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Introduction.

In an attempt to develop certain outlines of a theory of
line-spectra based on a suitable application of the fundamen-
tal ideas introduced by Planck in his theory of temperature-
radiation to the theory of the nucleus atom of Sir Ernest
Rutherford, the writer has shown that it is possible in
this way to obtain a simple interpretation of some of the
main laws governing the line-spectra of the elements, and
especially to obtain a deduction of the well known Balmer
formula for the hydrogen spectrum1) The theory in the form
given allowed of a detailed discussion only in the case of
periodic systems, and obviously was not able to account in
detail for the characteristic difference between the hydro-
gen spectrum and the spectra of other elements, or for the
characteristic effects on the hydrogen spectrum of external
electric and magnetic fields. Recently, however, a way out
of this difficulty has been opened by Sommerfeld2) who,
by introducing a suitable generalisation of the theory to a
simple type of non-periodic motions and by taking the small
variation of the mass of the electron with its velocity into
account, obtained an explanation of the fine-structure of the
hydrogen lines which was found to be in brilliant confor-
mity with the measurements. Already in his first paper on

1) N. Bohr, Phil. Mag., XXVI, pp. 1, 476, 857 (1913), XXVII,
p. 506 (1914), XXIX. p. 332 (1915), XXX. p. 394 (1915).

2) A. Sommerfeld, Ber. Akad. München, 1915, pp. 425, 459, 1916,
p. 131. 1917. p. 83. Ann. de Phys., LI. p. 1 (1916).
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this subject, Sommerfeld pointed out that his theory ev-
idently offered a clue to the interpretation of the more in-
tricate structure of the spectra of other elements. Briefly
afterwards Epstein1) and Schwarzschild,2) independent
of each other, by adapting Sommerfeld’s ideas to the treat-
ment of a more extended class of non-periodic systems ob-
tained a detailed explanation of the characteristic effect of an
electric field on the hydrogen spectrum discovered by Stark.
Subsequently Sommerfeld3) himself and Debye4) have on
the same lines indicated an interpretation of the effect of a
magnetic field on the hydrogen spectrum which, although no
complete explanation of the observations was obtained, un-
doubtedly represents an important step towards a detailed
understanding of this phenomenon.

In spite of the great progress involved in these investiga-
tions many difficulties of fundamental nature remained un-
solved, not only as regards the limited applicability of the
methods used in calculating the frequencies of the spectrum
of a given system, but especially as regards the question of
the polarisation and intensity of the emitted spectral lines.
These difficulties are intimately connected with the radical
departure from the ordinary ideas of mechanics and electro-

1) P. Epstein, Phys. Zeitschr. XVII, p. 148 (1916), Ann. d. Phys. L,
p. 489. LI. p. 168 (1916).

2) K. Schwarzschild, Ber. Akad. Berlin, 1916, p. 548.
3) A. Sommerfeld, Phys. Zeitschr. XVII, p. 491 (1916).
4) P. Debye, Nachr. K. Ges. d. Wiss. Göttingen, 1916, Phys.

Zeitschr. XVII, p. 507 (1916).
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dynamics involved in the main principles of the quantum the-
ory, and with the fact that it has not been possible hitherto
to replace these ideas by others forming an equally consis-
tent and developed structure. Also in this respect, however,
great progress has recently been obtained by the work of
Einstein1) and Ehrenfest.2) On this state of the the-
ory it might therefore be of interest to make an attempt to
discuss the different applications from a uniform point of
view, and especially to consider the underlying assumptions
in their relations to ordinary mechanics and electrodynamics.
Such an attempt has been made in the present paper, and
it will be shown that it seems possible to throw some light
on the outstanding difficulties by trying to trace the anal-
ogy between the quantum theory and the ordinary theory of
radiation as closely as possible.

The paper is divided into four parts.

Part I contains a brief discussion of the general principles of
the theory and deals with the application of the general
theory to periodic systems of one degree of freedom and
to the class of non-periodic systems referred to above.

Part II contains a detailed discussion of the theory of the
hydrogen spectrum in order to illustrate the general

1) A. Einstein, Verh. d. D. phys. Ges. XVIII, p. 318 (1916), Phys.
Zeitschr. XVIII, p. 121 (1917).

2) P. Ehrenfest, Proc. Acad. Amsterdam, XVI. p. 591 (1914),
Phys. Zeitschr. XV. p. 657 (1914), Ann. d. Phys. LI. p. 327 (1916),
Phil. Mag. XXXIII. p. 500 (1917).
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considerations.

Part III contains a discussion of the questions arising in
connection with the explanation of the spectra of other
elements.

Part IV contains a general discussion of the theory of the
constitution of atoms and molecules based on the ap-
plication of the quantum theory to the nucleus atom.

Copenhagen, November 1917.



Part I.

On the general theory.

§ 1. General principles.

The quantum theory of line-spectra rests upon the fol-
lowing fundamental assumptions:

I. That an atomic system can, and can only, exist per-
manently in a certain series of states corresponding to a dis-
continuous series of values for its energy, and that conse-
quently any change of the energy of the system, including
emission and absorption of electromagnetic radiation, must
take place by a complete transition between two such states.
These states will be denoted as the “stationary states” of the
system.

II. That the radiation absorbed or emitted during a tran-
sition between two stationary states is “unifrequentic” and
possesses a frequency ν, given by the relation

E ′ − E ′′ = hν, (1)

where h is Planck’s constant and where E ′ and E ′′ are the
values of the energy in the two states under consideration.

As pointed out by the writer in the papers referred to
in the introduction, these assumptions offer an immediate
interpretation of the fundamental principle of combination
of spectral lines deduced from the measurements of the fre-
quencies of the series spectra of the elements. According to
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the laws discovered by Balmer, Rydberg and Ritz, the
frequencies of the lines of the series spectrum of an element
can be expressed by a formula of the type:

ν = fτ ′′(n
′′)− fτ ′(n′), (2)

where n′ and n′′ are whole numbers and fτ (n) is one among
a set of functions of n, characteristic for the element un-
der consideration. On the above assumptions this formula
may obviously be interpreted by assuming that the station-
ary states of an atom of an element form a set of series, and
that the energy in the nth state of the τ th series, omitting an
arbitrary constant, is given by

Eτ (n) = −hfτ (n). (3)

We thus see that the values for the energy in the sta-
tionary states of an atom may be obtained directly from the
measurements of the spectrum by means of relation (1). In
order, however, to obtain a theoretical connection between
these values and the experimental evidence about the consti-
tution of the atom obtained from other sources, it is neces-
sary to introduce further assumptions about the laws which
govern the stationary states of a given atomic system and
the transitions between these states.

Now on the basis of a vast amount of experimental evi-
dence, we are forced to assume that an atom or molecule con-
sists of a number of electrified particles in motion, and, since
the above fundamental assumptions imply that no emission
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of radiation takes place in the stationary states, we must con-
sequently assume that the ordinary laws of electrodynamics
cannot be applied to these states without radical alterations.
In many cases, however, the effect of that part of the elec-
trodynamical forces which is connected with the emission of
radiation will at any moment be very small in comparison
with the effect of the simple electrostatic attractions or repul-
sions of the charged particles corresponding to Coulomb’s
law. Even if the theory of radiation must be completely al-
tered, it is therefore a natural assumption that it is possible
in such cases to obtain a close approximation in the descrip-
tion of the motion in the stationary states, by retaining only
the latter forces. In the following we shall therefore, as in
all the papers mentioned in the introduction, for the present
calculate the motions of the particles in the stationary states
as the motions of mass-points according to ordinary mechan-
ics including the modifications claimed by the theory of rel-
ativity, and we shall later in the discussion of the special
applications come back to the question of the degree of ap-
proximation which may be obtained in this way.

If next we consider a transition between two stationary
states, it is obvious at once from the essential discontinuity,
involved in the assumptions I and II, that in general it is im-
possible even approximately to describe this phenomenon by
means of ordinary mechanics or to calculate the frequency of
the radiation absorbed or emitted by such a process by means
of ordinary electrodynamics. On the other hand, from the
fact that it has been possible by means of ordinary mechan-
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ics and electrodynamics to account for the phenomenon of
temperature-radiation in the limiting region of slow vibra-
tions, we may expect that any theory capable of describing
this phenomenon in accordance with observations will form
some sort of natural generalisation of the ordinary theory of
radiation. Now the theory of temperature-radiation in the
form originally given by Planck confessedly lacked internal
consistency, since, in the deduction of his radiation formula,
assumptions of similar character as I and II were used in con-
nection with assumptions which were in obvious contrast to
them. Quite recently, however, Einstein1) has succeeded,
on the basis of the assumptions I and II, to give a consistent
and instructive deduction of Planck’s formula by introduc-
ing certain supplementary assumptions about the probability
of transition of a system between two stationary states and
about the manner in which this probability depends on the
density of radiation of the corresponding frequency in the
surrounding space, suggested from analogy with the ordi-
nary theory of radiation. Einstein compares the emission
or absorption of radiation of frequency ν corresponding to a
transition between two stationary states with the emission
or absorption to be expected on ordinary electrodynamics
for a system consisting of a particle executing harmonic vi-
brations of this frequency. In analogy with the fact that on
the latter theory such a system will without external excita-
tion emit a radiation of frequency ν, Einstein assumes in

1) A. Einstein, loc. cit.
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the first place that on the quantum theory there will be a
certain probability An

′

n′′ dt that the system in the stationary
state of greater energy, characterised by the letter n′, in the
time interval dt will start spontaneously to pass to the sta-
tionary state of smaller energy, characterised by the letter n′′.
Moreover, on ordinary electrodynamics the harmonic vibra-
tor will, in addition to the above mentioned independent
emission, in the presence of a radiation of frequency ν in the
surrounding space, and dependent on the accidental phase-
difference between this radiation and the vibrator, emit or
absorb radiation-energy. In analogy with this, Einstein as-
sumes secondly that in the presence of a radiation in the
surrounding space, the system will on the quantum theory,
in addition to the above mentioned probability of sponta-
neous transition from the state n′ to the state n′′, possess a
certain probability, depending on this radiation, of passing
in the time dt from the state n′ to the state n′′, as well as
from the state n′′ to the state n′. These latter probabilities
are assumed to be proportional to the intensity of the sur-
rounding radiation and are denoted by ρνB

n′

n′′ dt and ρνB
n′′

n′ dt
respectively, where ρν dν denotes the amount of radiation in
unit volume of the surrounding space distributed on frequen-
cies between ν and ν + dν, while Bn′

n′′ and Bn′′

n′ are constants
which, like An

′

n′′ , depend only on the stationary states under
consideration. Einstein does not introduce any detailed as-
sumption as to the values of these constants, no more than
to the conditions by which the different stationary states of
a given system are determined or to the “a-priori probabil-
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ity” of these states on which their relative occurrence in a
distribution of statistical equilibrium depends. He shows,
however, how it is possible from the above general assump-
tions, by means of Boltzmann’s principle on the relation
between entropy and probability and Wien’s well known
displacement-law, to deduce a formula for the temperature
radiation which apart from an undetermined constant fac-
tor coincides with Planck’s, if we only assume that the
frequency corresponding to the transition between the two
states is determined by (1). It will therefore be seen that by
reversing the line of argument, Einstein’s theory may be
considered as a very direct support of the latter relation.

In the following discussion of the application of the quan-
tum theory to determine the line-spectrum of a given system,
it will, just as in the theory of temperature-radiation, not be
necessary to introduce detailed assumptions as to the mech-
anism of transition between two stationary states. We shall
show, however, that the conditions which will be used to
determine the values of the energy in the stationary states
are of such a type that the frequencies calculated by (1), in
the limit where the motions in successive stationary states
comparatively differ very little from each other, will tend to
coincide with the frequencies to be expected on the ordinary
theory of radiation from the motion of the system in the
stationary states. In order to obtain the necessary relation
to the ordinary theory of radiation in the limit of slow vi-
brations, we are therefore led directly to certain conclusions
about the probability of transition between two stationary
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states in this limit. This leads again to certain general con-
siderations about the connection between the probability of
a transition between any two stationary states and the mo-
tion of the system in these states, which will be shown to
throw light on the question of the polarisation and intensity
of the different lines of the spectrum of a given system.

In the above considerations we have by an atomic system
tacitly understood a number of electrified particles which
move in a field of force which, with the approximation men-
tioned, possesses a potential depending only on the position
of the particles. This may more accurately be denoted as
a system under constant external conditions, and the ques-
tion next arises about the variation in the stationary states
which may be expected to take place during a variation of
the external conditions, e. g. when exposing the atomic sys-
tem to some variable external field of force. Now, in general,
we must obviously assume that this variation cannot be cal-
culated by ordinary mechanics, no more than the transition
between two different stationary states corresponding to con-
stant external conditions. If, however, the variation of the
external conditions is very slow, we may from the necessary
stability of the stationary states expect that the motion of
the system at any given moment during the variation will
differ only very little from the motion in a stationary state
corresponding to the instantaneous external conditions. If
now, moreover, the variation is performed at a constant or
very slowly changing rate, the forces to which the particles
of the system will be exposed will not differ at any moment
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from those to which they would be exposed if we imagine
that the external forces arise from a number of slowly moving
additional particles which together with the original system
form a system in a stationary state. From this point of view
it seems therefore natural to assume that, with the approx-
imation mentioned, the motion of an atomic system in the
stationary states can be calculated by direct application of
ordinary mechanics, not only under constant external condi-
tions, but in general also during a slow and uniform variation
of these conditions. This assumption, which may be denoted
as the principle of the “mechanical transformability” of the
stationary states, has been introduced in the quantum theory
by Ehrenfest1) and is, as it will be seen in the following
sections, of great importance in the discussion of the con-
ditions to be used to fix the stationary states of an atomic
system among the continuous multitude of mechanically pos-
sible motions. In this connection it may be pointed out that
the principle of the mechanical transformability of the sta-
tionary states allows us to overcome a fundamental difficulty
which at first sight would seem to be involved in the defini-
tion of the energy difference between two stationary states

1) P. Ehrenfest, loc. cit. In these papers the principle in ques-
tion is called the “adiabatic hypothesis” in accordance with the line
of argumentation followed by Ehrenfest in which considerations of
thermodynamical problems play an important part. From the point of
view taken in the present paper, however, the above notation might in
a more direct way indicate the content of the principle and the limits
of its applicability.
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which enters in relation (1). In fact we have assumed that
the direct transition between two such states cannot be de-
scribed by ordinary mechanics, while on the other hand we
possess no means of defining an energy difference between
two states if there exists no possibility for a continuous me-
chanical connection between them. It is clear, however, that
such a connection is just afforded by Ehrenfest’s princi-
ple which allows us to transform mechanically the stationary
states of a given system into those of another, because for
the latter system we may take one in which the forces which
act on the particles are very small and where we may assume
that the values of the energy in all the stationary states will
tend to coincide.

As regards the problem of the statistical distribution of
the different stationary states between a great number of
atomic systems of the same kind in temperature equilibrium,
the number of systems present in the different states may be
deduced in the well known way from Boltzmann’s funda-
mental relation between entropy and probability, if we know
the values of the energy in these states and the a-priori prob-
ability to be ascribed to each state in the calculation of the
probability of the whole distribution. In contrast to con-
siderations of ordinary statistical mechanics we possess on
the quantum theory no direct means of determining these a-
priori probabilities, because we have no detailed information
about the mechanism of transition between the different sta-
tionary states. If the a-priori probabilities are known for the
states of a given atomic system, however, they may be de-
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duced for any other system which can be formed from this by
a continuous transformation without passing through one of
the singular systems referred to below. In fact, in examining
the necessary conditions for the explanation of the second
law of thermodynamics Ehrenfest1) has deduced a cer-
tain general condition as regards the variation of the a-priori
probability corresponding to a small change of the external
conditions from which it follows, that the a-priori probability
of a given stationary state of an atomic system must remain
unaltered during a continuous transformation, except in spe-
cial cases in which the values of the energy in some of the
stationary states will tend to coincide during the transfor-
mation. In this result we possess, as we shall see, a rational
basis for the determination of the a-priori probability of the
different stationary states of a given atomic system.

§ 2. Systems of one degree of freedom.

As the simplest illustration of the principles discussed in
the former section we shall begin by considering systems of
a single degree of freedom, in which case it has been possi-
ble to establish a general theory of stationary states. This
is due to the fact that the motion will be simply periodic,
provided the distance between the parts of the system will

1) P. Ehrenfest, Phys. Zeitschr. XV p. 660 (1914). The above
interpretation of this relation is not stated explicitly by Ehrenfest,
but it presents itself directly if the quantum theory is taken in the form
corresponding to the fundamental assumption I.
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not increase infinitely with the time, a case which for obvi-
ous reasons cannot represent a stationary state in the sense
defined above. On account of this, the discussion of the
mechanical transformability of the stationary states can, as
pointed out by Ehrenfest,1) for systems of one degree of
freedom be based on a mechanical theorem about periodic
systems due to Boltzmann and originally applied by this
author in a discussion of the bearing of mechanics on the ex-
planation of the laws of thermodynamics. For the sake of the
considerations in the following sections it will be convenient
here to give the proof in a form which differs slightly from
that given by Ehrenfest, and which takes also regard to
the modifications in the ordinary laws of mechanics claimed
by the theory of relativity.

Consider for the sake of generality a conservative me-
chanical system of s degrees of freedom, the motion of which
is governed by Hamilton’s equations:

dpk
dt

= −∂E
∂qk

,
dqk
dt

=
∂E

∂pk
, (k = 1, . . . , s) (4)

where E is the total energy considered as a function of the
generalised positional coordinates q1, . . . , qs and the corre-
sponding canonically conjugated momenta p1, . . . , ps. If the
velocities are so small that the variation in the mass of the
particles due to their velocities can be neglected, the p’s are

1) P. Ehrenfest, loc. cit. Proc. Acad. Amsterdam, XVI, p. 591
(1914).
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defined in the usual way by

pk =
∂T

∂qk
, (k = 1, . . . , s)

where T is the kinetic energy of the system considered as a

function of the generalised velocities q̇1, . . . , q̇s

(
q̇k =

dqk
dt

)
and of q1, . . . , qs. If the relativity modifications are taken
into account the p’s are defined by a similar set of expressions
in which the kinetic energy is replaced by

T ′ =
∑

m0c
2
(
1−

√
1− v2/c2

)
,

where the summation is to be extended over all the particles
of the system, and v is the velocity of one of the particles
and m0 its mass for zero velocity, while c is the velocity of
light.

