the proposition “I met
a unicorn,” the whole four words together make a significant
proposition, and the word “unicorn” by itself is significant, in
just the same sense as the word “man.” But the two words “a
unicorn” do not form a subordinate group having a meaning
of its own. Thus if we falsely attribute meaning to these two
words, we find ourselves saddled with “a unicorn,” and with
the problem how there can be such a thing in a world where
there are no unicorns. “A unicorn” is an indefinite description
which describes nothing. It is not an indefinite description
which describes something unreal. Such a proposition as “x is
unreal” only has meaning when “x” is a description, definite or
indefinite; in that case the proposition will be true if “x” is a
description which describes nothing. But whether the descrip-
tion “x” describes something or describes nothing, it is in any
case not a constituent of the proposition in which it occurs;
like “a unicorn” just now, it is not a subordinate group having
a meaning of its own. All this results from the fact that, when
“x” is a description, “x is unreal” or “x does not exist” is not
nonsense, but is always significant and sometimes true.

We may now proceed to define generally the meaning of
propositions which contain ambiguous descriptions. Suppose
we wish to make some statement about “a so-and-so,” where
“so-and-so’s” are those objects that have a certain property φ,
i.e. those objects x for which the propositional function φx is
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true. (E.g. if we take “a man” as our instance of “a so-and-
so,” φx will be “x is human.”) Let us now wish to assert the
property ψ of “a so-and-so,” i.e. we wish to assert that “a so-
and-so” has that property which x has when ψx is true. (E.g.
in the case of “I met a man,” ψx will be “I met x.”) Now
the proposition that “a so-and-so” has the property ψ is not a
proposition of the form “ψx.” If it were, “a so-and-so” would
have to be identical with x for a suitable x; and although (in a
sense) this may be true in some cases, it is certainly not true
in such a case as “a unicorn.” It is just this fact, that the
statement that a so-and-so has the property ψ is not of the
form ψx, which makes it possible for “a so-and-so” to be, in a
certain clearly definable sense, “unreal.” The definition is as
follows:—

The statement that “an object having the property φ has
the property ψ”
means:

“The joint assertion of φx and ψx is not always false.”
So far as logic goes, this is the same proposition as might

be expressed by “some φ’s are ψ’s”; but rhetorically there is
a difference, because in the one case there is a suggestion of
singularity, and in the other case of plurality. This, however,
is not the important point. The important point is that, when
rightly analysed, propositions verbally about “a so-and-so” are
found to contain no constituent represented by this phrase.
And that is why such propositions can be significant even when
there is no such thing as a so-and-so.

The definition of existence, as applied to ambiguous de-
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scriptions, results from what was said at the end of the pre-
ceding chapter. We say that “men exist” or “a man exists”
if the propositional function “x is human” is sometimes true;
and generally “a so-and-so” exists if “x is so-and-so” is some-
times true. We may put this in other language. The proposi-
tion “Socrates is a man” is no doubt equivalent to “Socrates
is human,” but it is not the very same proposition. The is
of “Socrates is human” expresses the relation of subject and
predicate; the is of “Socrates is a man” expresses identity. It
is a disgrace to the human race that it has chosen to employ
the same word “is” for these two entirely different ideas—a
disgrace which a symbolic logical language of course reme-
dies. The identity in “Socrates is a man” is identity between
an object named (accepting “Socrates” as a name, subject to
qualifications explained later) and an object ambiguously de-
scribed. An object ambiguously described will “exist” when
at least one such proposition is true, i.e. when there is at least
one true proposition of the form “x is a so-and-so,” where
“x” is a name. It is characteristic of ambiguous (as opposed
to definite) descriptions that there may be any number of true
propositions of the above form—Socrates is a man, Plato is
a man, etc. Thus “a man exists” follows from Socrates, or
Plato, or anyone else. With definite descriptions, on the other
hand, the corresponding form of proposition, namely, “x is
the so-and-so” (where “x” is a name), can only be true for
one value of x at most. This brings us to the subject of defi-
nite descriptions, which are to be defined in a way analogous
to that employed for ambiguous descriptions, but rather more
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complicated.
We come now to the main subject of the present chapter,

namely, the definition of the word the (in the singular). One
very important point about the definition of “a so-and-so”
applies equally to “the so-and-so”; the definition to be sought
is a definition of propositions in which this phrase occurs, not
a definition of the phrase itself in isolation. In the case of “a
so-and-so,” this is fairly obvious: no one could suppose that “a
man” was a definite object, which could be defined by itself.
Socrates is a man, Plato is a man, Aristotle is a man, but
we cannot infer that “a man” means the same as “Socrates”
means and also the same as “Plato” means and also the same
as “Aristotle” means, since these three names have different
meanings. Nevertheless, when we have enumerated all the men
in the world, there is nothing left of which we can say, “This is
a man, and not only so, but it is the ‘a man,’ the quintessential
entity that is just an indefinite man without being anybody
in particular.” It is of course quite clear that whatever there
is in the world is definite: if it is a man it is one definite man
and not any other. Thus there cannot be such an entity as “a
man” to be found in the world, as opposed to specific man.
And accordingly it is natural that we do not define “a man”
itself, but only the propositions in which it occurs.

In the case of “the so-and-so” this is equally true, though at
first sight less obvious. We may demonstrate that this must be
the case, by a consideration of the difference between a name
and a definite description. Take the proposition, “Scott is the
author of Waverley.” We have here a name, “Scott,” and a
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description, “the author of Waverley,” which are asserted to
apply to the same person. The distinction between a name
and all other symbols may be explained as follows:—

A name is a simple symbol whose meaning is something
that can only occur as subject, i.e. something of the kind that,
in Chapter XIII., we defined as an “individual” or a “particu-
lar.” And a “simple” symbol is one which has no parts that are
symbols. Thus “Scott” is a simple symbol, because, though it
has parts (namely, separate letters), these parts are not sym-
bols. On the other hand, “the author of Waverley” is not a
simple symbol, because the separate words that compose the
phrase are parts which are symbols. If, as may be the case,
whatever seems to be an “individual” is really capable of fur-
ther analysis, we shall have to content ourselves with what
may be called “relative individuals,” which will be terms that,
throughout the context in question, are never analysed and
never occur otherwise than as subjects. And in that case we
shall have correspondingly to content ourselves with “relative
names.” From the standpoint of our present problem, namely,
the definition of descriptions, this problem, whether these are
absolute names or only relative names, may be ignored, since
it concerns different stages in the hierarchy of “types,” whereas
we have to compare such couples as “Scott” and “the author
of Waverley,” which both apply to the same object, and do
not raise the problem of types. We may, therefore, for the mo-
ment, treat names as capable of being absolute; nothing that
we shall have to say will depend upon this assumption, but
the wording may be a little shortened by it.
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We have, then, two things to compare: (1) a name, which
is a simple symbol, directly designating an individual which is
its meaning, and having this meaning in its own right, inde-
pendently of the meanings of all other words; (2) a description,
which consists of several words, whose meanings are already
fixed, and from which results whatever is to be taken as the
“meaning” of the description.

A proposition containing a description is not identical with
what that proposition becomes when a name is substituted,
even if the name names the same object as the description
describes. “Scott is the author of Waverley” is obviously a
different proposition from “Scott is Scott”: the first is a fact
in literary history, the second a trivial truism. And if we put
anyone other than Scott in place of “the author of Waverley,”
our proposition would become false, and would therefore cer-
tainly no longer be the same proposition. But, it may be said,
our proposition is essentially of the same form as (say) “Scott
is Sir Walter,” in which two names are said to apply to the
same person. The reply is that, if “Scott is Sir Walter” really
means “the person named ‘Scott’ is the person named ‘Sir Wal-
ter,’ ” then the names are being used as descriptions: i.e. the
individual, instead of being named, is being described as the
person having that name. This is a way in which names are
frequently used in practice, and there will, as a rule, be noth-
ing in the phraseology to show whether they are being used in
this way or as names. When a name is used directly, merely
to indicate what we are speaking about, it is no part of the
fact asserted, or of the falsehood if our assertion happens to be
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false: it is merely part of the symbolism by which we express
our thought. What we want to express is something which
might (for example) be translated into a foreign language; it
is something for which the actual words are a vehicle, but of
which they are no part. On the other hand, when we make a
proposition about “the person called ‘Scott,’ ” the actual name
“Scott” enters into what we are asserting, and not merely into
the language used in making the assertion. Our proposition
will now be a different one if we substitute “the person called
‘Sir Walter.’ ” But so long as we are using names as names,
whether we say “Scott” or whether we say “Sir Walter” is as
irrelevant to what we are asserting as whether we speak En-
glish or French. Thus so long as names are used as names,
“Scott is Sir Walter” is the same trivial proposition as “Scott
is Scott.” This completes the proof that “Scott is the author
of Waverley” is not the same proposition as results from sub-
stituting a name for “the author of Waverley,” no matter what
name may be substituted.

When we use a variable, and speak of a propositional
function, φx say, the process of applying general statements
about x to particular cases will consist in substituting a name
for the letter “x,” assuming that φ is a function which has
individuals for its arguments. Suppose, for example, that
φx is “always true”; let it be, say, the “law of identity,” x = x.
Then we may substitute for “x” any name we choose, and
we shall obtain a true proposition. Assuming for the moment
that “Socrates,” “Plato,” and “Aristotle” are names (a very
rash assumption), we can infer from the law of identity that
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Socrates is Socrates, Plato is Plato, and Aristotle is Aristotle.
But we shall commit a fallacy if we attempt to infer, without
further premisses, that the author of Waverley is the author of
Waverley. This results from what we have just proved, that,
if we substitute a name for “the author of Waverley” in a
proposition, the proposition we obtain is a different one. That
is to say, applying the result to our present case: If “x” is a
name, “x = x” is not the same proposition as “the author of
Waverley is the author of Waverley,” no matter what name
“x” may be. Thus from the fact that all propositions of the
form “x = x” are true we cannot infer, without more ado,
that the author of Waverley is the author of Waverley. In
fact, propositions of the form “the so-and-so is the so-and-
so” are not always true: it is necessary that the so-and-so
should exist (a term which will be explained shortly). It is
false that the present King of France is the present King of
France, or that the round square is the round square. When
we substitute a description for a name, propositional functions
which are “always true” may become false, if the description
describes nothing. There is no mystery in this as soon as we
realise (what was proved in the preceding paragraph) that
when we substitute a description the result is not a value of
the propositional function in question.

We are now in a position to define propositions in which
a definite description occurs. The only thing that distin-
guishes “the so-and-so” from “a so-and-so” is the implication
of uniqueness. We cannot speak of “the inhabitant of Lon-
don,” because inhabiting London is an attribute which is not
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unique. We cannot speak about “the present King of France,”
because there is none; but we can speak about “the present
King of England.” Thus propositions about “the so-and-so”
always imply the corresponding propositions about “a so-
and-so,” with the addendum that there is not more than one
so-and-so. Such a proposition as “Scott is the author of Wa-
verly” could not be true if Waverly had never been written, or
if several people had written it; and no more could any other
proposition resulting from a propositional function x by the
substitution of “the author of Waverly” for “x.” We may say
that “the author of Waverly” means “the value of x for which
‘x wrote Waverly ’ is true.” Thus the proposition “the author
of Waverly was Scotch,” for example, involves:

(1) “x wrote Waverly” is not always false;

(2) “if x and y wrote Waverly, x and y are identical” is
always true;

(3) “if x wrote Waverly, x was Scotch” is always true.

These three propositions, translated into ordinary language,
state:

(1) at least one person wrote Waverly ;

(2) at most one person wrote Waverly ;

(3) whoever wrote Waverly was Scotch.

All these three are implied by “the author of Waverly was
Scotch.” Conversely, the three together (but no two of them)
imply that the author of Waverly was Scotch. Hence the three
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together may be taken as defining what is meant by the propo-
sition “the author of Waverly was Scotch.”

We may somewhat simplify these three propositions. The
first and second together are equivalent to: “There is a term c
such that ‘x wrote Waverly ’ is true when x is c and is false
when x is not c.” In other words, “There is a term c such
that ‘x wrote Waverly ’ is always equivalent to ‘x is c.’ ” (Two
propositions are “equivalent” when both are true or both
are false.) We have here, to begin with, two functions of x,
“x wrote Waverly” and “x is c,” and we form a function of c
by considering the equivalence of these two functions of x for
all values of x; we then proceed to assert that the resulting
function of c is “sometimes true,” i.e. that it is true for at least
one value of c. (It obviously cannot be true for more than
one value of c.) These two conditions together are defined as
giving the meaning of “the author of Waverly exists.”

We may now define “the term satisfying the function φx
exists.” This is the general form of which the above is a partic-
ular case. “The author of Waverly” is “the term satisfying the
function ‘x wrote Waverly.’ ” And “the so-and-so” will always
involve reference to some propositional function, namely, that
which defines the property that makes a thing a so-and-so.
Our definition is as follows:—

“The term satisfying the function φx exists” means:
“There is a term c such that φx is always equivalent to

‘x is c.’ ”
In order to define “the author of Waverly was Scotch,” we

have still to take account of the third of our three proposi-
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tions, namely, “Whoever wrote Waverly was Scotch.” This
will be satisfied by merely adding that the c in question is to
be Scotch. Thus “the author of Waverly was Scotch” is:

“There is a term c such that (1) ‘x wrote Waverly ’ is
always equivalent to ‘x is c,’ (2) c is Scotch.”

And generally: “the term satisfying φx satisfies ψx” is defined
as meaning:

“There is a term c such that (1) φx is always equivalent
to ‘x is c,’ (2) ψc is true.”

This is the definition of propositions in which descriptions oc-
cur.