Let us now assume that the system performs a periodic
motion with the period σ, and let us form the expression

I =

∫ σ

0

s∑
1

pkq̇k dt, (5)

which is easily seen to be independent of the special choice
of coordinates q1, . . . , qs used to describe the motion of the
system. In fact, if the variation of the mass with the velocity
is neglected we get

I = 2

∫ σ

0

T dt,
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and if the relativity modifications are included, we get a quite
analogous expression in which the kinetic energy is replaced
by T ′′ =

∑
1
2
m0v

2
√

1− v2/c2.
Consider next some new periodic motion of the system

formed by a small variation of the first motion, but which
may need the presence of external forces in order to be a
mechanically possible motion. For the variation in I we get
then

δI =

∫ σ

0

s∑
1

(q̇k δpk + pk δq̇k) dt+
s∑
1

pk q̇k δt
∣∣∣σ
0
,

where the last term refers to the variation of the limit of the
integral due to the variation in the period σ. By partial inte-
gration of the second term in the bracket under the integral
we get next

δI =

∫ σ

0

s∑
1

(q̇k δpk − ṗk δqk) dt+
s∑
1

pk(q̇k δt+ δqk)
∣∣∣σ
0
,

where the last term is seen to be zero, because the term in
the bracket as well as pk will be the same in both limits, since
the varied motion as well as the original motion is assumed
to be periodic. By means of equations (4) we get therefore

δI =

∫ σ

0

s∑
1

(
∂E

∂pk
δpk +

∂E

∂qk
δqk

)
dt =

∫ σ

0

δE dt. (6)

Let us now assume that the small variation of the motion
is produced by a small external field established at a uniform
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rate during a time interval ϑ, long compared with σ, so that
the comparative increase during a period is very small. In
this case δE is at any moment equal to the total work done
by the external forces on the particles of the system since the
beginning of the establishment of the field. Let this moment
be t = −ϑ and let the potential of the external field at t ≥ 0
be given by Ω, expressed as a function of the q’s. At any
given moment t > 0 we have then

δE = −
∫ 0

−ϑ

ϑ+ t

ϑ

s∑
1

∂Ω

∂qk
q̇k dt−

∫ t

0

s∑
1

∂Ω

∂qk
q̇k dt,

which gives by partial integration

δE =
1

ϑ

∫ 0

−ϑ
Ω dt− Ωt,

where the values for the q’s to be introduced in Ω in the
first term are those corresponding to the motion under the
influence of the increasing external field, and the values to be
introduced in the second term are those corresponding to the
configuration at the time t. Neglecting small quantities of
the same order as the square of the external force, however,
we may in this expression for δE instead of the values for the
q’s corresponding to the perturbed motion take those corre-
sponding to the original motion of the system. With this
approximation the first term is equal to the mean value of
the second taken over a period σ, and we have consequently∫ σ

0

δE dt = 0. (7)
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From (6) and (7) it follows that I will remain constant
during the slow establishment of the small external field, if
the motion corresponding to a constant value of the field is
periodic. If next the external field corresponding to Ω is con-
sidered as an inherent part of the system, it will be seen in the
same way that I will remain unaltered during the establish-
ment of a new small external field, and so on. Consequently
I will be invariant for any finite transformation of the system
which is sufficiently slowly performed, provided the motion
at any moment during the process is periodic and the effect
of the variation is calculated on ordinary mechanics.

Before we proceed to the applications of this result we
shall mention a simple consequence of (6) for systems for
which every orbit is periodic independent of the initial con-
ditions. In that case we may for the varied motion take an
undisturbed motion of the system corresponding to slightly
different initial conditions. This gives δE constant, and
from (6) we get therefore

δE = ω δI, (8)

where ω =
1

σ
is the frequency of the motion. This equation

forms a simple relation between the variations in E and I for
periodic systems, which will be often used in the following.

Returning now to systems of one degree of freedom, we
shall take our starting point from Planck’s original theory
of a linear harmonic vibrator. According to this theory the
stationary states of a system, consisting of a particle execut-
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ing linear harmonic vibrations with a constant frequency ω0

independent of the energy, are given by the well known rela-
tion

E = nhω0, (9)

where n is a positive entire number, h Planck’s constant,
and E the total energy which is supposed to be zero if the
particle is at rest.

From (8) it follows at once that (9) is equivalent to

I =

∫ σ

0

pq̇ dt =

∫
p dq = nh, (10)

where the latter integral is to be taken over a complete os-
cillation of q between its limits. On the principle of the
mechanical transformability of the stationary states we shall
therefore assume, following Ehrenfest, that (10) holds not
only for a Planck’s vibrator but for any periodic system
of one degree of freedom which can be formed in a contin-
uous manner from a linear harmonic vibrator by a gradual
variation of the field of force in which the particle moves.
This condition is immediately seen to be fulfilled by all such
systems in which the motion is of oscillating type i. e. where
the moving particle during a period passes twice through
any point of its orbit once in each direction. If, however,
we confine ourselves to systems of one degree of freedom, it
will be seen that systems in which the motion is of rotat-
ing type, i. e. where the particle during a period passes only
once through every point of its orbit, cannot be formed in a
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continuous manner from a linear harmonic vibrator without
passing through singular states in which the period becomes
infinite long and the result becomes ambiguous. We shall
not here enter more closely on this difficulty which has been
pointed out by Ehrenfest, because it disappears when we
consider systems of several degrees of freedom, where we
shall see that a simple generalisation of (10) holds for any
system for which every motion is periodic.

As regards the application of (9) to statistical problems
it was assumed in Planck’s theory that the different states
of the vibrator corresponding to different values of n are
a-priori equally probable, and this assumption was strongly
supported by the agreement obtained on this basis with the
measurements of the specific heat of solids at low tempera-
tures. Now it follows from the considerations of Ehrenfest,
mentioned in the former section, that the a-priori probability
of a given stationary state is not changed by a continuous
transformation, and we shall therefore expect that for any
system of one degree of freedom the different states corre-
sponding to different entire values of n in (10) are a-priori
equally probable.

As pointed out by Planck in connection with the ap-
plication of (9), it is simply seen that statistical considera-
tions, based on the assumption of equal probability for the
different states given by (10), will show the necessary re-
lation to considerations of ordinary statistical mechanics in
the limit where the latter theory has been found to give re-
sults in agreement with experiments. Let the configuration
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and motion of a mechanical system be characterised by s in-
dependent variables q1, . . . , qs and corresponding momenta
p1, . . . , ps and let the state of the system be represented
in a 2s-dimensional phase-space by a point with coordinates
q1, . . . , qs, p1, . . . , ps. Then, according to ordinary statisti-
cal mechanics, the probability for this point to lie within a
small element in the phase-space is independent of the po-
sition and shape of this element and simply proportional to
its volume, defined in the usual way by

δW =

∫
dq1 . . . dqs dp1 . . . dps. (11)

In the quantum theory, however, these considerations can-
not be directly applied, since the point representing the state
of a system cannot be displaced continuously in the 2s-
dimensional phase-space, but can lie only on certain sur-
faces of lower dimensions in this space. For systems of one
degree of freedom the phase-space is a two-dimensional sur-
face, and the points representing the states of some system
given by (10) will be situated on closed curves on this sur-
face. Now, in general, the motion will differ considerably
for any two states corresponding to successive entire values
of n in (10), and a simple general connection between the
quantum theory and ordinary statistical mechanics is there-
fore out of question. In the limit, however, where n is large,
the motions in successive states will only differ very little
from each other, and it would therefore make little difference
whether the points representing the systems are distributed
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continuously on the phase-surface or situated only on the
curves corresponding to (10), provided the number of sys-
tems which in the first case are situated between two such
curves is equal to the number which in the second case lies on
one of these curves. But it will be seen that this condition is
just fulfilled in consequence of the above hypothesis of equal
a-priori probability of the different stationary states, because
the element of phase-surface limited by two successive curves
corresponding to (10) is equal to

δW =

∫
dp dq =

[∫
p dq

]
n

−
[∫

p dq

]
n−1

= In − In−1 = h,

(12)

so that on ordinary statistical mechanics the probabilities for
the point to lie within any two such elements is the same. We
see consequently that the hypothesis of equal probability of
the different states given by (10) gives the same result as or-
dinary statistical mechanics in all such applications in which
the states of the great majority of the systems correspond
to large values of n. Considerations of this kind have led
Debye1) to point out that condition (10) might have a gen-
eral validity for systems of one degree of freedom, already
before Ehrenfest, on the basis of his theory of the me-
chanical transformability of the stationary states, had shown
that this condition forms the only rational generalisation of
Planck’s condition (9).

1) P. Debye, Wolfskehl-Vortrag. Göttingen 1913.
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We shall now discuss the relation between the theory of
spectra of atomic systems of one degree of freedom, based on
(1) and (10), and the ordinary theory of radiation, and we
shall see that this relation in several respects shows a close
analogy to the relation, just considered, between the statisti-
cal applications of (10) and considerations based on ordinary
statistical mechanics. Since the values for the frequency ω
in two states corresponding to different values of n in (10)
in general are different, we see at once that we cannot ex-
pect a simple connection between the frequency calculated
by (1) of the radiation corresponding to a transition between
two stationary states and the motions of the system in these
states, except in the limit where n is very large, and where
the ratio between the frequencies of the motion in successive
stationary states differs very little from unity. Consider now
a transition between the state corresponding to n = n′ and
the state corresponding to n = n′′, and let us assume that
n′ and n′′ are large numbers and that n′ − n′′ is small com-
pared with n′ and n′′. In that case we may in (8) for δE put
E ′ − E ′′ and for δI put I ′ − I ′′, and we get therefore from
(1) and (10) for the frequency of the radiation emitted or
absorbed during the transition between the two states

ν =
1

h
(E ′ − E ′′) =

ω

h
(I ′ − I ′′) = (n′ − n′′)ω. (13)

Now in a stationary state of a periodic system the dis-
placement of the particles in any given direction may always
be expressed by means of a Fourier-series as a sum of har-
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monic vibrations:

ξ =
∑

Cτ cos 2π(τωt+ cτ ), (14)

where the C’s and c’s are constants and the summation is
to be extended over all positive entire values of τ . On the
ordinary theory of radiation we should therefore expect the
system to emit a spectrum consisting of a series of lines of
frequencies equal to τω, but, as it is seen, this is just equal
to the series of frequencies which we obtain from (13) by in-
troducing different values for n′ − n′′. As far as the frequen-
cies are concerned we see therefore that in the limit where
n is large there exists a close relation between the ordinary
theory of radiation and the theory of spectra based on (1)
and (10). It may be noticed, however, that, while on the first
theory radiations of the different frequencies τω correspond-
ing to different values of τ are emitted or absorbed at the
same time, these frequencies will on the present theory, based
on the fundamental assumption I and II, be connected with
entirely different processes of emission or absorption, corre-
sponding to the transition of the system from a given state
to different neighbouring stationary states.

In order to obtain the necessary connection, mentioned
in the former section, to the ordinary theory of radiation in
the limit of slow vibrations, we must further claim that a
relation, as that just proved for the frequencies, will, in the
limit of large n, hold also for the intensities of the different
lines in the spectrum. Since now on ordinary electrodynam-
ics the intensities of the radiations corresponding to different
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values of τ are directly determined from the coefficients C|tau
in (14), we must therefore expect that for large values of n
these coefficients will on the quantum theory determine the
probability of spontaneous transition from a given stationary
state for which n = n′ to a neighbouring state for which
n = n′′ = n′ − τ . Now this connection between the ampli-
tudes of the different harmonic vibrations into which the mo-
tion can be resolved, characterised by different values of τ ,
and the probabilities of transition from a given stationary
state to the different neighbouring stationary states, char-
acterised by different values of n′ − n′′, may clearly be ex-
pected to be of a general nature. Although, of course, we
cannot without a detailed theory of the mechanism of tran-
sition obtain an exact calculation of the latter probabilities,
unless n is large, we may expect that also for small values
of n the amplitude of the harmonic vibrations corresponding
to a given value of τ will in some way give a measure for
the probability of a transition between two states for which
n′ − n′′ is equal to τ . Thus in general there will be a certain
probability of an atomic system in a stationary state to pass
spontaneously to any other state of smaller energy, but if
for all motions of a given system the coefficients C in (14)
are zero for certain values of τ , we are led to expect that no
transition will be possible, for which n′ − n′′ is equal to one
of these values.

A simple illustration of these considerations is offered by
the linear harmonic vibrator mentioned above in connection
with Planck’s theory. Since in this case Cτ is equal to zero
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for any τ different from 1, we shall expect that for this sys-
tem only such transitions are possible in which n alters by
one unit. From (1) and (9) we obtain therefore the simple re-
sult that the frequency of any radiation emitted or absorbed
by a linear harmonic vibrator is equal to the constant fre-
quency ω0. This result seems to be supported by observa-
tions on the absorption-spectra of diatomic gases, showing
that certain strong absorption-lines, which according to gen-
eral evidence may be ascribed to vibrations of the two atoms
in the molecule relative to each other, are not accompanied
by lines of the same order of intensity and corresponding to
entire multipla of the frequency, such as it should be expected
from (1) if the system had any considerable tendency to pass
between non-successive states. In this connection it may be
noted that the fact, that in the absorption spectra of some
diatomic gases faint lines occur corresponding to the double
frequency of the main lines,1) obtains a natural explanation
by assuming that for finite amplitudes the vibrations are not
exactly harmonic and that therefore the molecules possess
a small probability of passing also between non-successive
states.

§ 3. Conditionally periodic systems.

If we consider systems of several degrees of freedom the
motion will be periodic only in singular cases and the gen-
eral conditions which determine the stationary states cannot

1) See E. C. Kemble, Phys. Rev., VIII, p. 701, 1916.
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therefore be derived by means of the same simple kind of con-
siderations as in the former section. As mentioned in the in-
troduction, however, Sommerfeld and others have recently
succeeded, by means of a suitable generalisation of (10), to
obtain conditions for an important class of systems of sev-
eral degrees of freedom, which, in connection with (1), have
been found to give results in convincing agreement with ex-
perimental results about line-spectra. Subsequently these
conditions have been proved by Ehrenfest and especially
by Burgers1) to be invariant for slow mechanical transfor-
mations.

To the generalisation under consideration we are natu-
rally led, if we first consider such systems for which the mo-
tions corresponding to the different degrees of freedom are
dynamically independent of each other. This occurs if the ex-
pression for the total energy E in Hamilton’s equations (4)
for a system of s degrees of freedom can be written as a sum
E1 + · · ·+Es, where Ek contains qk and pk only. An illustra-
tion of a system of this kind is presented by a particle moving
in a field of force in which the force-components normal to
three mutually perpendicular fixed planes are functions of
the distances from these planes respectively. Since in such a
case the motion corresponding to each degree of freedom in
general will be periodic, just as for a system of one degree of

1) J. M. Burgers, Versl. Akad. Amsterdam, XXV, pp. 849,
918, 1055. (1917), Ann. d. Phys. LII. p. 195 (1917), Phil. Mag. XXXIII,
p. 514 (1917).
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freedom, we may obviously expect that the condition (10) is
here replaced by a set of s conditions:

Ik =

∫
pk dqk = nkh, (k = 1, . . . , s) (15)

where the integrals are taken over a complete period of the
different q’s respectively, and where n1, . . . , ns are entire
numbers. It will be seen at once that these conditions are
invariant for any slow transformation of the system for which
the independency of the motions corresponding to the dif-
ferent coordinates is maintained.

A more general class of systems for which a similar anal-
ogy with systems of a single degree of freedom exists and
where conditions of the same type as (15) present themselves
is obtained in the case where, although the motions corre-
sponding to the different degrees of freedom are not indepen-
dent of each other, it is possible nevertheless by a suitable
choice of coordinates to express each of the momenta pk as a
function of qk only. A simple system of this kind consists of
a particle moving in a plane orbit in a central field of force.
Taking the length of the radius-vector from the centre of the
field to the particle as q1, and the angular distance of this
radius-vector from a fixed line in the plane of the orbit as q2,
we get at once from (4), since E does not contain q2, the
well known result that during the motion the angular mo-
mentum p2 is constant and that the radial motion, given by
the variations of p1 and q1 with the time, will be exactly the
same as for a system of one degree of freedom. In his funda-
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mental application of the quantum theory to the spectrum
of a non-periodic system Sommerfeld assumed therefore
that the stationary states of the above system are given by
two conditions of the form:

I1 =

∫
p1 dq1 = n1h, I2 =

∫
p2 dq2 = n2h. (16)

While the first integral obviously must be taken over a pe-
riod of the radial motion, there might at first sight seem to
be a difficulty in fixing the limits of integration of q2. This
disappears, however, if we notice that an integral of the type
under consideration will not be altered by a change of co-
ordinates in which q is replaced by some function of this
variable. In fact, if instead of the angular distance of the
radius-vector we take for q2 some continuous periodic func-
tion of this angle with period 2π, every point in the plane
of the orbit will correspond to one set of coordinates only
and the relation between p and q will be exactly of the same
type as for a periodic system of one degree of freedom for
which the motion is of oscillating type. It follows therefore
that the integration in the second of the conditions (16) has
to be taken over a complete revolution of the radius-vector,
and that consequently this condition is equivalent with the
simple condition that the angular momentum of the particle
round the centre of the field is equal to an entire multiple

of
h

2π
. As pointed out by Ehrenfest, the conditions (16)

are invariant for such special transformations of the system
for which the central symmetry is maintained. This follows
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immediately from the fact that the angular momentum in
transformations of this type remains invariant, and that the
equations of motion for the radial coordinate as long as p2 re-
mains constant are the same as for a system of one degree of
freedom. On the basis of (16), Sommerfeld has, as men-
tioned in the introduction, obtained a brilliant explanation of
the fine structure of the lines in the hydrogen spectrum, due
to the change of the mass of the electron with its velocity.1)
To this theory we shall come back in Part II.

As pointed out by Epstein2) and Schwarzschild3) the

1) In this connection it may be remarked that conditions of the same
type as (16) were proposed independently by W. Wilson (Phil. Mag.
XXIX p. 795 (1915) and XXXI p. 156 (1916)), but by him applied
only to the simple Keplerian motion described by the electron in the
hydrogen atom if the relativity modifications are neglected. Due to the
singular position of periodic systems in the quantum theory of systems
of several degrees of freedom this application, however, involves, as it
will appear from the following discussion, an ambiguity which deprives
the result of an immediate physical interpretation. Conditions analo-
gous to (16) have also been established by Planck in his interesting
theory of the “physical structure of the phase space” of systems of sev-
eral degrees of freedom (Verh. d. D. Phys. Ges. XVII p. 407 and p. 438
(1915), Ann. d. Phys. L p. 385, (1916)). This theory, which has no
direct relation to the problem of line-spectra discussed in the present
paper, rests upon a profound analysis of the geometrical problem of
dividing the multiple-dimensional phase space corresponding to a sys-
tem of several degrees of freedom into “cells” in a way analogous to the
division of the phase surface of a system of one degree of freedom by
the curves given by (10).

2) P. Epstein, loc. cit.
3) K. Schwarzschild, loc. cit.
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central systems considered by Sommerfeld form a special
case of a more general class of systems for which conditions
of the same type as (15) may be applied. These are the
so called conditionally periodic systems, to which we are led
if the equations of motion are discussed by means of the
Hamilton-Jacobi partial differential equation.1) In the
expression for the total energy E as a function of the q’s and
the p’s, let the latter quantities be replaced by the partial
differential coefficients of some function S with respect to
the corresponding q’s respectively, and consider the partial
differential equation:

E

(
q1, . . . , qs,

∂S

∂q1

, . . . ,
∂S

∂qs

)
= α1, (17)

obtained by putting this expression equal to an arbitrary
constant α1. If then

S = F (q1, . . . , qs, α1, . . . , αs) + C,

where α2, . . . , αs, and C are arbitrary constants like α1, is
a total integral of (17), we get, as shown by Hamilton and
Jacobi, the general solution of the equations of motion (4)
by putting

∂S

∂α1

= t+ β1,
∂S

∂αk
= βk, (k = 2, . . . , s) (18)

1) See f. inst. C. V. L. Charlier, Die Mechanik des Himmels, Bd. I,
Abt. 2.



33

and
∂S

∂qk
= pk, (k = 1, . . . , s) (19)

where t is the time and β1, . . . , βs a new set of arbitrary
constants. By means of (18) the q’s are given as functions of
the time t and the 2s constants α1, . . . , αs, β1, . . . , βs which
may be determined for instance from the values of the q’s
and q̈’s at a given moment.

Now the class of systems, referred to, is that for which,
for a suitable choice of orthogonal coordinates, it is possible
to find a total integral of (17) of the form

S =
s∑
1

Sk(qk, α1, . . . , αs), (20)

where Sk is a function of the s constants α1, . . . , αs and of
qk only. In this case, in which the equation (17) allows of
what is called “separation of variables”, we get from (19) that
every p is a function of the α’s and of the corresponding q
only. If during the motion the coordinates do not become in-
finite in the course of time or converge to fixed limits, every q
will, just as for systems of one degree of freedom, oscillate
between two fixed values, different for the different q’s and
depending on the α’s. Like in the case of a system of one
degree of freedom, pk will become zero and change its sign
whenever qk passes through one of these limits. Apart from
special cases, the system will during the motion never pass
twice through a configuration corresponding to the same set
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of values for the q’s and p’s, but it will in the course of time
pass within any given, however small, distance from any con-
figuration corresponding to a given set of values q1, . . . , qs,
representing a point within a certain closed s-dimensional
extension limited by s pairs of (s − 1)-dimensional surfaces
corresponding to constant values of the q’s equal to the above
mentioned limits of oscillation. A motion of this kind is
called “conditionally periodic”. It will be seen that the char-
acter of the motion will depend only on the α’s and not on
the β’s, which latter constants serve only to fix the exact con-
figuration of the system at a given moment, when the α’s are
known. For special systems it may occur that the orbit will
not cover the above mentioned s-dimensional extension ev-
erywhere dense, but will, for all values of the α’s, be confined
to an extension of less dimensions. Such a case we will refer
to in the following as a case of “degeneration”.

Since for a conditionally periodic system which allows of
separation in the variables q1, . . . , qs the p’s are functions
of the corresponding q’s only, we may, just as in the case
of independent degrees of freedom or in the case of quasi-
periodic motion in a central field, form a set of expressions
of the type

Ik =

∫
pk(qk, α1, . . . , αs) dqk, (k = 1, . . . , s) (21)

where the integration is taken over a complete oscillation
of qk. As, in general, the orbit will cover everywhere dense
an s-dimensional extension limited in the characteristic way
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mentioned above, it follows that, except in cases of degen-
eration, a separation of variables will not be possible for
two different sets of coordinates q1, . . . , qs and q′1, . . . , q′s,
unless q1 = f1(q′1), . . . , qs = fs(q

′
s), and since a change of

coordinates of this type will not affect the values of the ex-
pressions (21), it will be seen that the values of the I’s are
completely determined for a given motion of the system. By
putting

Ik = nkh, (k = l, . . . , s) (22)

where n1, . . . , ns are positive entire numbers, we obtain
therefore a set of conditions which form a natural generali-
sation of condition (10) holding for a system of one degree
of freedom.

Since the I’s, as given by (21), depend on the constants
α1, . . . , αs only and not on the β’s, the α’s may, in general,
inversely be determined from the values of the I’s. The char-
acter of the motion will therefore, in general, be completely
determined by the conditions (22), and especially the value
for the total energy, which according to (17) is equal to α1,
will be fixed by them. In the cases of degeneration referred
to above, however, the conditions (22) involve an ambiguity,
since in general for such systems there will exist an infinite
number of different sets of coordinates which allow of a sep-
aration of variables, and which will lead to different motions
in the stationary states, when these conditions are applied.
As we shall see below, this ambiguity will not influence the
fixation of the total energy in the stationary states, which



36

is the essential factor in the theory of spectra based on (1)
and in the applications of the quantum theory to statistical
problems.

A well known characteristic example of a conditionally
periodic system is afforded by a particle moving under the
influence of the attractions from two fixed centres varying as
the inverse squares of the distances apart, if the relativity
modifications are neglected. As shown by Jacobi this prob-
lem can be solved by a separation of variables if so called
elliptical coordinates are used, i. e. if for ql and q2 we take
two parameters characterising respectively an ellipsoid and a
hyperboloid of revolution with the centres as foci and pass-
ing through the instantaneous position of the moving parti-
cle, and for q3 we take the angle between the plane through
the particle and the centres and a fixed plane through the
latter points, or, in closer conformity with the above general
description, some continuous periodic function of this angle
with period 2π. A limiting case of this problem is afforded
by an electron rotating round a positive nucleus and subject
to the effect of an additional homogeneous electric field, be-
cause this field may be considered as arising from a second
nucleus at infinite distance apart from the first. The mo-
tion in this case will therefore be conditionally periodic and
allow a separation of variables in parabolic coordinates, if
the nucleus is taken as focus for both sets of paraboloids of
revolution, and their axes are taken parallel to the direction
of the electric force. By applying the conditions (22) to this
motion Epstein and Schwarzschild have, as mentioned
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in the introduction, independent of each other, obtained an
explanation of the effect of an external electric field on the
lines of the hydrogen spectrum, which was found to be in
convincing agreement with Stark’s measurements. To the
results of these calculations we shall return in Part II.

In the above way of representing the general theory we
have followed the same procedure as used by Epstein. By
introducing the so called “angle-variables” well known from
the astronomical theory of perturbations, Schwarzschild
has given the theory a very elegant form in which the analogy
with systems of one degree of freedom presents itself in a
somewhat different manner. The connection between this
treatment and that given above has been discussed in detail
by Epstein.1)

As mentioned above the conditions (22), first estab-
lished from analogy with systems of one degree of freedom,
have subsequently been proved generally to be mechani-
cally invariant for any slow transformation for which the
system remains conditionally periodic. The proof of this in
variance has been given quite recently by Burgers2) by
means of an interesting application of the theory of contact-
transformations based on Schwarzschild’s introduction of
angle variables. We shall not enter here on these calculations
but shall only consider some points in connection with the

1) P. Epstein, Ann. d. Phys. LI, p. 168 (1916). See also Note on
page 53 of the present paper.

2) J. M. Burgers, loc. cit. Versl. Akad. Amsterdam, XXV, p. 1055
(1917).
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problem of the mechanical transformability of the stationary
states which are of importance for the logical consistency
of the general theory and for the later applications. In § 2
we saw that in the proof of the mechanical invariance of
relation (10) for a periodic system of one degree of freedom,
it was essential that the comparative variation of the exter-
nal conditions during the time of one period could be made
small. This may be regarded as an immediate consequence
of the nature of the fixation of the stationary states in the
quantum theory. In fact the answer to the question, whether
a given state of a system is stationary, will not depend only
on the motion of the particles at a given moment or on the
field of force in the immediate neighbourhood of their instan-
taneous positions, but cannot be given before the particles
have passed through a complete cycle of states, and so to
speak have got to know the entire field of force of influence
on the motion. If thus, in the case of a periodic system of
one degree of freedom, the field of force is varied by a given
amount, and if its comparative variation within the time of
a single period was not small, the particle would obviously
have no means to get to know the nature of the variation
of the field and to adjust its stationary motion to it, before
the new field was already established. For exactly the same
reasons it is a necessary condition for the mechanical in-
variance of the stationary states of a conditionally periodic
system, that the alteration of the external conditions during
an interval in which the system has passed approximately
through all possible configurations within the above men-
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tioned s-dimensional extension in the coordinate-space can
be made as small as we like. This condition forms therefore
also an essential point in Burgers’ proof of the invariance
of the conditions (22) for mechanical transformations. Due
to this we meet with a characteristic difficulty when during
the transformation of the system we pass one of the cases of
degeneration mentioned above, where, for every set of values
for the α’s, the orbit will not cover the s-dimensional exten-
sion everywhere dense, but will be confined to an extension
of less dimensions. It is clear that, when by a slow trans-
formation of a conditionally periodic system we approach
a degenerate system of this kind, the time-interval which
the orbit takes to pass close to any possible configuration
will tend to be very long and will become infinite when
the degenerate system is reached. As a consequence of this
the conditions (22) will generally not remain mechanically
invariant when we pass a degenerate system, what has in-
timate connection with the above mentioned ambiguity in
the determination of the stationary states of such systems
by means of (22).

A typical case of a degenerate system, which may serve as
an illustration of this point, is formed by a system of several
degrees of freedom for which every motion is simply periodic,
independent of the initial conditions. In this case, which is of
great importance in the physical applications, we have from
(5) and (21), for any set of coordinates in which a separation
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of variables is possible,

I =

∫ σ

0

(p1q̇1 + · · ·+ psq̇s) dt = κ1I1 + · · ·+ κsIs, (23)

where the integration is extended over one period of the mo-
tion, and where κ1, . . . , κs are a set of positive entire numbers
without a common divisor. Now we shall expect that every
motion, for which it is possible to find a set of coordinates
in which it satisfies (22), will be stationary. For any such
motion we get from (23)

I = (κ1n1 + · · ·+ κsns)h = nh, (24)

where n is a whole number which may take all positive val-
ues if, as in the applications mentioned below, at least one
of the κ’s is equal to one. Inversely, if the system under
consideration allows of separation of variables in an infinite
continuous multitude of sets of coordinates, we must con-
clude that generally every motion which satisfies (24) will
be stationary, because in general it will be possible for any
such motion to find a set of coordinates in which it satisfies
also (22). It will thus be seen that, for a periodic system
of several degrees of freedom, condition (24) forms a simple
generalisation of condition (10). From relation (8), which
holds for two neighbouring motions of any periodic system,
it follows further that the energy of the system will be com-
pletely determined by the value of I, just as for systems of
one degree of freedom.
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Consider now a periodic system in some stationary state
satisfying (24), and let us assume that an external field is
slowly established at a continuous rate and that the motion
at any moment during this process allows of a separation of
variables in a certain set of coordinates. If we would assume
that the effect of the field on the motion of the system at any
moment could be calculated directly by means of ordinary
mechanics, we would find that the values of the I’s with re-
spect to the latter coordinates would remain constant during
the process, but this would involve that the values of the n’s
in (22) would in general not be entire numbers, but would
depend entirely on the accidental motion, satisfying (24),
originally possessed by the system. That mechanics, how-
ever, cannot generally be applied directly to determine the
motion of a periodic system under influence of an increasing
external field, is just what we should expect according to
the singular position of degenerate systems as regards me-
chanical transformations. In fact, in the presence of a small
external field, the motion of a periodic system will undergo
slow variations as regards the shape and position of the orbit,
and if the perturbed motion is conditionally periodic these
variations will be of a periodic nature. Formally, we may
therefore compare a periodic system exposed to an external
field with a simple mechanical system of one degree of free-
dom in which the particle performs a slow oscillating motion.
Now the frequency of a slow variation of the orbit will be seen
to be proportional to the intensity of the external field, and
it is therefore obviously impossible to establish the external
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field at a rate so slow that the comparative change of its in-
tensity during a period of this variation is small. The process
which takes place during the increase of the field will thus be
analogous to that which takes place if an oscillating particle
is subject to the effect of external forces which change consid-
erably during a period. Just as the latter process generally
will give rise to emission or absorption of radiation and can-
not be described by means of ordinary mechanics, we must
expect that the motion of a periodic system of several degrees
of freedom under the establishment of the external field can-
not be determined by ordinary mechanics, but that the field
will give rise to effects of the same kind as those which occur
during a transition between two stationary states accompa-
nied by emission or absorption of radiation. Consequently
we shall expect that, during the establishment of the field,
the system will in general adjust itself in some unmechanical
way until a stationary state is reached in which the frequency
(or frequencies) of the above mentioned slow variation of the
orbit has a relation to the additional energy of the system
due to the presence of the external field, which is of the same
kind as the relation, expressed by (8) and (10), between the
energy and frequency of a periodic system of one degree of
freedom. As it will be shown in Part II in connection with
the physical applications, this condition is just secured if the
stationary states in the presence of the field are determined
by the conditions (22), and it will be seen that these con-
siderations offer a means of fixing the stationary states of a
perturbed periodic system also in cases where no separation
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of variables can be obtained.
In consequence of the singular position of the degenerate

systems in the general theory of stationary states of condi-
tionally periodic systems, we obtain a means of connecting
mechanically two different stationary states of a given sys-
tem through a continuous series of stationary states without
passing through systems in which the forces are very small
and the energies in all the stationary states tend to coincide
(comp. page 14). In fact, if we consider a given conditionally
periodic system which can be transformed in a continuous
way into a system for which every orbit is periodic and for
which every state satisfying (24) will also satisfy (22) for a
suitable choice of coordinates, it is clear in the first place that
it is possible to pass in a mechanical way through a continu-
ous series of stationary states from a state corresponding to
a given set of values of the n’s in (22) to any other such state
for which κ1n1+· · ·+κsns possesses the same value. If, more-
over, there exists a second periodic system of the same char-
acter to which the first periodic system can be transformed
continuously, but for which the set of κ’s is different, it will
be possible in general by a suitable cyclic transformation to
pass in a mechanical way between any two stationary states
of the given conditionally periodic system satisfying (22).

To obtain an example of such a cyclic transformation let us
take the system consisting of an electron which moves round a
fixed positive nucleus exerting an attraction varying as the in-
verse square of the distance. If we neglect the small relativity
corrections, every orbit will be periodic independent of the ini-
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tial conditions and the system will allow of separation of variables
in polar coordinates as well as in any set of elliptical coordinates,
of the kind mentioned on page 36, if the nucleus is taken as one
of the foci. It is simply seen that any orbit which satisfies (24)
for a value of n > 1, will also satisfy (22) for a suitable choice of
elliptical coordinates. By imagining another nucleus of infinite
small charge placed at the other focus, the orbit may further be
transformed into another which satisfies (24) for the same value
of n, but which may have any given value for the eccentricity.
Consider now a state of the system satisfying (21), and let us as-
sume that by the above means the orbit is originally so adjusted
that in plane polar coordinates it will correspond to n1 = m and
n2 = n − m in (16). Let then the system undergo a slow con-
tinuous transformation during which the field of force acting on
the electron remains central, but by which the law of attraction
is slowly varied until the force is directly proportional to the dis-
tance apart. In the final state, as well as in the original state, the
orbit of the electron will be closed, but during the transforma-
tion the orbit will not be closed, and the ratio between the mean
period of revolution and the period of the radial motion, which in
the original motion was equal to one, will during the transforma-
tion increase continuously until in the final state it is equal to two.
This means that, using polar coordinates, the values of κ1 and κ2

in (22) which for the first state are equal to κ1 = κ2 = 1, will
be for the second state κ1 = 2 and κ2 = 1. Since during the
transformation n1 and n2 will keep their values, we get therefore
in the final state I = h

(
2m + (n − m)

)
= h(n + m). Now in

the latter state, the system allows a separation of variables not
only in polar coordinates but also in any system of rectangular
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Cartesian coordinates, and by suitable choice of the direction of
the axes, we can obtain that any orbit, satisfying (24) for a value
of n > l, will also satisfy (22). By an infinite small change of the
force components in the directions of the axes, in such a way that
the motions in these directions remain independent of each other
but possess slightly different periods, it will further be possible to
transform the elliptical orbit mechanically into one correspond-
ing to any given ratio between the axes. Let us now assume that
in this way the orbit of the electron is transformed into a circu-
lar one, so that, returning to plane polar coordinates, we have
n1 = 0 and n2 = n + m, and let then by a slow transformation
the law of attraction be varied until again it is that of the inverse
square. It will be seen that when this state is reached the motion
will again satisfy (24), but this time we will have I = h(n + m)
instead of I = nh as in the original state. By repeating a cyclic
process of this kind we may pass from any stationary state of the
system in question which satisfies (24) for a value of n > 1 to
any other such state without leaving at any moment the region
of stationary states.