It is possible to have much knowledge concerning a term
described, i.e. to know many propositions concerning “the so-
and-so,” without actually knowing what the so-and-so is, i.e.
without knowing any proposition of the form “x is the so-and-
so,” where “x” is a name. In a detective story propositions
about “the man who did the deed” are accumulated, in the
hope that ultimately they will suffice to demonstrate that it
was A who did the deed. We may even go so far as to say
that, in all such knowledge as can be expressed in words—
with the exception of “this” and “that” and a few other words
of which the meaning varies on different occasions—no names,
in the strict sense, occur, but what seem like names are really
descriptions. We may inquire significantly whether Homer ex-
isted, which we could not do if “Homer” were a name. The
proposition “the so-and-so exists” is significant, whether true
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or false; but if a is the so-and-so (where “a” is a name), the
words “a exists” are meaningless. It is only of descriptions—
definite or indefinite—that existence can be significantly as-
serted; for, if “a” is a name, it must name something: what
does not name anything is not a name, and therefore, if in-
tended to be a name, is a symbol devoid of meaning, whereas
a description, like “the present King of France,” does not be-
come incapable of occurring significantly merely on the ground
that it describes nothing, the reason being that it is a com-
plex symbol, of which the meaning is derived from that of its
constituent symbols. And so, when we ask whether Homer
existed, we are using the word “Homer” as an abbreviated de-
scription: we may replace it by (say) “the author of the Iliad
and the Odyssey.” The same considerations apply to almost
all uses of what look like proper names.

When descriptions occur in propositions, it is necessary to
distinguish what may be called “primary” and “secondary” oc-
currences. The abstract distinction is as follows. A description
has a “primary” occurrence when the proposition in which it
occurs results from substituting the description for “x” in some
propositional function φx; a description has a “secondary” oc-
currence when the result of substituting the description for x
in φx gives only part of the proposition concerned. An instance
will make this clearer. Consider “the present King of France
is bald.” Here “the present King of France” has a primary
occurrence, and the proposition is false. Every proposition in
which a description which describes nothing has a primary oc-
currence is false. But now consider “the present King of France



Introduction to Mathematical Philosophy 223

is not bald.” This is ambiguous. If we are first to take “x is
bald,” then substitute “the present King of France” for “x”
and then deny the result, the occurrence of “the present King
of France” is secondary and our proposition is true; but if we
are to take “x is not bald” and substitute “the present King
of France” for “x” then “the present King of France” has a
primary occurrence and the proposition is false. Confusion of
primary and secondary occurrences is a ready source of falla-
cies where descriptions are concerned.

Descriptions occur in mathematics chiefly in the form of de-
scriptive functions, i.e. “the term having the relation R to y,”
or “the R of y” as we may say, on the analogy of “the father
of y” and similar phrases. To say “the father of y is rich,”
for example, is to say that the following propositional func-
tion of c: “c is rich, and ‘x begat y’ is always equivalent to
‘x is c,’ ” is “sometimes true,” i.e. is true for at least one value
of c. It obviously cannot be true for more than one value.

The theory of descriptions, briefly outlined in the present
chapter, is of the utmost importance both in logic and in the-
ory of knowledge. But for purposes of mathematics, the more
philosophical parts of the theory are not essential, and have
therefore been omitted in the above account, which has con-
fined itself to the barest mathematical requisites.



CHAPTER XVII

CLASSES

In the present chapter we shall be concerned with the in the
plural: the inhabitants of London, the sons of rich men, and
so on. In other words, we shall be concerned with classes. We
saw in Chapter II. that a cardinal number is to be defined as
a class of classes, and in Chapter III. that the number 1 is to
be defined as the class of all unit classes, i.e. of all that have
just one member, as we should say but for the vicious circle.
Of course, when the number 1 is defined as the class of all unit
classes, “unit classes” must be defined so as not to assume
that we know what is meant by “one”; in fact, they are de-
fined in a way closely analogous to that used for descriptions,
namely: A class α is said to be a “unit” class if the proposi-
tional function “ ‘x is an α’ is always equivalent to ‘x is c’ ”
(regarded as a function of c) is not always false, i.e. in more
ordinary language, if there is a term c such that x will be a
member of α when x is c but not otherwise. This gives us a
definition of a unit class if we already know what a class is in
general. Hitherto we have, in dealing with arithmetic, treated
“class” as a primitive idea. But, for the reasons set forth in
Chapter XIII., if for no others, we cannot accept “class” as a
primitive idea. We must seek a definition on the same lines as
the definition of descriptions, i.e. a definition which will assign
a meaning to propositions in whose verbal or symbolic expres-
sion words or symbols apparently representing classes occur,
but which will assign a meaning that altogether eliminates all

224



Introduction to Mathematical Philosophy 225

mention of classes from a right analysis of such propositions.
We shall then be able to say that the symbols for classes are
mere conveniences, not representing objects called “classes,”
and that classes are in fact, like descriptions, logical fictions,
or (as we say) “incomplete symbols.”

The theory of classes is less complete than the theory of
descriptions, and there are reasons (which we shall give in
outline) for regarding the definition of classes that will be
suggested as not finally satisfactory. Some further subtlety
appears to be required; but the reasons for regarding the def-
inition which will be offered as being approximately correct
and on the right lines are overwhelming.

The first thing is to realise why classes cannot be regarded
as part of the ultimate furniture of the world. It is difficult
to explain precisely what one means by this statement, but
one consequence which it implies may be used to elucidate
its meaning. If we had a complete symbolic language, with
a definition for everything definable, and an undefined sym-
bol for everything indefinable, the undefined symbols in this
language would represent symbolically what I mean by “the
ultimate furniture of the world.” I am maintaining that no
symbols either for “class” in general or for particular classes
would be included in this apparatus of undefined symbols. On
the other hand, all the particular things there are in the world
would have to have names which would be included among
undefined symbols. We might try to avoid this conclusion by
the use of descriptions. Take (say) “the last thing Cæsar saw
before he died.” This is a description of some particular; we



Classes 226

might use it as (in one perfectly legitimate sense) a definition
of that particular. But if “a” is a name for the same particular,
a proposition in which “a” occurs is not (as we saw in the pre-
ceding chapter) identical with what this proposition becomes
when for “a” we substitute “the last thing Cæsar saw before he
died.” If our language does not contain the name “a” or some
other name for the same particular, we shall have no means
of expressing the proposition which we expressed by means
of “a” as opposed to the one that we expressed by means of
the description. Thus descriptions would not enable a per-
fect language to dispense with names for all particulars. In
this respect, we are maintaining, classes differ from particu-
lars, and need not be represented by undefined symbols. Our
first business is to give the reasons for this opinion.

We have already seen that classes cannot be regarded as a
species of individuals, on account of the contradiction about
classes which are not members of themselves (explained in
Chapter XIII.), and because we can prove that the number
of classes is greater than the number of individuals.

We cannot take classes in the pure extensional way as sim-
ply heaps or conglomerations. If we were to attempt to do
that, we should find it impossible to understand how there
can be such a class as the null-class, which has no members at
all and cannot be regarded as a “heap”; we should also find it
very hard to understand how it comes about that a class which
has only one member is not identical with that one member. I
do not mean to assert, or to deny, that there are such entities
as “heaps.” As a mathematical logician, I am not called upon
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to have an opinion on this point. All that I am maintaining
is that, if there are such things as heaps, we cannot identify
them with the classes composed of their constituents.

We shall come much nearer to a satisfactory theory if we try
to identify classes with propositional functions. Every class, as
we explained in Chapter II., is defined by some propositional
function which is true of the members of the class and false of
other things. But if a class can be defined by one propositional
function, it can equally well be defined by any other which is
true whenever the first is true and false whenever the first is
false. For this reason the class cannot be identified with any
one such propositional function rather than with any other—
and given a propositional function, there are always many oth-
ers which are true when it is true and false when it is false. We
say that two propositional functions are “formally equivalent”
when this happens. Two propositions are “equivalent” when
both are true or both false; two propositional functions φx, ψx
are “formally equivalent” when φx is always equivalent to ψx.
It is the fact that there are other functions formally equivalent
to a given function that makes it impossible to identify a class
with a function; for we wish classes to be such that no two
distinct classes have exactly the same members, and therefore
two formally equivalent functions will have to determine the
same class.

When we have decided that classes cannot be things of the
same sort as their members, that they cannot be just heaps
or aggregates, and also that they cannot be identified with
propositional functions, it becomes very difficult to see what
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they can be, if they are to be more than symbolic fictions.
And if we can find any way of dealing with them as symbolic
fictions, we increase the logical security of our position, since
we avoid the need of assuming that there are classes without
being compelled to make the opposite assumption that there
are no classes. We merely abstain from both assumptions.
This is an example of Occam’s razor, namely, “entities are not
to be multiplied without necessity.” But when we refuse to
assert that there are classes, we must not be supposed to be
asserting dogmatically that there are none. We are merely
agnostic as regards them: like Laplace, we can say, “je n’ai
pas besoin de cette hypothèse.”

Let us set forth the conditions that a symbol must fulfil if
it is to serve as a class. I think the following conditions will
be found necessary and sufficient:—

(1) Every propositional function must determine a class,
consisting of those arguments for which the function is true.
Given any proposition (true or false), say about Socrates, we
can imagine Socrates replaced by Plato or Aristotle or a gorilla
or the man in the moon or any other individual in the world.
In general, some of these substitutions will give a true propo-
sition and some a false one. The class determined will consist
of all those substitutions that give a true one. Of course, we
have still to decide what we mean by “all those which, etc.”
All that we are observing at present is that a class is ren-
dered determinate by a propositional function, and that every
propositional function determines an appropriate class.

(2) Two formally equivalent propositional functions must
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determine the same class, and two which are not formally
equivalent must determine different classes. That is, a class
is determined by its membership, and no two different classes
can have the same membership. (If a class is determined by a
function φx, we say that a is a “member” of the class if φa is
true.)

(3) We must find some way of defining not only classes, but
classes of classes. We saw in Chapter II. that cardinal numbers
are to be defined as classes of classes. The ordinary phrase of
elementary mathematics, “The combinations of n things m at
a time” represents a class of classes, namely, the class of all
classes of m terms that can be selected out of a given class
of n terms. Without some symbolic method of dealing with
classes of classes, mathematical logic would break down.

(4) It must under all circumstances be meaningless (not
false) to suppose a class a member of itself or not a member of
itself. This results from the contradiction which we discussed
in Chapter XIII.

(5) Lastly—and this is the condition which is most difficult
of fulfilment,—it must be possible to make propositions about
all the classes that are composed of individuals, or about all
the classes that are composed of objects of any one logical
“type.” If this were not the case, many uses of classes would
go astray—for example, mathematical induction. In defining
the posterity of a given term, we need to be able to say that
a member of the posterity belongs to all hereditary classes to
which the given term belongs, and this requires the sort of
totality that is in question. The reason there is a difficulty
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about this condition is that it can be proved to be impossi-
ble to speak of all the propositional functions that can have
arguments of a given type.

We will, to begin with, ignore this last condition and the
problems which it raises. The first two conditions may be
taken together. They state that there is to be one class, no
more and no less, for each group of formally equivalent propo-
sitional functions; e.g. the class of men is to be the same as
that of featherless bipeds or rational animals or Yahoos or
whatever other characteristic may be preferred for defining a
human being. Now, when we say that two formally equivalent
propositional functions may be not identical, although they
define the same class, we may prove the truth of the asser-
tion by pointing out that a statement may be true of the one
function and false of the other; e.g. “I believe that all men are
mortal” may be true, while “I believe that all rational animals
are mortal” may be false, since I may believe falsely that the
Phoenix is an immortal rational animal. Thus we are led to
consider statements about functions, or (more correctly) func-
tions of functions.

Some of the things that may be said about a function may
be regarded as said about the class defined by the function,
whereas others cannot. The statement “all men are mortal”
involves the functions “x is human” and “x is mortal”; or, if we
choose, we can say that it involves the classes men and mortals.
We can interpret the statement in either way, because its truth-
value is unchanged if we substitute for “x is human” or for “x is
mortal” any formally equivalent function. But, as we have
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just seen, the statement “I believe that all men are mortal”
cannot be regarded as being about the class determined by
either function, because its truth-value may be changed by the
substitution of a formally equivalent function (which leaves
the class unchanged). We will call a statement involving a
function φx an “extensional” function of the function φx, if it
is like “all men are mortal,” i.e. if its truth-value is unchanged
by the substitution of any formally equivalent function; and
when a function of a function is not extensional, we will call
it “intensional,” so that “I believe that all men are mortal”
is an intensional function of “x is human” or “x is mortal.”
Thus extensional functions of a function x may, for practical
purposes, be regarded as functions of the class determined
by x, while intensional functions cannot be so regarded.

It is to be observed that all the specific functions of func-
tions that we have occasion to introduce in mathematical logic
are extensional. Thus, for example, the two fundamental func-
tions of functions are: “φx is always true” and “φx is some-
times true.” Each of these has its truth-value unchanged if
any formally equivalent function is substituted for φx. In the
language of classes, if α is the class determined by φx, “φx is
always true” is equivalent to “everything is a member of α,”
and “φx is sometimes true” is equivalent to “α has members”
or (better) “α has at least one member.” Take, again, the con-
dition, dealt with in the preceding chapter, for the existence
of “the term satisfying φx.” The condition is that there is a
term c such that φx is always equivalent to “x is c.” This is
obviously extensional. It is equivalent to the assertion that
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the class defined by the function φx is a unit class, i.e. a class
having one member; in other words, a class which is a member
of 1.

Given a function of a function which may or may not be
extensional, we can always derive from it a connected and cer-
tainly extensional function of the same function, by the follow-
ing plan: Let our original function of a function be one which
attributes to φx the property f ; then consider the assertion
“there is a function having the property f and formally equiv-
alent to φx.” This is an extensional function of φx; it is true
when our original statement is true, and it is formally equiv-
alent to the original function of φx if this original function is
extensional; but when the original function is intensional, the
new one is more often true than the old one. For example,
consider again “I believe that all men are mortal,” regarded as
a function of “x is human.” The derived extensional function
is: “There is a function formally equivalent to ‘x is human’
and such that I believe that whatever satisfies it is mortal.”
This remains true when we substitute “x is a rational animal”
for “x is human,” even if I believe falsely that the Phoenix is
rational and immortal.

We give the name of “derived extensional function” to the
function constructed as above, namely, to the function: “There
is a function having the property f and formally equivalent
to φx,” where the original function was “the function φx has
the property f .”

We may regard the derived extensional function as having
for its argument the class determined by the function φx, and
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as asserting f of this class. This may be taken as the definition
of a proposition about a class. I.e. we may define:

To assert that “the class determined by the function φx has
the property f” is to assert that φx satisfies the extensional
function derived from f .