The theory of the mechanical transformability of the sta-
tionary states gives us a means to discuss the question of the
a-priori probability of the different states of a conditionally
periodic system, characterised by different sets of values for
the n’s in (22). In fact from the considerations, mentioned
in § 1, it follows that, if the a-priori probability of the station-
ary states of a given system is known, it is possible at once
to deduce the probabilities for the stationary states of any
other system to which the first system can be transformed
continuously without passing through a system of degener-
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ation. Now from the analogy with systems of one degree of
freedom it seems necessary to assume that, for a system of
several degrees of freedom for which the motions correspond-
ing to the different coordinates are dynamically independent
of each other, the a-priori probability is the same for all the
states corresponding to different sets of n’s in (15). Accord-
ing to the above we shall therefore assume that the a-priori
probability is the same for all states, given by (22), of any
system which can be formed in a continuous way from a
system of this kind without passing through systems of de-
generation. It will be observed that on this assumption we
obtain exactly the same relation to the ordinary theory of
statistical mechanics in the limit of large n’s as obtained in
the case of systems of one degree of freedom. Thus, for a
conditionally periodic system, the volume given by (11) of
the element of phase-space, including all points q1, . . . , qs,
p1, . . . , ps which represent states for which the value of Ik
given by (21) lies between Ik and Ik + δIk, is seen at once to
be equal to1)

δW = δI1 δI2 . . . δIs, (25)

if the coordinates are so chosen that the motion correspond-
ing to every degree of freedom is of oscillating type. The
volume of the phase-space limited by s pairs of surfaces,
corresponding to successive values for the n’s in the con-
ditions (22), will therefore be equal to hs and consequently
be the same for every combination of the n’s. In the limit

1) Comp. A. Sommerfeld, Ber. Akad. München, 1917, p. 83.
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where the n’s are large numbers and the stationary states
corresponding to successive values for the n’s differ only very
little from each other, we thus obtain the same result on the
assumption of equal a-priori probability of all the stationary
states, corresponding to different sets of values of n1, . . . ,
ns in (22), as would be obtained by application of ordinary
statistical mechanics.

The fact that the last considerations hold for every non-
degenerate conditionally periodic system suggests the as-
sumption that in general the a-priori probability will be the
same for all the states determined by (22), even if it should
not be possible to transform the given system into a system
of independent degrees of freedom without passing through
degenerate systems. This assumption will be shown to be
supported by the consideration of the intensities of the dif-
ferent components of the Stark-effect of the hydrogen lines,
mentioned in the next Part. When we consider a degenerate
system, however, we cannot assume that the different sta-
tionary states are a-priori equally probable. In such a case
the stationary states will be characterised by a number of
conditions less than the number of degrees of freedom, and
the probability of a given state must be determined from the
number of different stationary states of some non-degenerate
system which will coincide in the given state, if the latter sys-
tem is continuously transformed into the degenerate system
under consideration.

In order to illustrate this, let us take the simple case of
a degenerate system formed by an electrified particle mov-
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ing in a plane orbit in a central field, the stationary states
of which are given by the two conditions (16). In this case
the plane of the orbit is undetermined, and it follows al-
ready from a comparison with ordinary statistical mechan-
ics, that the a-priori probability of the states characterised
by different combinations of n1 and n2 in (16) cannot be the
same. Thus the volume of the phase-space, corresponding
to states for which I1 lies between I1 and I1 + δI1 and for
which I2 lies between I2 and I2 + δI2, is found by a simple
calculation1) to be equal to δW = 2I1 δI1 δI2, if the mo-
tion is described by ordinary polar coordinates. For large
values of n1 and n2, we must therefore expect that the a-
priori probability of a stationary state corresponding to a
given combination (n1, n2) is proportional to n2. The ques-
tion of the a-priori probability of states corresponding to
small values of the n’s has been discussed by Sommerfeld
in connection with the problem of the intensities of the dif-
ferent components in the fine structure of the hydrogen lines
(see Part II). From considerations about the volume of the
extensions in the phase-space, which might be considered
as associated with the states characterised by different com-
binations (n1, n2), Sommerfeld proposes several different
expressions for the a-priori probability of such states. Due
to the necessary arbitrariness involved in the choice of these
extensions, however, we cannot in this way obtain a ratio-
nal determination of the a-priori probability of states corre-

1) See A. Sommerfeld, loc. cit.
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sponding to small values of n1 and n2. On the other hand,
this probability may be deduced by regarding the motion
of the system under consideration as the degeneration of a
motion characterised by three numbers n1, n2 and n3, as in
the general applications of the conditions (22) to a system
of three degrees of freedom. Such a motion may be obtained
for instance by imagining the system placed in a small ho-
mogeneous magnetic field. In certain respects this case falls
outside the general theory of conditionally periodic systems
discussed in this section, but, as we shall see in Part II, it can
be simply shown that the presence of the magnetic field im-
poses the further condition on the motion in the stationary
states that the angular momentum round the axis of the field

is equal to n′
h

2π
, where n′ is a positive entire number equal

to or less than n2, and which for the system considered in
the spectral problems must be assumed to be different from
zero. When regard is taken to the two opposite directions
in which the particle may rotate round the axis of the field,
we see therefore that for this system a state corresponding
to a given combination of n1 and n2 in the presence of the
field can be established in 2n2 different ways. The a-priori
probability of the different states of the system may conse-
quently for all combinations of n1 and n2 be assumed to be
proportional to n2.

The assumption just mentioned that the angular momen-
tum round the axis of the field cannot be equal to zero is
deduced from considerations of systems for which the mo-
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tion corresponding to special combinations of the n’s in (22)
would become physically impossible due to some singular-
ity in its character. In such cases we must assume that
no stationary states exist corresponding to the combinations
(n1, n2, . . . , ns) under consideration, and on the above prin-
ciple of the invariance of the a-priori probability for contin-
uous transformations we shall accordingly expect that the
a-priori probability of any other state, which can be trans-
formed continuously into one of these states without passing
through cases of degeneration, will also be equal to zero.

Let us now proceed to consider the spectrum of a con-
ditionally periodic system, calculated from the values of the
energy in the stationary states by means of relation (1). If
E(n1, . . . , ns) is the total energy of a stationary state de-
termined by (22) and if ν is the frequency of the line cor-
responding to the transition between two stationary states
characterised by nk = n′k and nk = n′′k respectively, we have

ν =
1

h

[
E(n′1, . . . , n

′
s)− E(n′′1, . . . , n

′′
s)
]
. (26)

In general, this spectrum will be entirely different from the
spectrum to be expected on the ordinary theory of electrody-
namics from the motion of the system. Just as for a system
of one degree of freedom we shall see, however, that in the
limit where the motions in neighbouring stationary states
differ very little from each other, there exists a close relation
between the spectrum calculated on the quantum theory and
that to be expected on ordinary electrodynamics. As in § 2
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we shall further see, that this connection leads to certain
general considerations about the probability of transition be-
tween any two stationary states and about the nature of the
accompanying radiation, which are found to be supported by
observations. In order to discuss this question we shall first
deduce a general expression for the energy difference between
two neighbouring states of a conditionally periodic system,
which can be simply obtained by a calculation analogous to
that used in § 2 in the deduction of the relation (8).

Consider some motion of a conditionally periodic system
which allows of separation of variables in a certain set of co-
ordinates q1, . . . , qs, and let us assume that at the time t = ϑ
the configuration of the system will to a close approximation
be the same as at the time t = 0. By taking ϑ large enough
we can make this approximation as close as we like. If next
we consider some conditionally periodic motion, obtained by
a small variation of the first motion, and which allows of sep-
aration of variables in a set of coordinates q′1, . . . , q′s which
may differ slightly from the set q1, . . . , qs, we get by means
of Hamilton’s equations (4), using the coordinates q′1, . . . ,
q′s, ∫ ϑ

0

δE dt =

∫ ϑ

0

s∑
1

(
∂E

∂p′k
δp′k +

∂E

∂q′k
δq′k

)
dt

=

∫ ϑ

0

s∑
1

(q̇′k δp
′
k − ṗ′k δq′k) dt.

By partial integration of the second term in the bracket this
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gives:∫ ϑ

0

δE dt =

∫ ϑ

0

s∑
1

δ(p′kq̇
′
k) dt−

∣∣∣∣∣
s∑
1

p′k δq
′
k

∣∣∣∣∣
t=ϑ

t=0

. (27)

Now we have for the unvaried motion∫ ϑ

0

s∑
1

p′kq̇
′
k dt =

∫ ϑ

0

s∑
1

pkq̇k dt =
s∑
1

NkIk,

where Ik is defined by (21) and where Nk is the number of
oscillations performed by qk in the time interval ϑ. For the
varied motion we have on the other hand:∫ ϑ

0

s∑
1

p′kq̇
′
k dt =

∫ t=ϑ

t=0

s∑
1

p′kdq
′
k =

s∑
1

NkI
′
k+

∣∣∣∣∣
s∑
1

p′k δq
′
k

∣∣∣∣∣
t=ϑ

t=0

,

where the I’s correspond to the conditionally periodic mo-
tion in the coordinates q′1, . . . , q′s, and the δq’s which en-
ter in the last term are the same as those in (27). Writing
I ′k − Ik = δIk, we get therefore from the latter equation∫ ϑ

0

δE dt =
s∑
1

Nk δIk. (28)

In the special case where the varied motion is an undis-
turbed motion belonging to the same system as the unvaried
motion we get, since δE will be constant,

δE =
s∑
1

ωk δIk, (29)
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where ωk =
Nk

ϑ
is the mean frequency of oscillation of qk be-

tween its limits, taken over a long time interval of the same
order of magnitude as ϑ. This equation forms a simple gener-
alisation of (8), and in the general case in which a separation
of variables will be possible only for one system of coordi-
nates leading to a complete definition of the I’s it might
have been deduced directly from the analytical theory of the
periodicity properties of the motion of a conditionally peri-
odic system, based on the introduction of angle-variables.1)
From (29) it follows moreover that, if the system allows of
a separation of variables in an infinite continuous multitude

1) See Charlier, Die Mechanik des Himmels, Bd. I Abt. 2, and
especially P. Epstein, Ann. d. Phys. LI p. 178 (1916). By means of
the well known theorem of Jacobi about the change of variables in the
canonical equations of Hamilton, the connection between the notion
of angle-variables and the quantities I, discussed by Epstein in the
latter paper, may be briefly exposed in the following elegant manner
which has been kindly pointed out to me by Mr. H. A. Kramers.
Consider the function S(q1, . . . , qs, I1, . . . , Is) obtained from (20) by
introducing for the α’s their expressions in terms of the I’s given by
the equations (21). This function will be a many valued function of
the q’s which increases by Ik if qk describes one oscillation between its
limits and comes back to its original value while the other q’s remain
constant. If we therefore introduce a new set of variables w1, . . . , ws
defined by

wk =
∂S

∂Ik
, (k = 1, . . . , s) (1∗)

it will be seen that wk increases by one unit while the other w’s will
come back to their original values if qk describes one oscillation between
its limits and the other q’s remain constant. Inversely it will therefore
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be seen that the q’s, and also the p’s which were given by

pk =
∂S

∂qk
, (k = i, . . . , s) (2∗)

when considered as functions of the I’s and w’s will be periodic func-
tions of every of the w’s with period 1. According to Fourier’s theo-
rem any of the q’s may therefore be represented by an s-double trigono-
metric series of the form

q =
∑

Aτ1,..., τs cos 2π(τ1w1 + . . .+ τsws + ατ1,..., τs), (3∗)

where the A’s and α’s are constants depending on the I’s and where
the summation is to be extended over all entire values of τ1, . . . , τs.
On account of this property of the w’s, the quantities 2πw1, . . . , 2πws
are denoted as “angle variables”. Now from (1∗) and (2∗) it follows
according to the above mentioned theorem of Jacobi (see for instance
Jacobi, Vorlesungen über Dynamik § 37) that the variations with the
time of the I’s and w’s will be given by

dIk
dt

= − ∂E

∂wk
,

dwk
dt

=
∂E

∂Ik
, (k = 1, . . . , s) (4∗)

where the energy E is considered as a function of the I’s and w’s.
Since E, however, is determined by the I’s only we get from (4∗),
besides the evident result that the I’s are constant during the motion,
that the w’s will vary linearly with the time and can be represented by

wk = ωkt+ δk, ωk =
∂E

∂Ik
, (k = 1, . . . , s) (5∗)

where δk is a constant, and where ωk is easily seen to be equal to the
mean frequency of oscillation of qk. From (5∗) equation (28) follows at
once, and it will further be seen that by introducing (5∗) in (3∗) we get
the result that every of the q’s, and consequently also any one-valued
function of the q’s, can be represented by an expression of the type (31).
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of sets of coordinates, the total energy will be the same for
all motions corresponding to the same values of the I’s, in-
dependent of the special set of coordinates used to calculate
these quantities. As mentioned above and as we have al-

In this connection it may be mentioned that the method of
Schwarzschild of fixing the stationary states of a conditionally pe-
riodic system, mentioned on page 36, consists in seeking for a given
system a set of canonically conjugated variables Q1, . . . , Qs, P1, . . . ,
Ps in such a way that the positional coordinates of the system q1, . . . ,
qs, and their conjugated momenta p1, . . . , ps, when considered as func-
tions of the Q’s and P ’s, are periodic in every of the Q’s with period 2π,
while the energy of the system depends only on the P ’s. In analogy
with the condition which fixes the angular momentum in Sommer-
feld’s theory of central systems Schwarzschild next puts every of

the P ’s equal to an entire multiple of
h

2π
. In contrast to the theory of

stationary states of conditionally periodic systems based on the possi-
bility of separation of variables and the fixation of the I’s by (22), this
method does not lead to an absolute fixation of the stationary states,
because, as pointed out by Schwarzschild himself, the above defini-
tion of the P ’s leaves an arbitrary constant undetermined in every of
these quantities. In many cases, however, these constants may be sim-
ply determined from considerations of mechanical transformability of
the stationary states, and as pointed out by Burgers (loc. cit. Versl.
Akad. Amsterdam XXV p. 1055 (1917)). Schwarzschild’s method
possesses on the other hand the essential advantage of being applicable
to certain classes of systems in which the displacements of the parti-
cles may be represented by trigonometric series of the type (31), but
for which the equations of motion cannot be solved by separation of
variables in any fixed set of coordinates. An interesting application of
this to the spectrum of rotating molecules, given by Burgers, will be
mentioned in Part IV.
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ready shown in the case of purely periodic systems by means
of (8), the total energy is therefore also in cases of degener-
ation completely determined by the conditions (22).

Consider now a transition between two stationary states
determined by (22) by putting nk = n′k and nk = n′′k respec-
tively, and let us assume that n′1, . . . , n′s, n

′′
1, . . . , n′′s are large

numbers, and that the differences n′k−n′′k are small compared
with these numbers. Since the motions of the system in these
states will differ relatively very little from each other we may
calculate the difference of the energy by means of (29), and
we get therefore, by means of (1), for the frequency of the
radiation corresponding to the transition between the two
states

ν =
1

h
(E ′−E ′′) =

1

h

s∑
1

ωk(I
′
k−I ′′k ) =

s∑
1

ωk(n
′
k−n′′k), (30)

which is seen to be a direct generalisation of the expres-
sion (13) in § 2.

Now, in complete analogy to what is the case for periodic
systems of one degree of freedom, it is proved in the analyt-
ical theory of the motion of conditionally periodic systems
mentioned above that for the latter systems the coordinates
q1, . . . , qs, and consequently also the displacements of the
particles in any given direction, may be expressed as a func-
tion of the time by an s-double infinite Fourier series of
the form:

ξ =
∑

Cτ1,..., τs cos 2π
{

(τ1ω1 + . . .+τsωs)t+cτ1,..., τs
}
, (31)
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where the summation is to be extended over all positive and
negative entire values of the τ ’s, and where the ω’s are the
above mentioned mean frequencies of oscillation for the dif-
ferent q’s. The constants Cτ1,..., τs depend only on the α’s in
the equations (18) or, what is the same, on the I’s, while the
constants cτ1,..., τs depend on the α’s as well as on the β’s. In
general the quantities τ1ω1 + . . . + τsωs will be different for
any two different sets of values for the τ ’s, and in the course
of time the orbit will cover everywhere dense a certain s-
dimensional extension. In a case of degeneration, however,
where the orbit will be confined to an extension of less di-
mensions, there will exist for all values of the α’s one or more
relations of the type m1ω1+. . .+msωs = 0 where the m’s are
entire numbers and by the introduction of which the expres-
sion (31) can be reduced to a Fourier series which is less
than s-double infinite. Thus in the special case of a system

of which every orbit is periodic we have
ω1

κ1

= · · · = ωs
κs

= ω,

where the κ’s are the numbers which enter in equation (23),
and the Fourier series for the displacements in the differ-
ent directions will in this case consist only of terms of the
simple form Cτ cos 2π{τωt+ cτ}, just as for a system of one
degree of freedom.