This gives a meaning to any statement about a class which
can be made significantly about a function; and it will be found
that technically it yields the results which are required in order
to make a theory symbolically satisfactory.1

What we have said just now as regards the definition of
classes is sufficient to satisfy our first four conditions. The way
in which it secures the third and fourth, namely, the possibility
of classes of classes, and the impossibility of a class being or not
being a member of itself, is somewhat technical; it is explained
in Principia Mathematica, but may be taken for granted here.
It results that, but for our fifth condition, we might regard
our task as completed. But this condition—at once the most
important and the most difficult—is not fulfilled in virtue of
anything we have said as yet. The difficulty is connected with
the theory of types, and must be briefly discussed.2

We saw in Chapter XIII. that there is a hierarchy of logical
types, and that it is a fallacy to allow an object belonging to
one of these to be substituted for an object belonging to an-
other. Now it is not difficult to show that the various functions
which can take a given object a as argument are not all of one

1See Principia Mathematica, vol. i. pp. 75–84 and * 20.
2The reader who desires a fuller discussion should consult Principia

Mathematica, Introduction, chap. ii.; also * 12.
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type. Let us call them all a-functions. We may take first those
among them which do not involve reference to any collection
of functions; these we will call “predicative a-functions.” If we
now proceed to functions involving reference to the totality of
predicative a-functions, we shall incur a fallacy if we regard
these as of the same type as the predicative a-functions. Take
such an everyday statement as “a is a typical Frenchman.”
How shall we define a “typical” Frenchman? We may define
him as one “possessing all qualities that are possessed by most
French men.” But unless we confine “all qualities” to such as
do not involve a reference to any totality of qualities, we shall
have to observe that most Frenchmen are not typical in the
above sense, and therefore the definition shows that to be not
typical is essential to a typical Frenchman. This is not a logi-
cal contradiction, since there is no reason why there should be
any typical Frenchmen; but it illustrates the need for separat-
ing off qualities that involve reference to a totality of qualities
from those that do not.

Whenever, by statements about “all” or “some” of the val-
ues that a variable can significantly take, we generate a new
object, this new object must not be among the values which
our previous variable could take, since, if it were, the total-
ity of values over which the variable could range would only
be definable in terms of itself, and we should be involved in
a vicious circle. For example, if I say “Napoleon had all the
qualities that make a great general,” I must define “qualities”
in such a way that it will not include what I am now say-
ing, i.e. “having all the qualities that make a great general”
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must not be itself a quality in the sense supposed. This is
fairly obvious, and is the principle which leads to the theory
of types by which vicious-circle paradoxes are avoided. As
applied to a-functions, we may suppose that “qualities” is to
mean “predicative functions.” Then when I say “Napoleon had
all the qualities, etc.,” I mean “Napoleon satisfied all the pred-
icative functions, etc.” This statement attributes a property
to Napoleon, but not a predicative property; thus we escape
the vicious circle. But wherever “all functions which” occurs,
the functions in question must be limited to one type if a vi-
cious circle is to be avoided; and, as Napoleon and the typical
Frenchman have shown, the type is not rendered determinate
by that of the argument. It would require a much fuller dis-
cussion to set forth this point fully, but what has been said
may suffice to make it clear that the functions which can take
a given argument are of an infinite series of types. We could,
by various technical devices, construct a variable which would
run through the first n of these types, where n is finite, but
we cannot construct a variable which will run through them
all, and, if we could, that mere fact would at once generate a
new type of function with the same arguments, and would set
the whole process going again.

We call predicative a-functions the first type of a-functions;
a-functions involving reference to the totality of the first type
we call the second type; and so on. No variable a-function
can run through all these different types: it must stop short
at some definite one.

These considerations are relevant to our definition of the
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derived extensional function. We there spoke of “a function
formally equivalent to φx.” It is necessary to decide upon the
type of our function. Any decision will do, but some decision
is unavoidable. Let us call the supposed formally equivalent
function ψ. Then ψ appears as a variable, and must be of
some determinate type. All that we know necessarily about
the type of φ is that it takes arguments of a given type—that
it is (say) an a-function. But this, as we have just seen, does
not determine its type. If we are to be able (as our fifth req-
uisite demands) to deal with all classes whose members are
of the same type as a, we must be able to define all such
classes by means of functions of some one type; that is to say,
there must be some type of a-function, say the nth , such that
any a-function is formally equivalent to some a-function of the
nth type. If this is the case, then any extensional function
which holds of all a-functions of the nth type will hold of any
a-function whatever. It is chiefly as a technical means of em-
bodying an assumption leading to this result that classes are
useful. The assumption is called the “axiom of reducibility,”
and may be stated as follows:—

“There is a type (τ say) of a-functions such that, given
any a-function, it is formally equivalent to some function of
the type in question.”

If this axiom is assumed, we use functions of this type
in defining our associated extensional function. Statements
about all a-classes (i.e. all classes defined by a-functions) can
be reduced to statements about all a-functions of the type τ .
So long as only extensional functions of functions are involved,
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this gives us in practice results which would otherwise have
required the impossible notion of “all a-functions.” One par-
ticular region where this is vital is mathematical induction.

The axiom of reducibility involves all that is really essential
in the theory of classes. It is therefore worth while to ask
whether there is any reason to suppose it true.

This axiom, like the multiplicative axiom and the axiom of
infinity, is necessary for certain results, but not for the bare
existence of deductive reasoning. The theory of deduction,
as explained in Chapter XIV., and the laws for propositions
involving “all” and “some,” are of the very texture of mathe-
matical reasoning: without them, or something like them, we
should not merely not obtain the same results, but we should
not obtain any results at all. We cannot use them as hypothe-
ses, and deduce hypothetical consequences, for they are rules
of deduction as well as premisses. They must be absolutely
true, or else what we deduce according to them does not even
follow from the premisses. On the other hand, the axiom of
reducibility, like our two previous mathematical axioms, could
perfectly well be stated as an hypothesis whenever it is used,
instead of being assumed to be actually true. We can deduce
its consequences hypothetically; we can also deduce the conse-
quences of supposing it false. It is therefore only convenient,
not necessary. And in view of the complication of the theory
of types, and of the uncertainty of all except its most general
principles, it is impossible as yet to say whether there may
not be some way of dispensing with the axiom of reducibility
altogether. However, assuming the correctness of the theory
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outlined above, what can we say as to the truth or falsehood
of the axiom?

The axiom, we may observe, is a generalised form of Leib-
niz’s identity of indiscernibles. Leibniz assumed, as a logical
principle, that two different subjects must differ as to predi-
cates. Now predicates are only some among what we called
“predicative functions,” which will include also relations to
given terms, and various properties not to be reckoned as pred-
icates. Thus Leibniz’s assumption is a much stricter and nar-
rower one than ours. (Not, of course, according to his logic,
which regarded all propositions as reducible to the subject-
predicate form.) But there is no good reason for believing his
form, so far as I can see. There might quite well, as a matter
of abstract logical possibility, be two things which had exactly
the same predicates, in the narrow sense in which we have been
using the word “predicate.” How does our axiom look when
we pass beyond predicates in this narrow sense? In the actual
world there seems no way of doubting its empirical truth as
regards particulars, owing to spatio-temporal differentiation:
no two particulars have exactly the same spatial and tempo-
ral relations to all other particulars. But this is, as it were,
an accident, a fact about the world in which we happen to
find ourselves. Pure logic, and pure mathematics (which is
the same thing), aims at being true, in Leibnizian phraseol-
ogy, in all possible worlds, not only in this higgledy-piggledy
job-lot of a world in which chance has imprisoned us. There
is a certain lordliness which the logician should preserve: he
must not condescend to derive arguments from the things he
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sees about him.
Viewed from this strictly logical point of view, I do not see

any reason to believe that the axiom of reducibility is logically
necessary, which is what would be meant by saying that it
is true in all possible worlds. The admission of this axiom
into a system of logic is therefore a defect, even if the axiom
is empirically true. It is for this reason that the theory of
classes cannot be regarded as being as complete as the theory
of descriptions. There is need of further work on the theory of
types, in the hope of arriving at a doctrine of classes which does
not require such a dubious assumption. But it is reasonable
to regard the theory outlined in the present chapter as right
in its main lines, i.e. in its reduction of propositions nominally
about classes to propositions about their defining functions.
The avoidance of classes as entities by this method must, it
would seem, be sound in principle, however the detail may still
require adjustment. It is because this seems indubitable that
we have included the theory of classes, in spite of our desire to
exclude, as far as possible, whatever seemed open to serious
doubt.

The theory of classes, as above outlined, reduces itself to
one axiom and one definition. For the sake of definiteness, we
will here repeat them. The axiom is:

There is a type τ such that if φ is a function which can
take a given object a as argument, then there is a function ψ
of the type τ which is formally equivalent to φ.

The definition is:
If φ is a function which can take a given object a as argu-
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ment, and τ the type mentioned in the above axiom, then to
say that the class determined by φ has the property f is to say
that there is a function of type τ , formally equivalent to φ, and
having the property f .



CHAPTER XVIII

MATHEMATICS AND LOGIC

Mathematics and logic, historically speaking, have been en-
tirely distinct studies. Mathematics has been connected with
science, logic with Greek. But both have developed in modern
times: logic has become more mathematical and mathematics
has become more logical. The consequence is that it has now
become wholly impossible to draw a line between the two; in
fact, the two are one. They differ as boy and man: logic is
the youth of mathematics and mathematics is the manhood
of logic. This view is resented by logicians who, having spent
their time in the study of classical texts, are incapable of fol-
lowing a piece of symbolic reasoning, and by mathematicians
who have learnt a technique without troubling to inquire into
its meaning or justification. Both types are now fortunately
growing rarer. So much of modern mathematical work is ob-
viously on the border-line of logic, so much of modern logic is
symbolic and formal, that the very close relationship of logic
and mathematics has become obvious to every instructed stu-
dent. The proof of their identity is, of course, a matter of
detail: starting with premisses which would be universally ad-
mitted to belong to logic, and arriving by deduction at results
which as obviously belong to mathematics, we find that there
is no point at which a sharp line can be drawn, with logic to
the left and mathematics to the right. If there are still those
who do not admit the identity of logic and mathematics, we
may challenge them to indicate at what point, in the succes-
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sive definitions and deductions of Principia Mathematica, they
consider that logic ends and mathematics begins. It will then
be obvious that any answer must be quite arbitrary.

In the earlier chapters of this book, starting from the nat-
ural numbers, we have first defined “cardinal number” and
shown how to generalise the conception of number, and have
then analysed the conceptions involved in the definition, un-
til we found ourselves dealing with the fundamentals of logic.
In a synthetic, deductive treatment these fundamentals come
first, and the natural numbers are only reached after a long
journey. Such treatment, though formally more correct than
that which we have adopted, is more difficult for the reader,
because the ultimate logical concepts and propositions with
which it starts are remote and unfamiliar as compared with
the natural numbers. Also they represent the present fron-
tier of knowledge, beyond which is the still unknown; and the
dominion of knowledge over them is not as yet very secure.

It used to be said that mathematics is the science of “quan-
tity.” “Quantity” is a vague word, but for the sake of argument
we may replace it by the word “number.” The statement that
mathematics is the science of number would be untrue in two
different ways. On the one hand, there are recognised branches
of mathematics which have nothing to do with number—all
geometry that does not use co-ordinates or measurement, for
example: projective and descriptive geometry, down to the
point at which co-ordinates are introduced, does not have to
do with number, or even with quantity in the sense of greater
and less. On the other hand, through the definition of cardi-
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nals, through the theory of induction and ancestral relations,
through the general theory of series, and through the defini-
tions of the arithmetical operations, it has become possible
to generalise much that used to be proved only in connection
with numbers. The result is that what was formerly the single
study of Arithmetic has now become divided into numbers of
separate studies, no one of which is specially concerned with
numbers. The most elementary properties of numbers are con-
cerned with one-one relations, and similarity between classes.
Addition is concerned with the construction of mutually ex-
clusive classes respectively similar to a set of classes which are
not known to be mutually exclusive. Multiplication is merged
in the theory of “selections,” i.e. of a certain kind of one-
many relations. Finitude is merged in the general study of
ancestral relations, which yields the whole theory of mathe-
matical induction. The ordinal properties of the various kinds
of number-series, and the elements of the theory of continuity
of functions and the limits of functions, can be generalised so
as no longer to involve any essential reference to numbers. It
is a principle, in all formal reasoning, to generalise to the ut-
most, since we thereby secure that a given process of deduction
shall have more widely applicable results; we are, therefore, in
thus generalising the reasoning of arithmetic, merely following
a precept which is universally admitted in mathematics. And
in thus generalising we have, in effect, created a set of new
deductive systems, in which traditional arithmetic is at once
dissolved and enlarged; but whether any one of these new de-
ductive systems—for example, the theory of selections—is to
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be said to belong to logic or to arithmetic is entirely arbitrary,
and incapable of being decided rationally.

We are thus brought face to face with the question: What
is this subject, which may be called indifferently either math-
ematics or logic? Is there any way in which we can define
it?

Certain characteristics of the subject are clear. To begin
with, we do not, in this subject, deal with particular things or
particular properties: we deal formally with what can be said
about any thing or any property. We are prepared to say that
one and one are two, but not that Socrates and Plato are two,
because, in our capacity of logicians or pure mathematicians,
we have never heard of Socrates and Plato. A world in which
there were no such individuals would still be a world in which
one and one are two. It is not open to us, as pure mathemati-
cians or logicians, to mention anything at all, because, if we
do so, we introduce something irrelevant and not formal. We
may make this clear by applying it to the case of the syllo-
gism. Traditional logic says: “All men are mortal, Socrates is
a man, therefore Socrates is mortal.” Now it is clear that what
we mean to assert, to begin with, is only that the premisses
imply the conclusion, not that premisses and conclusion are
actually true; even the most traditional logic points out that
the actual truth of the premisses is irrelevant to logic. Thus
the first change to be made in the above traditional syllogism
is to state it in the form: “If all men are mortal and Socrates
is a man, then Socrates is mortal.” We may now observe that
it is intended to convey that this argument is valid in virtue of
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its form, not in virtue of the particular terms occurring in it.
If we had omitted “Socrates is a man” from our premisses, we
should have had a non-formal argument, only admissible be-
cause Socrates is in fact a man; in that case we could not have
generalised the argument. But when, as above, the argument
is formal, nothing depends upon the terms that occur in it.
Thus we may substitute α for men, β for mortals, and x for
Socrates, where α and β are any classes whatever, and x is
any individual. We then arrive at the statement: “No matter
what possible values x and α and β may have, if all α’s are β’s
and x is an α, then x is a β”; in other words, “the proposi-
tional function ‘if all α’s are β and x is an α, then x is a β’ is
always true.” Here at last we have a proposition of logic—the
one which is only suggested by the traditional statement about
Socrates and men and mortals.