On the ordinary theory of radiation, we should expect
from (31) that the spectrum emitted by the system in a
given state would consist of an s-double infinite series of
lines of frequencies equal to τ1ω1 + · · · + τsωs. In general,
this spectrum would be completely different from that given
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by (26). This follows already from the fact that the ω’s will
depend on the values for the constants α1, . . . , αs and will
vary in a continuous way for the continuous multitude of me-
chanically possible states corresponding to different sets of
values for these constants. Thus in general the ω’s will be
quite different for two different stationary states correspond-
ing to different sets of n’s in (22), and we cannot expect any
close relation between the spectrum calculated on the quan-
tum theory and that to be expected on the ordinary theory
of mechanics and electrodynamics. In the limit, however,
where the n’s in (22) are large numbers, the ratio between
the ω’s for two stationary states, corresponding to nk = n′k
and nk = n′′k respectively, will tend to unity if the differ-
ences n′k − n′′k are small compared with the n’s, and as seen
from (30) the spectrum calculated by (1) and (22) will in this
limit just tend to coincide with that to be expected on the
ordinary theory of radiation from the motion of the system.

As far as the frequencies are concerned, we thus see that
for conditionally periodic systems there exists a connection
between the quantum theory and the ordinary theory of ra-
diation of exactly the same character as that shown in § 2 to
exist in the simple case of periodic systems of one degree of
freedom. Now on ordinary electrodynamics the coefficients
Cτ1,...,τs in the expression (31) for the displacements of the
particles in the different directions would in the well known
way determine the intensity and polarisation of the emitted
radiation of the corresponding frequency τ1ω1 + . . . + τsωs.
As for systems of one degree of freedom we must therefore
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conclude that, in the limit of large values for the n’s, the
probability of spontaneous transition between two stationary
states of a conditionally periodic system, as well as the po-
larisation of the accompanying radiation, can be determined
directly from the values of the coefficient Cτ1,..., τs in (31) cor-
responding to a set of τ ’s given by τk = n′k − n′′k, if n′1, . . . ,
n′s and n′′1, . . . , n′′s are the numbers which characterise the
two stationary states.

Without a detailed theory of the mechanism of transition
between the stationary states we cannot, of course, in general
obtain an exact determination of the probability of sponta-
neous transition between two such states, unless the n’s are
large numbers. Just as in the case of systems of one degree of
freedom, however, we are naturally led from the above con-
siderations to assume that, also for values of the n’s which
are not large, there must exist an intimate connection be-
tween the probability of a given transition and the values
of the corresponding Fourier coefficient in the expressions
for the displacements of the particles in the two stationary
states. This allows us at once to draw certain important
conclusions. Thus, from the fact that in general negative as
well as positive values for the τ ’s appear in (31), it follows
that we must expect that in general not only such transitions
will be possible in which all the n’s decrease, but that also
transitions will be possible for which some of the n’s increase
while others decrease. This conclusion, which is supported
by observations on the fine structure of the hydrogen lines
as well as on the Stark effect, is contrary to the suggestion,
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put forward by Sommerfeld with reference to the essen-
tial positive character of the I’s, that every of the n’s must
remain constant or decrease under a transition. Another di-
rect consequence of the above considerations is obtained if
we consider a system for which, for all values of the con-
stants α1, . . . , αs, the coefficient Cτ1,..., τs corresponding to a
certain set τ 0

1 , . . . , τ 0
s of values for the τ ’s is equal to zero in

the expressions for the displacements of the particles in ev-
ery direction. In this case we shall naturally expect that no
transition will be possible for which the relation n′k−n′′k = τ 0

k

is satisfied for every k. In the case where Cτ01 ,..., τ0s is equal
to zero in the expressions for the displacement in a certain
direction only, we shall expect that all transitions, for which
n′k−n′′k = τ 0

k for every k, will be accompanied by a radiation
which is polarised in a plane perpendicular to this direction.

A simple illustration of the last considerations is afforded
by the system mentioned in the beginning of this section, and
which consists of a particle executing motions in three per-
pendicular directions which are independent of each other.
In that case all the Fourier coefficients in the expressions
for the displacements in any direction will disappear if more
than one of the τ ’s are different from zero. Consequently
we must assume that only such transitions are possible for
which only one of the n’s varies at the same time, and that
the radiation corresponding to such a transition will be lin-
early polarised in the direction of the displacement of the
corresponding coordinate. In the special case where the mo-
tions in the three directions are simply harmonic, we shall
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moreover conclude that none of the n’s can vary by more
than a single unit, in analogy with the considerations in the
former section about a linear harmonic vibrator.

Another example which has more direct physical impor-
tance, since it includes all the special applications of the
quantum theory to spectral problems mentioned in the in-
troduction, is formed by a conditionally periodic system pos-
sessing an axis of symmetry. In all these applications a sep-
aration of variables is obtained in a set of three coordinates
q1, q2 and q3, of which the first two serve to fix the position of
the particle in a plane through the axis of the system, while
the last is equal to the angular distance between this plane
and a fixed plane through the same axis. Due to the sym-
metry, the expression for the total energy in Hamilton’s
equations will not contain the angular distance q3 but only
the angular momentum p3 round the axis. The latter quan-
tity will consequently remain constant during the motion,
and the variations of q1 and q2 will be exactly the same as
in a conditionally periodic system of two degrees of freedom
only. If the position of the particle is described in a set of
cylindrical coordinates z, ρ, ϑ, where z is the displacement in
the direction of the axis, ρ the distance of the particle from
this axis and ϑ is equal to the angular distance q3, we have
therefore

z =
∑

Cτ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2)t+ cτ1,τ2
}

and ρ =
∑

C ′τ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2)t+ c′τ1,τ2
}
,

(32)
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where the summation is to be extended over all positive and
negative entire values of τ1 and τ2, and where ω1 and ω2

are the mean frequencies of oscillation of the coordinates
q1 and q2. For the rate of variation of ϑ with the time we
have further

dϑ

dt
= q̇3 =

∂E

∂p3

= f(q1, q2, p1, p2, p3)

= ±
∑

C ′′τ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2)t+ c′′τ1,τ2
}
,

where the two signs correspond to a rotation of the particle
in the direction of increasing and decreasing q3 respectively,
and are introduced to separate the two types of symmetrical
motions corresponding to these directions. This gives

±ϑ = 2πω3t+
∑

C ′′′τ1,τ2 cos 2π
{

(τ1ω1 +τ2ω2)t+c′′′τ1,τ2
}
, (33)

where the positive constant ω3 =
1

2π
C ′′0,0 is the mean fre-

quency of rotation round the axis of symmetry of the sys-
tem. Considering now the displacement of the particle in
rectangular coordinates x, y and z, and taking as above the
axis of symmetry as z-axis, we get from (32) and (33) after
a simple contraction of terms

x = ρ cosϑ

=
∑

Dτ1,τ2 cos 2π
{

(τ1ω1 + τ2ω2 + ω3)t+ dτ1,τ2
}

and y = ρ sinϑ

= ±
∑

Dτ1,τ2 sin 2π
{

(τ1ω1 + τ2ω2 + ω3)t+dτ1,τ2
}
,

(34)
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where the D’s and d’s are new constants, and the summation
is again to be extended over all positive and negative values
of τ1 and τ2.

From (32) and (34) we see that the motion in the present
case may be considered as composed of a number of linear
harmonic vibrations parallel to the axis of symmetry and
of frequencies equal to the absolute values of (τ1ω1 + τ2ω2),
together with a number of circular harmonic motions round
this axis of frequencies equal to the absolute values of (τ1ω1+
τ2ω2 + ω3), and possessing the same direction of rotation as
that of the moving particle or the opposite if the latter ex-
pression is positive or negative respectively. According to or-
dinary electrodynamics the radiation from the system would
therefore consist of a number of components of frequency
τ1ω1 + τ2ω2 polarised parallel to the axis of symmetry, and
a number of components of frequencies τ1ω1 + τ2ω2 +ω3 and
of circular polarisation round this axis (when viewed in the
direction of the axis). On the present theory we shall conse-
quently expect that in this case only two kinds of transitions
between the stationary states given by (22) will be possible.
In both of these n1 and n2 may vary by an arbitrary num-
ber of units, but in the first kind of transition, which will
give rise to a radiation polarised parallel to the axis of the
system, n3 will remain unchanged, while in the second kind
of transition n3 will decrease or increase by one unit and
the emitted radiation will be circularly polarised round the
axis in the same direction as or the opposite of that of the
rotation of the particle respectively.
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In the next Part we shall see that these conclusions are
supported in an instructive manner by the experiments on
the effects of electric and magnetic fields on the hydrogen
spectrum. In connection with the discussion of the general
theory, however, it may be of interest to show that the for-
mal analogy between the ordinary theory of radiation and
the theory based on (1) and (22), in case of systems possess-
ing an axis of symmetry, can be traced not only with respect
to frequency relations but also by considerations of conser-
vation of angular momentum. For a conditionally periodic
system possessing an axis of symmetry the angular momen-
tum round this axis is, with the above choice of coordinates,

according to (22) equal to
I3

2π
= n3

h

2π
. If therefore, as as-

sumed above for a transition corresponding to an emission of
linearly polarised light, n3 is unaltered, it means that the an-
gular momentum of the system remains unchanged, while if
n3 alters by one unit, as assumed for a transition correspond-
ing to an emission of circularly polarised light, the angular

momentum will be altered by
h

2π
. Now it is easily seen that

the ratio between this amount of angular momentum and the
amount of energy hν emitted during the transition is just
equal to the ratio between the amount of angular momen-
tum and energy possessed by the radiation which according
to ordinary electrodynamics would be emitted by an elec-
tron rotating in a circular orbit in a central field of force. In
fact, if a is the radius of the orbit, ν the frequency of revolu-
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tion and F the force of reaction due to the electromagnetic
field of the radiation, the amount of energy and of angu-
lar momentum round an axis through the centre of the field
perpendicular to the plane of the orbit, lost by the electron
in unit of time as a consequence of the radiation, would be
equal to 2πνaF and aF respectively. Due to the principles
of conservation of energy and of angular momentum holding
in ordinary electrodynamics, we should therefore expect that
the ratio between the energy and the angular momentum of
the emitted radiation would be 2πν,1) but this is seen to be
equal to the ratio between the energy hν and the angular

momentum
h

2π
lost by the system considered above during

a transition for which we have assumed that the radiation
is circularly polarised. This agreement would seem not only
to support the validity of the above considerations but also
to offer a direct support, independent of the equations (22),
of the assumption that, for an atomic system possessing an
axis of symmetry, the total angular momentum round this

axis is equal to an entire multiple of
h

2π
.

A further illustration of the above considerations of the
relation between the quantum theory and the ordinary the-
ory of radiation is obtained if we consider a conditionally
periodic system subject to the influence of a small perturb-
ing field of force. Let us assume that the original system
allows of separation of variables in a certain set of coordi-

1) Comp. K. Schaposchnikow, Phys. Zeitschr. XV, p. 454 (1914).
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nates q1, . . . , qs, so that the stationary states are determined
by (22). From the necessary stability of the stationary states
we must conclude that the perturbed system will possess a
set of stationary states which only differ slightly from those
of the original system. In general, however, it will not be pos-
sible for the perturbed system to obtain a separation of vari-
ables in any set of coordinates, but if the perturbing force is
sufficiently small the perturbed motion will again be of con-
ditionally periodic type and may be regarded as a superposi-
tion of a number of harmonic vibrations just as the original
motion. The displacements of the particles in the stationary
states of the perturbed system will therefore be given by an
expression of the same type as (31) where the fundamental
frequencies ωk and the amplitudes Cτ1,..., τs may differ from
those corresponding to the stationary states of the original
system by small quantities proportional to the intensity of
the perturbing forces. If now for the original motion the co-
efficients Cτ1,..., τs corresponding to certain combinations of
the τ ’s are equal to zero for all values of the constants α1, . . . ,
αs, these coefficients will therefore for the perturbed motion,
in general, possess small values proportional to the perturb-
ing forces. From the above considerations we shall therefore
expect that, in addition to the main probabilities of such
transitions between stationary states which are possible for
the original system, there will for the perturbed system ex-
ist small probabilities of new transitions corresponding to
the above mentioned combinations of the τ ’s. Consequently
we shall expect that the effect of the perturbing field on the



67

spectrum of the system will consist partly in a small dis-
placement of the original lines, partly in the appearance of
new lines of small intensity.

A simple example of this is afforded by a system consist-
ing of a particle moving in a plane and executing harmonic
vibrations in two perpendicular directions with frequencies
ω1 and ω2. If the system is undisturbed all coefficients Cτ1,τ2
will be zero, except C1,0 and C0,1. When, however, the sys-
tem is perturbed, for instance by an arbitrary small central
force, there will in the Fourier expressions for the displace-
ments of the particle, in addition to the main terms corre-
sponding to the fundamental frequencies ω1 and ω2, appear
a number of small terms corresponding to frequencies given
by τ1ω1 + τ2ω2 where τ1 and τ2 are entire numbers which
may be positive as well as negative. On the present theory
we shall therefore expect that in the presence of the per-
turbing force there will appear small probabilities for new
transitions which will give rise to radiations analogous to
the so called harmonics and combination tones in acoustics,
just as it should be expected on the ordinary theory of radia-
tion where a direct connection between the emitted radiation
and the motion of the system is assumed. Another example
of more direct physical application is afforded by the effect
of an external homogeneous electric field in producing new
spectral lines. In this case the potential of the perturbing
force is a linear function of the coordinates of the particles
and, whatever is the nature of the original system, it fol-
lows directly from the general theory of perturbations that
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the frequency of any additional term in the expression for
the perturbed motion, which is of the same order of mag-
nitude as the external force, must correspond to the sum
or difference of two frequencies of the harmonic vibrations
into which the original motion can be resolved. With ap-
plications of these considerations we will meet in Part II in
connection with the discussion of Sommerfeld’s theory of
the fine structure of the hydrogen lines and in Part III in
connection with the problem of the appearance of new se-
ries in the spectra of other elements under the influence of
intense external electric fields.

As mentioned we cannot without a more detailed the-
ory of the mechanism of transition between stationary states
obtain quantitative information as regards the general ques-
tion of the intensities of the different lines of the spectrum
of a conditionally periodic system given by (26), except in
the limit where the n’s are large numbers, or in such special
cases where for all values of the constants α1, . . . , αs certain
coefficients Cτ1,..., τs in (31) are equal to zero. From consid-
erations of analogy, however, we must expect that it will be
possible also in the general case to obtain an estimate of the
intensities of the different lines in the spectrum by compar-
ing the intensity of a given line, corresponding to a transition
between two stationary states characterised by the numbers
n′1, . . . , n′s and n′′1, . . . , n′′s respectively, with the intensities of
the radiations of frequencies ω1(n′1−n′′1)+· · ·+ωs(n′s−n′′s) to
be expected on ordinary electrodynamics from the motions
in these states; although of course this estimate becomes
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more uncertain the smaller the values for the n’s are. As it
will be seen from the applications mentioned in the following
Parts this is supported in a general way by comparison with
the observations.

Færdig fra Trykkeriet d. 27, April 1918.



Part II.

On the hydrogen spectrum.

§ 1. The simple theory of the
series spectrum of hydrogen.

As well known, the frequencies of the lines of the series
spectrum of hydrogen may, if we look apart from the fine
structure of the single lines revealed by instruments of high
dispersive power, be represented by the formula

ν = K

(
1

n′′2
− 1

n′2

)
, (35)

where K is a constant, and n′ and n′′ a set of two entire
numbers, different for the different lines of the spectrum.
According to the general principles of the quantum theory
of line spectra discussed in the first section of Part I, we shall
therefore expect that this spectrum is emitted by a system
which possesses a series of stationary states in which the
numerical value of the energy in the nth state, omitting an
arbitrary constant, with a high degree of approximation is
given by

En =
Kh

n2
, (36)

where h is Planck’s constant which enters in the funda-
mental relation (1).

Now according to Rutherford’s theory of atomic struc-
ture, a neutral hydrogen atom must be expected to consist
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of an electron and a positive nucleus of a mass very large
compared with that of the electron, which move under the
influence of a mutual attraction inversely proportional to
the square of the distance apart. Assuming that the mo-
tion in the stationary states may be determined by ordinary
mechanics, and neglecting for the moment the small modifi-
cations claimed by the theory of relativity, we find that each
of the particles will describe an elliptical orbit with their
common centre of gravity at one of the foci, and from the
well known laws for a Keplerian motion we have that the
frequency of revolution ω and the major axis 2α of the rel-
ative orbit of the particles, quite independent of the degree
of eccentricity of this orbit, are given by

ω =

√
2W 3(M +m)

π2N2e4Mm
, 2α =

Ne2

W
, (37)

where W is the work necessary to remove the electron to
infinite distance from the nucleus, while Ne and M are the
charge and the mass of the nucleus, and −e and m the charge
and the mass of the electron.

As explained in Part I, there will in general be no simple
connection between the motion of a system in the stationary
states and the spectrum emitted during transitions between
these states; such a connection, however, must be expected to
exist in the limit where the motions in successive stationary
states differ comparatively little from each other. In the
present case this connection claims in the first place that
the frequency of revolution tends to zero for increasing n.
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According to (36) and (37) we may therefore put the value
of W in the nth stationary state equal to

Wn =
Kh

n2
. (38)

Moreover, since (35) can be written in the form

ν = (n′ − n′′)K n′ + n′′

n′2n′′2
,

it is seen to be a necessary condition that the frequency of
revolution for large values of n is asymptotically given by

ωn ∼
2K

n3
, (39)

if we wish that the frequency of the radiation emitted during
a transition between two stationary states, for which the
numbers n′ and n′′ are large compared with their difference
n′ − n′′, shall tend to coincide with one of the frequencies of
the spectrum which on ordinary electrodynamics would be
emitted from the system in these states. But from (37) and
(38) it will be seen that (39) claims the fulfilment of the
relation

K =
2π2N2e4Mm

h3(M +m)
=

2π2N2e4m

h3(1 +m/M)
. (40)

As shown in previous papers, this relation is actually
found to be fulfilled within the limit of experimental errors
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if we put N = 1 and for e, m, and h introduce the values
deduced from measurements on other phenomena; a result
which may be considered as affording a strong support for the
validity of the general principles discussed in Part I, as well
as for the reality of the atomic model under consideration.
Further it was found that, if in formula (35) for the hydrogen
spectrum the constant K is replaced by a constant which is
four times larger, this formula represents to a high degree
of approximation the frequencies of the lines of a spectrum
emitted by helium, when this gas is subject to a condensed
discharge. This was to be expected on Rutherford’s the-
ory, according to which a neutral helium atom contains two
electrons and a nucleus of a charge twice that of the nucleus
of the hydrogen atom. A helium atom from which one elec-
tron is removed will thus form a dynamical system perfectly
similar to a neutral hydrogen atom, and may therefore be ex-
pected to emit a spectrum represented by (35) if in (40) we
put N = 2. Moreover a closer comparison of the helium spec-
trum under consideration with the hydrogen spectrum has
shown that the value of the constant K in the former spec-
trum was not exactly four times as large as that in the latter,
but that the ratio between these constants within the limit
of experimental errors agreed with the value to be expected
from (40), when regard is taken to the different masses of the
nuclei of the atoms of hydrogen and helium corresponding to
the different atomic weights of these elements.1)

1) For the literature on this subject the reader is referred to the
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Introducing the expression for K given by (40) in the
formulæ (37) and (38), we find for the values of W , ω and 2α
in the stationary states

Wn =
1

n2

2π2N2e4Mm

h2(M +m)
,

ωn =
1

n3

4π2N2e4Mm

h3(M +m)
, 2αn = n2 h

2(M +m)

2π2Ne2Mm
.

(41)

Now for a mechanical system as that under consideration,
for which every motion is periodic independent of the initial
conditions, we have that the value of the total energy will
be completely determined by the value of the quantity I,
defined by equation (5) in Part I. As mentioned this follows
directly from relation (8), which shows at the same time that
for a system for which every motion is periodic the frequency
will be completely determined by I or by the energy only.
For the value of I in the stationary states of the hydrogen
atom we get by means of (8) from (37) and (41), since in this
case I will obviously become zero when W becomes infinite,

I =

∫ ∞
Wn

dW

ω
=

√
π2N2e4Mm

2(M +m)

∫ ∞
Wn

W−3/2 dW

=

√
2π2N2e4Mm

Wn(M +m)
= nh.

papers cited in the introduction.
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This result will be seen to be consistent with condition (24)
which, as mentioned in Part I, presents itself as a direct
generalisation to periodic systems of several degrees of free-
dom of condition (10) which determines the stationary states
of a system of one degree of freedom, and which again on
Ehrenfest’s principle of the mechanical transformability
of the stationary states forms a rational generalisation of
Planck’s fundamental formula (9) for the possible values
of the energy of a linear harmonic vibrator.

In this connection it will be observed, that the relation
discussed above between the hydrogen spectrum and the mo-
tion of the atom in the limit of small frequencies is completely
analogous to the general relation, discussed in § 2 in Part I,
between the spectrum which on the quantum theory would
be emitted by a system of one degree of freedom, the station-
ary states of which are determined by (10), and the motion
of the system in these states. It will at the same time be
noted that, in case of hydrogen, this relation implies that
the motion of the particles in the stationary states of the
atom will not in general be simply harmonic, or in other
words that the orbit of the electron will not in general be
circular. In fact if the motion of the particles were simply
harmonic, as the motion of a Planck’s vibrator, we should
expect on the considerations in Part I that no transition be-
tween two stationary states of the atom would be possible
for which n′ and n′′ differ by more than one unit; but this
would obviously be inconsistent with the observations, since
for instance the lines of the ordinary Balmer series, accord-
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ing to the theory, correspond to transitions for which n′′ = 2
while n′ takes the values 3, 4, 5, . . . . In connection with
this consideration it may be remarked that, adopting a ter-
minology well known from acoustics, we may from the point
of view of the quantum theory regard the higher members
of the Balmer series (n′ = 4, 5, . . . ) as the “harmonics” of
the first member (n′ = 3), although of course the frequencies
of the former lines are by no means entire multipla of the
frequency of the latter line.

While in the above way it was possible to obtain a sim-
ple interpretation of certain main features of the hydrogen
spectrum, it was not found possible in this way to account in
detail for such phenomena in which the deviation of the mo-
tion of the particles from a simple Keplerian motion plays
an essential part. This is the case in the problem of the
fine structure of the hydrogen lines, which is due to the ef-
fect of the small variation of the mass of the electron with
its velocity, as well as in the problems of the characteristic
effects of external electric and magnetic fields on the hy-
drogen lines. As mentioned in the introduction, a progress
of fundamental importance in the treatment of such prob-
lems was made by Sommerfeld, who obtained a convinc-
ing explanation of the fine structure of the hydrogen lines
by means of his theory of the stationary states of central
systems, in which the single condition I = nh was replaced
by the two conditions (16); and the theory was further de-
veloped by Epstein and Schwarzschild, who on this line
established the general theory, based on the conditions (22),
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of the stationary states of a conditionally periodic system
for which the equations of motion may be solved by means
of separation of variables in the Hamilton-Jacobi partial
differential equation. If the hydrogen atom is exposed to a
homogeneous electric or to a homogeneous magnetic field,
the atom forms a system of this class, and, as shown by Ep-
stein and Schwarzschild as regards the Stark effect and
by Sommerfeld and Debye as regards the Zeeman effect,
the theory under consideration leads to values for the total
energy of the atom in the stationary states, which together
with relation (1) lead again to values for the frequencies of
the radiations emitted during the transitions between these
states, which are in agreement with the measured frequencies
of the components into which the hydrogen lines are split up
in the presence of the fields. As pointed out in Part I, it is
possible moreover to throw light on the question of the inten-
sities and polarisations of these components on the basis of
the necessary formal relation between the quantum theory of
line spectra and the ordinary theory of radiation in the limit
where the motions in successive stationary states differ very
little from each other. In the following sections the men-
tioned problems will be discussed in detail. As regards the
fixation of the stationary states we shall not, however, follow
the same procedure as used by the authors just mentioned,
which rests upon the immediate application of the condi-
tions (22), but it will be shown how the conditions which fix
the stationary states of the perturbed atom may be obtained
by a direct examination of the small deviations of the motion
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of the electron from a simple Keplerian motion. In this way
it seems possible to obtain a more direct illustration of the
principles discussed in Part I; and we shall see moreover that
the treatment in question may be used also in cases where
the method of separation of variables cannot be applied.

In Part III the problem of the series spectra of other
elements will be treated from a similar point of view. As
pointed out by the writer in an earlier paper, a simple ex-
planation of the pronounced analogy between these spectra
and the hydrogen spectrum is offered by the fact, that the
atomic systems, involved in the emission of the spectra un-
der consideration, in a certain sense may be regarded as a
perturbed hydrogen atom. On the other hand, a clue to the
interpretation of the characteristic difference between the hy-
drogen spectrum and the spectra of other elements was first
obtained by Sommerfeld’s theory of the stationary states
of central systems referred to above. As shown by Som-
merfeld, it is possible on this theory to account in general
outlines for the well known laws governing the frequencies of
the series spectra of the elements; and, as it will be shown in
Part III, it is also possible, on the basis of the formal relation
between the quantum theory and the ordinary theory of ra-
diation, in this way to obtain a simple interpretation of the
laws governing the remarkable differences in the intensities
with which the various series of lines appear, which on the
combination principle would constitute the complete spec-
tra under consideration. As regards the detailed discussion
of these spectra, however, it is necessary to bear in mind that
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the part played by the inner electrons in the atoms of the
elements in question forms a far more intricate problem than
the perturbing effect of a fixed external field on the hydrogen
atom. For the treatment of this problem the theory of condi-
tionally periodic systems based on the conditions (22) does
not seem to suffice, while, as it will be shown in Part III,
it appears that the method of perturbations exposed in the
following lends itself naturally also to this case.

§ 2. The stationary states of a
perturbed periodic system.

In Part I it was shown that the problem of the fixation of
the stationary states of a periodic system of several degrees
of freedom, which is subject to the perturbing influence of a
small external field, cannot be treated directly on the basis
of the general principle of the mechanical transformability
of the stationary states by considering the influence, which
on ordinary mechanics a slow establishment of the exter-
nal field would exert on the motion of some arbitrarily cho-
sen stationary state of the undisturbed system (see Part I,
page 41). This is an immediate consequence of the fact, men-
tioned in the former section, that the stationary states of the
perturbed system are characterised by a greater number of
extra-mechanical conditions than the stationary states of the
undisturbed system. On the other hand, we were led to as-
sume from the general formal relation between the quantum
theory of line spectra and the ordinary theory of radiation,
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that it is possible to obtain information about the stationary
states of the perturbed system from a direct consideration of
the slow variations which the periodic orbit undergoes as a
consequence of the mechanical effect of the external field on
the motion. Thus, if these variations are of periodic or con-
ditionally periodic type, we may expect that, in the presence
of the external field, the values for the additional energy of
the system in the stationary states are related to the small
frequency or frequencies of the perturbations, in a manner
analogous to the relation between energy and frequency in
the stationary states of an ordinary periodic or conditionally
periodic system.

If the equations of motion for the perturbed system can
be solved by means of separation of variables, it is easily
seen that the relation in question is fulfilled if the stationary
states are determined by the conditions (22). Consider thus
a system for which every orbit is periodic, and let us assume
that in the presence of a given small external field a sepa-
ration of variables is possible in a certain set of coordinates
q1, . . . , qs. For the undisturbed system we have then, ac-
cording to equation (23), that the quantity I, defined by (5),
is equal to κ1I1 + · · · + κsIs, where I1, . . . , Is are defined
by (21) and calculated with respect to the set of coordinates
just mentioned, and where the κ’s are a set of entire positive
numbers without a common divisor. For simplicity let us
assume that at least one of the κ’s, say κs, is equal to one,
and that consequently, as mentioned on page 40, the num-
ber n in (24), which characterises the stationary states of
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the undisturbed system, may take all positive values. This
condition will be fulfilled in case of all the applications to
spectral problems discussed below; it will be seen, however,
that the extension to problems where this condition is not
fulfilled will only necessitate small modifications in the fol-
lowing considerations. By use of (29) we get now for the
difference in the total energy of two slightly different states
of the perturbed system

δE =
s∑
1

ωk δIk = ωs

s∑
1

κk δIk +
s−1∑

1

(ωk − κkωs) δIk. (42)

Since for the undisturbed system ωk = κkωs, the differences
ωk − κkωs appearing in the last term will, for the perturbed
system, be small quantities which will just represent the fre-
quencies of the slow variations which the orbit undergoes in
the presence of the external field. These quantities will in
the following be denoted by vk. Consider now the multi-
tude of states of the perturbed system for which

∑s
1 κkIk

is equal to nh, where n is a given entire positive number.
This multitude will be seen to include all possible stationary
states of the perturbed system, which satisfy (22), and the
motion of which differs at any moment only slightly from
some stationary motion of the undisturbed system, satisfy-
ing (24) for the given value of n. Denoting the value of the
energy of the undisturbed system in such a state by En, and
the value of the energy of the perturbed system in a state
belonging to the multitude under consideration by En + E,
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we get from (42)

δE =
s−1∑

1

vk δIk (43)

for the energy difference between two neighbouring states of
this multitude. Since this relation has the same form as (29),
we see consequently that by putting I1, . . . , Is−1 equal to
entire multipla of h, as claimed by the conditions (22), we
obtain exactly the same relation between the additional en-
ergy E and the small frequencies vk, impressed on the system
by the external field, as that which holds between the total
energy and the fundamental frequencies in the stationary
states of a conditionally periodic system of s − 1 degrees of
freedom.

As a simple illustration of these calculations let us consider
the system consisting of a particle moving in a plane and subject
to an attraction from a fixed point, which varies proportional to
the distance apart. If undisturbed, the motion of this system will
be periodic independent of the initial conditions, and the parti-
cle will describe an elliptical orbit with its centre at the fixed
point. Moreover the equations of motion of the undisturbed sys-
tem may be solved by means of separation of variables in polar
coordinates, as well as in any set of rectangular coordinates. In
the first case we have, taking for q1 the length of the radius vec-
tor from the fixed point to the particle and for q2 the angular
distance of this radius vector from a fixed direction, κ1 = 2 and
κ2 = 1, while in the second case we have κ1 = κ2 = 1. In the
presence of an external field the orbit will in general not remain
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periodic, but will in the course of time cover a continuous ex-
tension of the plane. If the external field is sufficiently small,
however, the orbit will at any moment only differ little from a
closed elliptical orbit, but in the course of time the lengths and
directions of the principal axes of this ellipse will undergo slow
variations. In general the perturbed system will not allow of
separation of variables, but two cases obviously present them-
selves in which such a separation is still possible; in the first case
the external field is central with the fixed point as centre, and
a separation is possible in polar coordinates; in the second case
the external field of force is perpendicular to a given line and
varies as some function of the distance from this line, and sep-
aration is possible in a set of rectangular coordinates with the
axes parallel and perpendicular to the given line. In the first
case the perturbations will not affect the lengths of the principal
axes of the elliptical orbit and will only produce a slow uniform
rotation of the directions of these axes, while in the second case
the lengths of the principal axes as well as their directions will
perform slow oscillations. It will consequently be seen that, by
fixing the stationary states of the perturbed system by means of
the conditions (22), the cycles of shapes and positions which the
orbit of the particle will pass through in the stationary states will
be entirely different in the two cases. In both cases, however, it
will be seen that the frequency v = ω1−κ1ω2 will be equal to the
frequency with which the orbit at regular intervals re-assumes
its shape and position. By fixing the stationary states by (22)
we obtain therefore, as seen from (43), in both cases that the
relation between this frequency and the additional energy of the
system due to the presence of the field will be the same as the
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relation between energy and frequency in the stationary states of
a system of one degree of freedom; and it will be seen that the
above considerations offer a dynamical interpretation of the char-
acteristic discontinuity involved in the application of the method
of separation of variables to the fixation of the stationary states
of perturbed periodic systems.1)

In general it will not be possible to solve the equations
of motion of the perturbed system by means of separation of
variables in a fixed set of positional coordinates, but we shall
see that the problem of the fixation of the stationary states
of the perturbed system may be attacked by a direct exami-
nation of the additional energy of the system and its relation

1) In this connection it may be of interest to note that the possibility
of a rational interpretation of the discontinuity in question would seem
to be essentially connected with the form of the principles of the quan-
tum theory adopted in this paper. If for instance the quantum theory
is taken in the form proposed by Planck in his second theory of tem-
perature radiation, the consequent development to periodic systems of
several degrees of freedom would seem to involve a serious difficulty
as regards the question of the necessary stability of the temperature
equilibrium among a great number of systems for small variations of
the external conditions. In fact, in connection with the development
of his theory of the “physical structure of the phase space”, mentioned
in Part I on page 31, in which conditions of the same type as (22) are
established, Planck has deduced expressions for the total energy of a
great number of systems in temperature equilibrium, which, if applied
to systems of the same kind as those considered in the above example,
show a dependency of this energy on the temperature which is different,
according to whether polar coordinates or rectangular coordinates are
used as basis for the structure of the phase space.
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to the slow variations of the orbit, on the basis of the usual
theory of perturbations well known from celestial mechanics.
Consider a system for which every orbit, if undisturbed, is
periodic independent of the initial conditions, and let us as-
sume that the equations of motion for some set of coordinates
q1, q2, . . . , qs are solved by means of the Hamilton-Jacobi
partial differential equation, given by formula (17) in Part I.
The motion of the system is then determined by the equa-
tions (18), and the orbit is characterised by means of the
constants α1, . . . , αs, β1, . . . , βs. If now the system is sub-
ject to some small external field of force, the motion will no
more be periodic, but, defining in the usual way the oscu-
lating orbit at a given moment as the periodic orbit which
would result if the external forces vanished suddenly at this
moment, we find that the constants α1, . . . , αs, β1, . . . , βs,
characterising the osculating orbit, will vary slowly with the
time. Assuming for the present that the external forces pos-
sess a constant potential Ω given as a function of the q’s, we
have according to the theory of perturbations that the rates
of variation of the orbital constants of the osculating orbit
will be given by1)

dαk
dt

= − dΩ

dβk
,

dβk
dt

=
dΩ

dαk
, (k = 1, . . . , s) (44)

where Ω is considered as a function of α1, . . . , αs, β1, . . . , βs
and t, obtained by introducing for the q’s their expressions as

1) See f. inst. C. V. L. Charlier, Die Mechanik des Himmels, Bd. I,
Abt. 1, § 10.
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functions of these quantities obtained by solving (18). The
equations (44) allow to follow completely the perturbing ef-
fect of the external field on the motion of the system. For
the problem under consideration, however, a detailed exam-
ination of the perturbations is not necessary. In fact, we
shall not be concerned with the small deformation of the
orbit characterised by the small oscillations of the orbital
constants within a time interval of the same order of magni-
tude as the period of the osculating orbit, but only with the
so called “secular perturbations” of the orbit, characterised
by the total variation of these constants taken over a time in-
terval long compared with the period of the osculating orbit.
As we shall see below, these variations may, with an ap-
proximation sufficient for our purpose, be obtained directly
by taking mean values on both sides of the equations (44).
Before entering on these calculations, however, it may be ob-
served that the part played by the constants α1 and β1 differs
essentially from that played by the other orbital constants
α2, . . . , αs, β2, . . . , βs. Thus from the formulæ (17) and
(18) on page 32, it follows that α1 is the total energy cor-
responding to the osculating orbit, while β1 will represent
the moment in which the system would pass some distin-
guished point in this orbit. If for instance we consider the
perturbations of a Keplerian motion, we may for β1 take the
so called time of perihelium passage. When discussing the
secular perturbations of the shape and position of the orbit,
we see therefore in the first place that the variations of β1

may be left out of consideration. Further, it follows from the
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principle of conservation of energy, that α1 + Ω will remain
constant during the motion, and that consequently during
the perturbations α1 will change only by small quantities of
the same order as λα1, where λ denotes a small constant of
the same order of magnitude as the ratio between the exter-
nal forces and the internal forces of the system. Moreover,
since the period σ of the undisturbed motion depends on
α1 only, it follows that the period of the osculating orbit will
remain constant during the perturbations, with neglect of
small quantities of the same order as λσ. On the other hand
it follows from (44) that, in a time interval of the same order
as σ/λ, the constants α2, . . . , αs, β2, . . . , βs will in general
undergo variations of the same order of magnitude as the
values of these constants themselves.