It is clear that, if formal reasoning is what we are aiming at,
we shall always arrive ultimately at statements like the above,
in which no actual things or properties are mentioned; this will
happen through the mere desire not to waste our time proving
in a particular case what can be proved generally. It would
be ridiculous to go through a long argument about Socrates,
and then go through precisely the same argument again about
Plato. If our argument is one (say) which holds of all men,
we shall prove it concerning “x,” with the hypothesis “if x is
a man.” With this hypothesis, the argument will retain its
hypothetical validity even when x is not a man. But now we
shall find that our argument would still be valid if, instead
of supposing x to be a man, we were to suppose him to be a
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monkey or a goose or a Prime Minister. We shall therefore
not waste our time taking as our premiss “x is a man” but
shall take “x is an α,” where α is any class of individuals,
or “φx” where φ is any propositional function of some assigned
type. Thus the absence of all mention of particular things or
properties in logic or pure mathematics is a necessary result
of the fact that this study is, as we say, “purely formal.”

At this point we find ourselves faced with a problem which
is easier to state than to solve. The problem is: “What are
the constituents of a logical proposition?” I do not know the
answer, but I propose to explain how the problem arises.

Take (say) the proposition “Socrates was before Aristo-
tle.” Here it seems obvious that we have a relation between
two terms, and that the constituents of the proposition (as
well as of the corresponding fact) are simply the two terms
and the relation, i.e. Socrates, Aristotle, and before. (I ignore
the fact that Socrates and Aristotle are not simple; also the
fact that what appear to be their names are really truncated
descriptions. Neither of these facts is relevant to the present
issue.) We may represent the general form of such propositions
by “xRy,” which may be read “x has the relation R to y.” This
general form may occur in logical propositions, but no partic-
ular instance of it can occur. Are we to infer that the general
form itself is a constituent of such logical propositions?

Given a proposition, such as “Socrates is before Aristotle,”
we have certain constituents and also a certain form. But the
form is not itself a new constituent; if it were, we should need
a new form to embrace both it and the other constituents.
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We can, in fact, turn all the constituents of a proposition into
variables, while keeping the form unchanged. This is what
we do when we use such a schema as “xRy,” which stands
for any one of a certain class of propositions, namely, those
asserting relations between two terms. We can proceed to
general assertions, such as “xRy is sometimes true”—i.e. there
are cases where dual relations hold. This assertion will belong
to logic (or mathematics) in the sense in which we are using the
word. But in this assertion we do not mention any particular
things or particular relations; no particular things or relations
can ever enter into a proposition of pure logic. We are left
with pure forms as the only possible constituents of logical
propositions.

I do not wish to assert positively that pure forms—e.g.
the form “xRy”—do actually enter into propositions of the
kind we are considering. The question of the analysis of such
propositions is a difficult one, with conflicting considerations
on the one side and on the other. We cannot embark upon this
question now, but we may accept, as a first approximation,
the view that forms are what enter into logical propositions
as their constituents. And we may explain (though not for-
mally define) what we mean by the “form” of a proposition as
follows:—

The “form” of a proposition is that, in it, that remains un-
changed when every constituent of the proposition is replaced
by another.

Thus “Socrates is earlier than Aristotle” has the same form
as “Napoleon is greater than Wellington,” though every con-
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stituent of the two propositions is different.
We may thus lay down, as a necessary (though not suffi-

cient) characteristic of logical or mathematical propositions,
that they are to be such as can be obtained from a proposition
containing no variables (i.e. no such words as all, some, a, the,
etc.) by turning every constituent into a variable and asserting
that the result is always true or sometimes true, or that it is
always true in respect of some of the variables that the result
is sometimes true in respect of the others, or any variant of
these forms. And another way of stating the same thing is to
say that logic (or mathematics) is concerned only with forms,
and is concerned with them only in the way of stating that
they are always or sometimes true—with all the permutations
of “always” and “sometimes” that may occur.

There are in every language some words whose sole function
is to indicate form. These words, broadly speaking, are com-
monest in languages having fewest inflections. Take “Socrates
is human.” Here “is” is not a constituent of the proposition,
but merely indicates the subject-predicate form. Similarly in
“Socrates is earlier than Aristotle,” “is” and “than” merely
indicate form; the proposition is the same as “Socrates pre-
cedes Aristotle,” in which these words have disappeared and
the form is otherwise indicated. Form, as a rule, can be indi-
cated otherwise than by specific words: the order of the words
can do most of what is wanted. But this principle must not be
pressed. For example, it is difficult to see how we could con-
veniently express molecular forms of propositions (i.e. what
we call “truth-functions”) without any word at all. We saw
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in Chapter XIV. that one word or symbol is enough for this
purpose, namely, a word or symbol expressing incompatibil-
ity. But without even one we should find ourselves in diffi-
culties. This, however, is not the point that is important for
our present purpose. What is important for us is to observe
that form may be the one concern of a general proposition,
even when no word or symbol in that proposition designates
the form. If we wish to speak about the form itself, we must
have a word for it; but if, as in mathematics, we wish to speak
about all propositions that have the form, a word for the form
will usually be found not indispensable; probably in theory it
is never indispensable.

Assuming—as I think we may—that the forms of proposi-
tions can be represented by the forms of the propositions in
which they are expressed without any special word for forms,
we should arrive at a language in which everything formal be-
longed to syntax and not to vocabulary. In such a language
we could express all the propositions of mathematics even if
we did not know one single word of the language. The lan-
guage of mathematical logic, if it were perfected, would be
such a language. We should have symbols for variables, such
as “x” and “R” and “y,” arranged in various ways; and the
way of arrangement would indicate that something was being
said to be true of all values or some values of the variables.
We should not need to know any words, because they would
only be needed for giving values to the variables, which is the
business of the applied mathematician, not of the pure mathe-
matician or logician. It is one of the marks of a proposition of
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logic that, given a suitable language, such a proposition can be
asserted in such a language by a person who knows the syntax
without knowing a single word of the vocabulary.

But, after all, there are words that express form, such as
“is” and “than.” And in every symbolism hitherto invented for
mathematical logic there are symbols having constant formal
meanings. We may take as an example the symbol for incom-
patibility which is employed in building up truth-functions.
Such words or symbols may occur in logic. The question is:
How are we to define them?

Such words or symbols express what are called “logical
constants.” Logical constants may be defined exactly as we
defined forms; in fact, they are in essence the same thing. A
fundamental logical constant will be that which is in common
among a number of propositions, any one of which can re-
sult from any other by substitution of terms one for another.
For example, “Napoleon is greater than Wellington” results
from “Socrates is earlier than Aristotle” by the substitution of
“Napoleon” for “Socrates,” “Wellington” for “Aristotle,” and
“greater” for “earlier.” Some propositions can be obtained in
this way from the prototype “Socrates is earlier than Aristo-
tle” and some cannot; those that can are those that are of
the form “xRy,” i.e. express dual relations. We cannot obtain
from the above prototype by term-for-term substitution such
propositions as “Socrates is human” or “the Athenians gave
the hemlock to Socrates,” because the first is of the subject-
predicate form and the second expresses a three-term relation.
If we are to have any words in our pure logical language, they
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must be such as express “logical constants,” and “logical con-
stants” will always either be, or be derived from, what is in
common among a group of propositions derivable from each
other, in the above manner, by term-for-term substitution.
And this which is in common is what we call “form.”