As mentioned above, the total variations of the constants
α2, . . . , αs, β2, . . . , βs, which characterise the secular per-
turbations of the shape and position of the orbit, may be
obtained by taking mean values on both sides of the equa-
tions (44). Introducing a function ψ of the α’s and β’s, equal
to the mean value of the potential Ω taken over a period σ
of the motion of the undisturbed system and defined by the
formula

ψ =
1

σ

∫ t+σ

t

Ω dt, (45)

it is easily seen, since σ depends only on α1, that the mean
values of the partial differential coefficients of Ω with re-
spect to α2, . . . , αs, β2, . . . , βs, taken over an approximate
period of the perturbed motion, may, if we look apart from
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small quantities proportional to λ2, be replaced by the values
of the corresponding partial differential coefficients of ψ at
some moment within this period. With the approximation
mentioned we get therefore

Dαk
Dt

= − ∂ψ
∂βk

,
Dβk
Dt

=
∂ψ

∂αk
, (k = 2, . . . , s) (46)

where the differential symbols on the left sides are written to
indicate mean values of the rates of variation of the orbital
constants during an approximate period of the perturbed
motion. From the definition of ψ it follows that this quan-
tity in general will depend on α1 as well as on α2, . . . , αs,
β2, . . . , βs, but that it will not depend upon β1. From the
above considerations it follows further that, with the approx-
imation in question, α1 may be considered as a constant in
the expressions on the right sides of (46), while for α2, . . . ,
αs, β2, . . . , βs we may take a set of values corresponding to
some moment within the period to which the mean values
on the left sides refer.

It will be seen that the equations (46) allow to follow the
secular perturbations during a time interval sufficiently long
for the external forces to produce a considerable change in
the shape and position of the original orbit, if in the total
variations of the orbital constants α2, . . . , αs, β2, . . . , βs we
look apart from small quantities of the same order as the
small oscillations of these constants within a single period.
As a consequence of the secular variations, the orbit will pass
through a cycle of shapes and positions, which will depend
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on its original shape and position and on the character of
the perturbing field, but not on the intensity of this field. In
fact, as seen from (46), the variations in the shape and posi-
tion of the orbit will remain the same if ψ is multiplied by a
constant factor, which will only influence the rate at which
these variations are performed. It will further be observed
that the problem of determining the secular perturbations
by means of (46) consists in solving a set of equations of the
same type as the Hamiltonian equations of motion for a sys-
tem of s−1 degrees of freedom. In these equations the quan-
tity ψ plays formally the same part as the total energy in the
usual mechanical problem, and in analogy with the principle
of conservation of energy it follows directly from (46) that,
with neglect of small quantities proportional to λ2, the value
of ψ will remain constant during the perturbations, even if
the external forces act through a time interval of the same
order as σ/λ. In fact, with neglect of small quantities pro-
portional to λ2, we have

Dψ

Dt
=

s∑
2

(
∂ψ

∂αk

Dαk
Dt

+
∂ψ

∂βk

Dβk
Dt

)
=

s∑
2

(
− ∂ψ

∂αk

∂ψ

∂βk
+
∂ψ

∂βk

∂ψ

∂αk

)
= 0.

Since at any moment ψ will differ only by small quanti-
ties proportional to λ2 from the mean value of the potential
of the external forces taken over an approximate period of
the perturbed motion, it follows from the above that, with
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neglect of small quantities of this order, also the mean value
of the inner energy α1 of the perturbed system, taken over
an approximate period, will remain constant during the per-
turbations, even if the perturbing forces act through a time
interval long enough to produce a considerable change in the
shape and position of the orbit. In the special case, where
the perturbed system allows of separation of variables, this
last result may be shown to follow directly from formula (28)
in Part I. Taking for the time interval ϑ in this formula the
period σ of the undisturbed motion, we get Nk = κk, where
κ1, . . . , κs are the numbers entering in formula (23). Com-
paring a given perturbed motion of the system with some
undisturbed motion of which it may be regarded as a small
variation, we get therefore from (28), with neglect of small
quantities proportional to the square of the intensity of the
external forces, ∫ σ

0

δE dt =
s∑
1

κk δIk, (47)

where the I’s are calculated with respect to a set of coordi-
nates in which a separation can be obtained for the perturbed
motion, and where δE is the difference between the total en-
ergy of the undisturbed motion and the energy which the
system would possess in its perturbed state, if the external
forces vanished suddenly at the moment under considera-
tion, and which in the above calculations was denoted by α1.
Now the energy E of the undisturbed motion is determined
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completely by the value of I =
∑
κkIk. If therefore the per-

turbed motion is all the time compared with a neighbouring
undisturbed motion of given constant energy, it follows di-
rectly from (47), that, with neglect of small quantities of the
same order as the square of the external forces, the integral
on the left side, taken over an approximate period of the
perturbed motion, will remain unaltered during the pertur-
bations through any time interval, however long.

Before proceeding with the applications of the equa-
tions (46) which apply to the case of a constant perturbing
field, it will be necessary to consider the effect of a slow and
uniform establishment of the external field. Let us assume
that, within the interval 0 < t < ϑ where ϑ denotes a quan-
tity of the same order as σ/λ, the intensity of the external
field increases uniformly from zero to the value correspond-
ing to the potential Ω. Since the variation in the perturbing
field during a single period will only be a small quantity
of the same order as λ2, we see in the first place that the
secular variations of the constants α2, . . . , αs, β2, . . . , βs,
with the same approximation as for a constant field, will be
given by a set of equations of the same form as (46), with

the only difference that ψ is replaced by
t

ϑ
ψ. Moreover it

may be shown that in these equations the quantity α1 may
be considered as constant, just as in the equations which
hold for a constant perturbing field. In fact the total varia-
tion in α1 at any moment t will be equal to the total work
performed by the external forces since the beginning of the
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establishment of the perturbing field, and will therefore be
given by

∆tα1 = −
∫ t

0

t

ϑ

s∑
1

∂Ω

∂qk
q̇k dt =

1

ϑ

∫ t

0

Ω dt− t

ϑ
Ωt, (48)

where the expression on the right side is obtained by partial
integration; but, since both terms in this expression are of
the same order of magnitude as λα1, we see that the total
variation in α1 within the interval in question will, just as
in case of a constant perturbing field, be only a small quan-
tity of this order. We get therefore the result, that, for the
same shape and position of the original orbit, the cycle of
shapes and positions passed through by the orbit during the
increase of the external field will be the same as that which
would appear for a constant perturbing field, and that, with
neglect of small quantities proportional to λ2, the value of
the function ψ will consequently remain constant during the
establishment of the field. With this approximation we get
therefore from (48), putting t = ϑ,

∆ϑα1 + Ωϑ =
1

ϑ

∫ ϑ

0

Ω dt = ψ,

which shows that the change in the total energy of the sys-
tem, due to the slow and uniform establishment of the ex-
ternal field, is just equal to the value of the function ψ, and
consequently equal to the mean value of the potential of the
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external forces taken over an approximate period of the per-
turbed motion. This result may also be expressed by stat-
ing, that, with neglect of small quantities proportional to
the square of the external forces, the mean value of the inner
energy taken over an approximate period of the perturbed
motion will be equal to the energy possessed by the system
before the establishment of the perturbing field.

Returning now to the problem of the fixation of the sta-
tionary states of a periodic system subject to the influence
of a small external field of constant potential, we shall base
our considerations on the fundamental assumption that these
states are distinguished between the continuous multitude of
mechanically possible states by a relation between the addi-
tional energy of the system due to the presence of the ex-
ternal field and the frequencies of the slow variations of the
orbit produced by this field, which is analogous to the rela-
tion discussed on page 80 in the special case in which the
perturbed system allows of separation of variables in a fixed
set of coordinates. On this assumption we shall expect in
the first place that, apart from small quantities proportional
to λ, the cycles of shapes and positions of the orbit belonging
to the stationary states of the perturbed system will depend
only on the character of the external field, but not on its in-
tensity. Since now, as shown above, such a cycle will remain
unaltered during a slow and uniform increase of the inten-
sity of the external field if the effect of the external forces is
calculated by means of ordinary mechanics, we are therefore,
with reference to the principle of the mechanical transforma-
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bility of the stationary states, led to the conclusion that it
is possible by direct application of ordinary mechanics, not
only to follow the secular perturbations of the orbit in the
stationary states corresponding to a constant external field,
but also to calculate the variation in the energy of the sys-
tem in the stationary states which results from a slow and
uniform change in the intensity of this field. If we denote the
energy in the stationary states of the perturbed system by
En + E, where En is the value of the energy in the station-
ary state of the undisturbed system characterised by a given
entire value of n in the condition I = nh, we may therefore
conclude from the above that the additional energy E in the
stationary states of the perturbed system will be equal to the
value in these states of the function ψ defined by (45), if we
look apart from small quantities proportional to the square of
the intensity of the external forces. It will be seen that this
result is equivalent to the statement, that the mean value
of the inner energy taken over an approximate period of the
perturbed motion will be equal to the value En of the energy
in the corresponding stationary state of the undisturbed sys-
tem. In case of the perturbed system allowing of separation
of variables in a fixed set of coordinates, this result may be
simply shown to be a direct consequence of the fixation of
the stationary states by means of the conditions (22). In
fact, if we assume that the undisturbed motion, considered
in (47), corresponds to some stationary state, satisfying (24)
for a given value of n, and that the perturbed motion is also
stationary and satisfies (22), we see that the right side of (47)
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will be zero, and we get the result that the mean value of the
inner energy in the stationary states of the system, with the
approximation mentioned, will not be altered in the presence
of the external field.

Due to the above result that the additional energy E in
the stationary states of the perturbed system, with neglect
of small quantities proportional to λ2, may be taken equal
to the value in these states of the function ψ entering in the
equations (46) which determine the secular perturbations of
the orbits, we are now able to draw further conclusions from
the fact, mentioned above, that these equations are of the
same type as the Hamiltonian equations of motion for a me-
chanical system of s− 1 degrees of freedom. In fact, we see
that the fixation of the stationary states of the perturbed sys-
tem is reduced to a problem which is formally analogous to
the fixation of these states for a mechanical system of less
degrees of freedom. As it will appear from the following ap-
plications this problem may, quite independent of the pos-
sibility of separation of variables for the perturbed system,
be treated directly on the basis of the fundamental relation
between energy and frequency in the stationary states of pe-
riodic or conditionally periodic systems, discussed in Part I,
if only the solution of the equations (46) is of a periodic or
conditionally periodic character. In this connection it may
once more be emphasised that these equations, according
to the manner in which they were deduced, allow to follow
the secular perturbations only through a time interval of the
same order of magnitude as that sufficient for the external
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forces to produce a finite alteration in the shape and posi-
tion of the orbit. With reference to the necessary stability of
the stationary states of an atomic system, it seems justified,
however, to conclude that any possible small discrepancy be-
tween the motion to be expected from a rigorous application
of ordinary mechanics and that determined by a calculation
of the secular perturbations, based on the equations (46),
cannot cause a material change in the character of the sta-
tionary states as fixed by a consideration of the periodicity
properties of these perturbations. On the other hand, from
the point of view of the general formal relation between the
quantum theory and the ordinary theory of radiation, we
must be prepared to find that the motion and the energy
in the stationary states of a perturbed periodic system, for
which we only know that the secular perturbations as de-
termined by (46) are of conditionally periodic type, will not
be as sharply defined as the motion and the energy in the
stationary states of a conditionally periodic system for which
the equations of motion allow of a rigorous solution by means
of the method of separation of variables. Thus, if we con-
sider a large number of similar atomic systems of the type in
question, we may be prepared to find that the values of the
additional energy in a given stationary state will for the dif-
ferent systems deviate from each other by small quantities;
but it must be expected that the values of the additional
energy for the large majority of systems will differ from the
value of ψ, as determined by the method indicated above,
only by small quantities proportional to λ2, and that only
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for a small fraction (at most of the same order as λ2) of the
systems the values of the additional energy will show de-
viations from this value of ψ, which are of the same order
as λ.

As to the application of the preceding considerations to
special problems, it will be seen in the first place that in
case of a perturbed periodic system possessing two degrees of
freedom, as for instance that considered in the example on
page 82, the problem of the fixation of the stationary states
of the perturbed system in the presence of a small external
field allows of a general solution on the basis of the method
developed above, because in this case the secular perturba-
tions will in general be simply periodic. In fact, in this case
the shape and position of the orbit are characterised by two
constants α2 and β2, and from the equations (46), which will
be analogous to the equations of motion of a system of one
degree of freedom, it follows directly that during the per-
turbations α2 will be a function of β2 and that in general
these quantities will be periodic functions of the time with
a period s which, besides on α1, will depend on the value
of ψ only. Considering two slightly different states of the
perturbed system for which the corresponding states of the
undisturbed system (i. e. the states which would appear if
the external forces vanished at a slow and uniform rate) pos-
sess the same energy and consequently the same value for
the quantity I defined by (5), we get therefore by a calcu-
lation completely analogous to that leading to relation (8)
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in Part I, which was deduced directly from the Hamiltonian
equations, for the difference in the values of the function ψ
for these two states

δψ = v δI, (49)

where v =
1

s
is the frequency of the secular perturbations,

and where the quantity I is defined by

I =

∫ s

0

α2
Dβ2

Dt
dt =

∫
α2Dβ2, (50)

where the latter integral is taken over a complete oscillation
of β2. In order to fix the stationary states, it will now be
seen in the first place that, among the multitude of states
of the perturbed system for which the value of I in the cor-
responding states of the undisturbed system is equal to nh
where n is a given positive integer, the state for which I = 0
must beforehand be expected to be a stationary state. In
fact, for this value of I, the shape and position of the orbit
will not undergo secular perturbations but will remain un-
altered for a constant external field as well as during a slow
and uniform establishment of this field. In contrast to what
in general will take place during a slow establishment of the
external field, we may therefore expect that, for this special
shape and position of the orbit, a direct application of or-
dinary mechanics will be legitimate in calculating the effect
of the establishment of the field, since there will in this case
obviously be nothing to cause the coming into play of some
non-mechanical process, connected with the mechanism of
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a transition between two stationary states accompanied by
the emission or absorption of a radiation of small frequency.
With reference to relation (49) we see therefore that, by fix-
ing the stationary states of the perturbed system by means
of the condition

I = nh, (51)

where n is an entire number, we obtain a relation between
the additional energy E = ψ of the system in the presence
of the field and the frequency v of the secular perturbations,
which is exactly of the same type as that which holds be-
tween the energy and frequency in the stationary states of a
system of one degree of freedom, and which is expressed by
(8) and (10). By means of (51) it is possible, with neglect of
small quantities proportional to the square of the perturb-
ing forces, directly to determine the value of the additional
energy in the stationary states of a periodic system of two
degrees of freedom subject to an arbitrarily given small ex-
ternal field of force, and consequently with this approxima-
tion, by use of the fundamental relation (1), to determine
the effect of this field on the frequencies of the spectrum of
the undisturbed periodic system. In general this effect will
consist in a splitting up of each of the spectral lines into a
number of components which are displaced from the original
position of the line by small quantities proportional to the
intensity of the external forces.

When we pass to perturbed periodic systems of more than
two degrees of freedom, the general problem is more com-
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plex. For a given external field, however, it may be possible
to choose a set of orbital constants α2, . . . , αs, β2, . . . , βs
in such a way, that during the motion every of the β’s will
depend on the corresponding β only, while every of the β’s
will oscillate between two fixed limits. From analogy with
the theory of ordinary conditionally periodic systems which
allow of separation of variables, the perturbations may in
such a case be said to be conditionally periodic, and, from a
calculation quite analogous to that leading to equation (29)
in Part I which is based entirely on the use of the Hamilto-
nian equations, we get for the difference in ψ for two slightly
different states of the perturbed system, for which the value
of I in the corresponding states of the undisturbed system
is the same,

δψ =
s−1∑

1

vk δIk, (52)

where vk is the mean frequency of oscillation of βk+1 between
its limits, and where the quantities Ik are defined by

Ik =

∫
αk+1Dβk+1, (k = 1, . . . , s− 1) (53)

where the integral is taken over a complete oscillation of βk+1.
In analogy with the expression (31) for the displacements of
the particles of an ordinary conditionally periodic system
which allows of separation of variables, we get further in the
present case that every of the α’s and β’s may be expressed
as a function of the time by a sum of harmonic vibrations of
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small frequencies

α

β

}
=
∑

Ct1,..., ts−1 cos 2π
{

(t1v1 + . . .+ ts−1vs−1)t

+ct1,..., ts−1

}
,

(54)

where the C’s and c’s are constants, the former of which, be-
sides on I, depend on the I’s only, and where the summation
is to be extended over all positive and negative entire values
of the t’s. If therefore the secular perturbations are condi-
tionally periodic, we may conclude that the stationary states
of the perturbed system, corresponding to a given stationary
state of the undisturbed system, will be characterised by the
s− 1 conditions

Ik = nkh, (k = 1, . . . , s− l) (55)

where n1, . . . , ns−1 form a set of entire numbers. In fact,
as seen from (52), we obtain in this way a relation between
the additional energy and the frequencies of the secular per-
turbations of exactly the same type as that holding for the
energy and frequencies of ordinary conditionally periodic sys-
tems and expressed by (22) and (29); moreover we may con-
clude beforehand that the state in which every of the quan-
tities Ik, defined by (53), is equal to zero must belong to the
stationary states of the perturbed system, because in this
case the orbit will not undergo secular perturbations for a
constant external field, nor during a slow and uniform estab-
lishment of this field. Since the conditions (55), with neglect
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of small quantities proportional to the square of the intensi-
ties of the external forces, allow to determine the additional
energy of the system due to the presence of the external field,
we see therefore that the effect of this field on the spectrum
of the undisturbed system, if the secular perturbations are
conditionally periodic, will consist in a splitting up of each
spectral line in a number of components, in analogy with
the effect of a perturbing field on the spectrum of a peri-
odic system of two degrees of freedom. In general, however,
the perturbations, which a periodic system of more than two
degrees of freedom undergoes in the presence of a given ex-
ternal field, cannot be expected to be conditionally periodic
and to exhibit periodicity properties of the type expressed
by formula (54). In such cases it seems impossible to define
stationary states in a way which leads to a complete fixation
of the total energy in these states, and we are therefore led
to the conclusion, that the effect of the external field on the
spectrum will not consist in the splitting up of the spectral
lines of the original system into a number of sharp compo-
nents, but in a diffusion of these lines over spectral intervals
of a width proportional to the intensity of the external forces.