In this sense all the “constants” that occur in pure math-
ematics are logical constants. The number 1, for example, is
derivative from propositions of the form: “There is a term c
such that φx is true when, and only when, x is c.” This is
a function of φ, and various different propositions result from
giving different values to φ. We may (with a little omission of
intermediate steps not relevant to our present purpose) take
the above function of φ as what is meant by “the class deter-
mined by φ is a unit class” or “the class determined by φ is a
member of 1” (1 being a class of classes). In this way, propo-
sitions in which 1 occurs acquire a meaning which is derived
from a certain constant logical form. And the same will be
found to be the case with all mathematical constants: all are
logical constants, or symbolic abbreviations whose full use in
a proper context is defined by means of logical constants.

But although all logical (or mathematical) propositions can
be expressed wholly in terms of logical constants together with
variables, it is not the case that, conversely, all propositions
that can be expressed in this way are logical. We have found
so far a necessary but not a sufficient criterion of mathemat-
ical propositions. We have sufficiently defined the character
of the primitive ideas in terms of which all the ideas of math-
ematics can be defined, but not of the primitive propositions
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from which all the propositions of mathematics can be deduced.
This is a more difficult matter, as to which it is not yet known
what the full answer is.

We may take the axiom of infinity as an example of a propo-
sition which, though it can be enunciated in logical terms,
cannot be asserted by logic to be true. All the propositions of
logic have a characteristic which used to be expressed by say-
ing that they were analytic, or that their contradictories were
self-contradictory. This mode of statement, however, is not
satisfactory. The law of contradiction is merely one among log-
ical propositions; it has no special pre-eminence; and the proof
that the contradictory of some proposition is self-contradictory
is likely to require other principles of deduction besides the
law of contradiction. Nevertheless, the characteristic of logical
propositions that we are in search of is the one which was felt,
and intended to be defined, by those who said that it consisted
in deducibility from the law of contradiction. This character-
istic, which, for the moment, we may call tautology, obviously
does not belong to the assertion that the number of individuals
in the universe is n, whatever number n may be. But for the
diversity of types, it would be possible to prove logically that
there are classes of n terms, where n is any finite integer; or
even that there are classes of ℵ0 terms. But, owing to types,
such proofs, as we saw in Chapter XIII., are fallacious. We are
left to empirical observation to determine whether there are as
many as n individuals in the world. Among “possible” worlds,
in the Leibnizian sense, there will be worlds having one, two,
three, . . . individuals. There does not even seem any logical
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necessity why there should be even one individual1—why, in
fact, there should be any world at all. The ontological proof
of the existence of God, if it were valid, would establish the
logical necessity of at least one individual. But it is generally
recognised as invalid, and in fact rests upon a mistaken view
of existence—i.e. it fails to realise that existence can only be
asserted of something described, not of something named, so
that it is meaningless to argue from “this is the so-and-so” and
“the so-and-so exists” to “this exists.” If we reject the ontolog-
ical argument, we seem driven to conclude that the existence
of a world is an accident—i.e. it is not logically necessary. If
that be so, no principle of logic can assert “existence” except
under a hypothesis, i.e. none can be of the form “the propo-
sitional function so-and-so is sometimes true.” Propositions
of this form, when they occur in logic, will have to occur as
hypotheses or consequences of hypotheses, not as complete
asserted propositions. The complete asserted propositions of
logic will all be such as affirm that some propositional function
is always true. For example, it is always true that if p implies q
and q implies r then p implies r, or that, if all α’s are β’s and
x is an α then x is a β. Such propositions may occur in logic,
and their truth is independent of the existence of the universe.
We may lay it down that, if there were no universe, all general
propositions would be true; for the contradictory of a general
proposition (as we saw in Chapter XV.) is a proposition as-

1The primitive propositions in Principia Mathematica are such as to
allow the inference that at least one individual exists. But I now view
this as a defect in logical purity.
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serting existence, and would therefore always be false if no
universe existed.

Logical propositions are such as can be known a priori,
without study of the actual world. We only know from a study
of empirical facts that Socrates is a man, but we know the
correctness of the syllogism in its abstract form (i.e. when it
is stated in terms of variables) without needing any appeal to
experience. This is a characteristic, not of logical propositions
in themselves, but of the way in which we know them. It has,
however, a bearing upon the question what their nature may
be, since there are some kinds of propositions which it would
be very difficult to suppose we could know without experience.

It is clear that the definition of “logic” or “mathematics”
must be sought by trying to give a new definition of the old
notion of “analytic” propositions. Although we can no longer
be satisfied to define logical propositions as those that follow
from the law of contradiction, we can and must still admit that
they are a wholly different class of propositions from those that
we come to know empirically. They all have the characteristic
which, a moment ago, we agreed to call “tautology.” This,
combined with the fact that they can be expressed wholly in
terms of variables and logical constants (a logical constant be-
ing something which remains constant in a proposition even
when all its constituents are changed)—will give the definition
of logic or pure mathematics. For the moment, I do not know
how to define “tautology.”1 It would be easy to offer a defi-

1The importance of “tautology” for a definition of mathematics was
pointed out to me by my former pupil Ludwig Wittgenstein, who was
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nition which might seem satisfactory for a while; but I know
of none that I feel to be satisfactory, in spite of feeling thor-
oughly familiar with the characteristic of which a definition is
wanted. At this point, therefore, for the moment, we reach the
frontier of knowledge on our backward journey into the logical
foundations of mathematics.

We have now come to an end of our somewhat summary
introduction to mathematical philosophy. It is impossible to
convey adequately the ideas that are concerned in this subject
so long as we abstain from the use of logical symbols. Since
ordinary language has no words that naturally express exactly
what we wish to express, it is necessary, so long as we adhere
to ordinary language, to strain words into unusual meanings;
and the reader is sure, after a time if not at first, to lapse
into attaching the usual meanings to words, thus arriving at
wrong notions as to what is intended to be said. Moreover,
ordinary grammar and syntax is extraordinarily misleading.
This is the case, e.g. as regards numbers; “ten men” is gram-
matically the same form as “white men,” so that 10 might be
thought to be an adjective qualifying “men.” It is the case,
again, wherever propositional functions are involved, and in
particular as regards existence and descriptions. Because lan-
guage is misleading, as well as because it is diffuse and inexact
when applied to logic (for which it was never intended), logi-
cal symbolism is absolutely necessary to any exact or thorough
treatment of our subject. Those readers, therefore, who wish

working on the problem. I do not know whether he has solved it, or even
whether he is alive or dead.
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to acquire a mastery of the principles of mathematics, will, it
is to be hoped, not shrink from the labour of mastering the
symbols—a labour which is, in fact, much less than might be
thought. As the above hasty survey must have made evident,
there are innumerable unsolved problems in the subject, and
much work needs to be done. If any student is led into a se-
rious study of mathematical logic by this little book, it will
have served the chief purpose for which it has been written.
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