In special cases in which the secular perturbations of a
perturbed periodic system of more than two degrees of free-
dom are of conditionally periodic type, it may occur that
these perturbations are characterised by a number of funda-
mental frequencies, which is less than s − 1. In such cases,
in which the perturbed periodic system from analogy with
the terminology used in Part I may be said to be degener-
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ate, the necessary relation between the additional energy and
the frequencies of the secular perturbations is secured by a
number of conditions less than that given by (55), and the
stationary states are consequently characterised by a num-
ber of conditions less than s. With a typical example of such
systems we meet if, for a perturbed periodic system of more
than two degrees of freedom, the secular perturbations are
simply periodic independent of the initial shape and position
of the orbit. In direct analogy to what holds for perturbed
periodic systems of two degrees of freedom, the difference
between the values of ψ in two slightly different states of the
perturbed system, corresponding to the same value of I, will
in the present case be given by

δψ = v δI, (56)

where v is the frequency of the secular perturbations, and
where I is defined by

I =

∫ v

0

s∑
2

αk
Dβk
Dt

dt, (57)

where s = 1/v is the period of the perturbations. We may
therefore conclude that the stationary states of the perturbed
system, corresponding to a given stationary state of the
undisturbed system, will be characterised by the single con-
dition

I = nh, (58)
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in which n is an entire number, and which will be seen to
be completely analogous to the condition which fixes the sta-
tionary states of ordinary periodic systems of several degrees
of freedom.

In the following sections we shall apply the preceding con-
siderations to the problem of the fixation of the stationary
states of the hydrogen atom, when the relativity modifica-
tions are taken into account, and when the atom is exposed
to small external fields. In this discussion we shall for the
sake of simplicity consider the mass of the nucleus as infi-
nite in the calculations of the perturbations of the orbit of
the electron. This involves, in the expression for the addi-
tional energy of the system, the neglect of small terms of
the same order as the product of the intensity of the exter-
nal forces with the ratio between the mass of the electron
and the mass of the nucleus, but due to the smallness of the
latter ratio the error introduced by this simplification will
be of no importance in the comparison of the results with
the measurements. Since in the case under consideration
the system possesses three degrees of freedom, the equations
which determine the secular perturbations of the orbit of
the electron will correspond to the equations of motion of a
system of two degrees of freedom, and it will therefore not
be possible to give a general treatment of the problem of the
stationary states. Thus, for any given external field, we meet
with the question whether the perturbations are condition-
ally periodic and, if so, in what set of orbital constants this
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periodicity may be conveniently expressed. Now, in many
spectral problems, the external field possesses axial symme-
try round an axis through the nucleus, and in this case it is
easily shown that the problem of the fixation of the station-
ary states allows of a general solution. A choice of orbital
constants which is suitable for the discussion of this prob-
lem, and which is well known from the astronomical theory
of planetary perturbations, is obtained by choosing for α2

the total angular momentum of the electron round the nu-
cleus and for α3 the component of this angular momentum
round the axis of the field. For the set of β’s, corresponding
to this set of α’s, we may take β2 equal to the angle, which
the major axis makes with the line in which the plane of
the orbit cuts the plane through the nucleus perpendicular
to the axis of the field, and β3 equal to the angle between
this line and a fixed direction in the latter plane. For the
problem under consideration it will be seen that, with this
choice of constants, the mean value ψ of the potential of
the perturbing field will, besides on α1, generally depend on
α2 and β2 as well as on α3, but due to the symmetry round
the axis it will obviously not depend on β3. In consequence
of this, the equations (46), which determine the secular per-
turbations, will possess the same form as the Hamiltonian
equations of motion for a particle moving in a plane and
subject to a central field of force. Thus corresponding to the
conservation of angular momentum for central systems, we
get in the first place from (46) that α3 will remain unaltered
during the perturbations. Next corresponding to the simple
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periodicity of the radial motion in central systems, we see
from (46), if α3 as well as α1 is considered as a constant,
that during the perturbations α2 will be a function of β2 and
vary in a simple periodic way with the time. The pertur-
bations of the orbit of the electron produced by an external
field which possesses axial symmetry will therefore always be
of conditionally periodic type, quite independent of the pos-
sibility of separation of variables for the perturbed system.
As regards the form of the conditions which fix the station-
ary states, it may be noted, however, that with the choice of
orbital constants under consideration the β’s will not, as it
was assumed for the sake of simplicity in the general discus-
sion on page 100, oscillate between fixed limits, but it will be
seen that β2 during the perturbations may either oscillate be-
tween two such limits or increase (or decrease) continuously,
while β3 will always vary in the latter manner. This consti-
tutes, however, only a formal difficulty of the same kind as
that mentioned in Part I in connection with the discussion
of the conditions (16), which fix the stationary states of a
system consisting of a particle moving in a central field of
force. Thus from a simple consideration it will be seen that,
in complete analogy to the relations (52) and (53), we get
in the present case for the difference between the energy of
two slightly different states of the perturbed system, which
correspond to the same value of I,

δψ = v1 δI1 + v2 δI2, (59)

where v1 is the frequency with which the shape of the or-
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bit and its position relative to the axis of the field repeats
itself at regular intervals and which is characterised by the
variation of α2 and β2, while v2 is the mean frequency of ro-
tation of the plane of the orbit round this axis characterised
by the variation of β3, and where I1 and I2 are defined by
the equations

I1 =

∫
α2Dβ2, I2 =

∫ 2π

0

α3Dβ3 = 2πα3. (60)

In case β2 varies in an oscillating manner with the time, the
first integral must be taken over a complete oscillation of
this orbital constant, while, if β2 during the perturbations
increases or decreases continuously, the integral in the ex-
pression for I1 must be taken over an interval of 2π, just
as the integral in the expression for I2. By fixing the sta-
tionary states of the perturbed system by means of the two
conditions1)

I1 = n1h, I2 = n2h, (61)

1) Quite apart from the problem of perturbed periodic systems, the
second of these conditions would also follow directly from certain in-
teresting considerations of Epstein (Ber. d. D. Phys. Ges. XIX, p. 116
(1917)) about the stationary states of systems which allow of what may
be called “partial separation of variables”. In this case it is possible to
choose a set of positional coordinates q1, . . . , qs in such a way that, for
some of the coordinates, the conjugated momenta may be considered as
functions of the corresponding q’s only, so that, for these coordinates,
quantities I may be defined by (21) in the same way as for systems
for which a complete separation of variables can be obtained. From
analogy with the theory of the stationary states of the latter systems,
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where n1 and n2 are entire numbers, it will therefore be seen
that we obtain the right relation between the additional en-
ergy E = ψ of the perturbed atom and the frequencies of
the secular perturbations of the orbit of the electron. It will
moreover be seen that a state in which the electron moves
in a circular orbit perpendicular to the axis of the field, and
which beforehand must be expected to belong to the sta-
tionary states of the perturbed atom since this orbit will not
undergo secular perturbations during a uniform establish-
ment of the external field, will be included among the states
determined by (61). In fact, if n is the number which charac-
terises the corresponding stationary state of the undisturbed
system, this state of the perturbed system will correspond
to n1 = 0, n2 = n or to n1 = n, n2 = n, according to
whether β2 during the perturbations oscillates between fixed
limits, or increases (or decreases) continuously. As regards
the application of the conditions (61) it is of importance to
point out that, from considerations of the invariance of the
a-priori probability of the stationary states of an atomic sys-

Epstein proposes therefore the assumption, that some of the condi-
tions to be fulfilled in the stationary states of the systems in question
may be obtained by putting the I’s thus defined equal to entire mul-
tipla of h. It will be seen that, in case of systems possessing an axis
of symmetry, this leads to the second of the conditions (61), which
expresses the condition that in the stationary states the total angular
momentum round the axis must be equal to an entire multiple of h/2π.
As pointed out in Part I on page 64, this condition would also seem to
obtain an independent support from considerations of conservation of
angular momentum during a transition between two stationary states.
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tem during continuous transformations of the external con-
ditions (see Part I, page 14 and page 49), it seems necessary
to conclude that no stationary state exists corresponding to
n2 = 0. For this value of n2 the motion of the electron would
take place in a plane through the axis, but for certain ex-
ternal fields such motions cannot be regarded as physically
realisable stationary states of the atom, since in the course of
the perturbations the electron would collide with the nucleus
(compare page 134).

A special case of an external field possessing axial sym-
metry, in which the secular perturbations are very simple,
presents itself if the external forces form a central field with
the nucleus at the centre. In this case the solution of the
problem of the fixation of the stationary states is given by
Sommerfeld’s general theory of central systems, discussed
in Part I, which rests upon the fact that these systems allow
of separation of variables in polar coordinates. In connection
with the above considerations it may be of interest, however,
to consider the problem in question directly from the point
of view of perturbed periodic systems, because it presents a
characteristic example of a degenerate perturbed system. In
the present case ψ will, besides on α1, depend on α2 only,
and from the equations (46) we get therefore the well known
result, that the angular momentum of the electron and the
plane of its orbit will not vary during the perturbations, and
that the only secular effect of the perturbing field will consist
in a slow uniform rotation of the direction of the major axis.
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For the frequency of this rotation we get from (46)

v =
1

2π

Dβ2

Dt
=

1

2π

δψ

δα2

, (62)

from which we get directly for the difference between the val-
ues of ψ for two neighbouring states of the perturbed system,
for which the corresponding value of I is the same,

δψ = 2πv δα2. (63)

This relation, which corresponds to (56), is seen to coincide
with (59), since in the present case v2 = 0 and I1 = 2πα2.
From (63) it follows that the necessary relation between the
additional energy of the atom and the frequency of the per-
turbations is secured if the stationary states in the presence
of a small external central field are characterised by the con-
dition

I = 2πα2 = nh, (64)

where n is an entire number. This condition, which is equiv-
alent with the second of Sommerfeld’s conditions (16),
corresponds to (58) and is seen to coincide with the first of
the conditions (61), while the second of the latter conditions
in the special case under consideration loses its validity cor-
responding to the fact that the orientation of the plane of the
orbit in space is obviously arbitrary. Since, for a Keplerian
motion, the major axis of the orbit depends on the total en-
ergy only while the minor axis is proportional to the angular
momentum, it will be seen from (64) that the presence of
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a small external field imposes the restriction on the motion
of the atom in the stationary states, that the minor axis of
the orbit of the electron must be equal to an entire multiple
of the nth part of the major axis, which was given by 2αn
in (41). This result has been pointed out by Sommerfeld
as a consequence of the application of the conditions (16).

In the preceding it has been shown how it is possible to
attack the problem of the stationary states of a perturbed pe-
riodic system by an examination of the secular perturbations
of the shape and position of the orbit, and to fix these states
if the perturbations are of periodic or conditionally periodic
type. While these considerations allow to determine the pos-
sible values for the total energy of the perturbed system and
thereby the frequencies of the components into which the
lines of the spectrum of the undisturbed system are split up
in the presence of the external field, it is necessary, how-
ever, for the discussion of the intensities and polarisations
of these components to consider more closely the motion of
the particles in the perturbed system and the relation of the
total energy of this system to the fundamental frequencies
which characterise the motion. In the first place it will be
seen that, if the secular perturbations as determined by the
equations (46) are of conditionally periodic type, the dis-
placements of the particles of the system in any given di-
rection may, with neglect of small quantities proportional to
the intensity of the external forces, be represented, within a
time interval sufficiently large for these forces to produce a
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considerable change in the shape and position of the orbit,
as a sum of harmonic vibrations by expressions of the type:

ξ =
∑

Cτ,t1,..., ts−1 cos 2π
{

(τωP + t1v1 + · · ·

+ ts−1vs−1)t+ cτ,t1,..., ts−1

}
,

(65)

where the summation is to be extended over all positive
and negative entire values of τ , t1, . . . , ts−1, and where the
C’s and c’s are two sets of constants, the former of which
depend only on the values of the quantities I1, . . . , Is−1 de-
fined by (53) and on the value of the quantity I, which char-
acterises the corresponding state of the undisturbed system
which would appear if the external field vanished at a slow
and uniform rate. While the quantities v1, . . . , vs−1 are the
same as those which appear in the formula (54), and rep-
resent the small frequencies of the secular perturbations of
the shape and position of the orbit, the quantity ωP may be
considered as representing the mean frequency of revolution
of the particles in their approximately periodic orbit. As re-
gards the total energy of the perturbed system, it may next
be proved that, looking apart from small quantities propor-
tional to the square of the intensity of the external forces, the
difference in the total energy in two slightly different states
of the perturbed system, for which the values of I, I1, . . . ,
Is−1 differ by δI, δI1, . . . , δIs−1 respectively, is given by the
relation1)

δE = ωP δI +
s−1∑

1

vk δIk, (66)
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which coincides with (52) if δI = 0, and which will be seen to

1) From a comparison with formula (8), holding for the energy dif-
ference between two neighbouring states of the undisturbed system,
and with formula (52), it will be seen that (66) implies the condition
ωP = ω + ∂ψ/∂I, where ω is the frequency of revolution in the cor-
responding state of the undisturbed system characterised by the given
value of I, and where, in the partial differential coefficient, ψ is consid-
ered as a function of I and I1, . . . , Is−1. This relation can be verified
by means of a consideration based on the perturbation equations (44),
which takes into account the simple relation between α1 and I for the
undisturbed system, as well as the relation between the mean rate of
variation of β1 with the time and the difference between ωP and ω.
We shall not enter, however, on the details of the rather intricate cal-
culations involved in such a consideration, since the problems in ques-
tion allow of a more elegant treatment by means of another analytical
method. Thus it will be shown by Mr. H. A. Kramers, in the paper
mentioned in the end of § 4, that, quite independent of the possibil-
ity of separation of variables for the perturbed system in a fixed set
of positional coordinates, the theory of secular perturbations exposed
in this section offers—if these perturbations as determined by (46) are
of conditionally periodic type—a means of disclosing a set of angle
variables, which may be used to describe the motion of the perturbed
system with the same degree of approximation as that involved in the
preceding calculations. According to the definition of angle variables,
mentioned in the Note on page 53 in Part I, this means that it is pos-
sible, in stead of the positional coordinates q1, . . . , qs of the perturbed
system and their conjugated momenta p1, . . . , ps to introduce a new
set of s variables in such a way, that the q’s and p’s are periodic in
every of the new variables with period 1, when they are considered
as functions of these variables and of their canonically conjugated mo-
menta. These momenta will just coincide with the quantities denoted
above by I, I1, . . . , Is−1, and the corresponding angle variables may
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be completely analogous with formula (29) in Part I, holding
for an ordinary conditionally periodic system which allows
of separation of variables in a fixed set of positional coordi-
nates; just as (65) is analogous to formula (31) representing
the displacements of the particles for such a system. Since
moreover, in complete analogy to the conditions (22), the
stationary states of the perturbed system are characterised
by

I = nh, Ik = nkh, (k = 1, . . . , s− 1) (67)

we see consequently that, for sufficiently small intensity of
the external forces, we obtain in the region of large values of n
and of the n’s a connection between the frequencies of the
components of the spectral lines, determined on the quantum

conveniently be denoted by w, w1, . . . , ws−1 respectively. Introducing
the new variables, the total energy of the perturbed system will be a
function of I, I1, . . . , Is−1 only, if we look apart from small quantities
proportional to λ2. With this approximation we get consequently by a
calculation, analogous to that given in the Note referred to, that the
angle variables w, w1, . . . , ws−1 may be represented as linear functions
of the time within an interval of the same order as σ/λ. Denoting the
rates of variation of w, w1, . . . , ws−1 by ω, v1, . . . , vs−1 respectively,
the formulæ (65) and (66) are therefore directly obtained, just as the
corresponding formulæ (31) and (29) in Part I. In this connection it
will be observed that, due to the possibility of introduction of angle
variables, the conditions (67) appear in the same form as that in which
the conditions, which fix the stationary states of ordinary condition-
ally periodic systems which allow of separation of variables, have been
formulated by Schwarzschild, and which, as mentioned in the Note
in Part I, has already been applied by Burgers to certain systems for
which such a separation cannot be obtained.
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theory by means of relation (1), and those to be expected on
ordinary electrodynamics, which is of exactly the same type
as the analogous connection, discussed in Part I, in case of
ordinary conditionally periodic systems which allow of sepa-
ration of variables. In perfect analogy with the general con-
siderations in Part I, we are therefore led directly to certain
simple conclusions as regards the intensities and polarisa-
tions of the components into which the lines of the spectrum
of the undisturbed periodic system are split up in the pres-
ence of the external field. Thus we shall expect that there
will exist an intimate connection between the probability of
spontaneous transition between two stationary states of the
perturbed system, for which n = n′, nk = n′k and n = n′′,
nk = n′′k respectively, and the values in these states of the co-
efficient Cτ,t1,..., ts−1 in the expressions for the displacements
of the particles, for which τ = n′ − n′′ and tk = n′k − n′′k.
If for instance, for a certain set of values of τ and t1, . . . ,
ts−1, the coefficient Cτ,t1,..., ts−1 in the expressions for the dis-
placements in every direction will be equal to zero for all
motions of the perturbed system, we shall expect that the
corresponding transitions between two stationary states will
be impossible in the presence of the given external field; and
if this coefficient is zero for the displacements of the par-
ticles in a certain direction only, we shall expect that the
corresponding transitions will give rise to the emission of a
radiation which is polarised in a plane perpendicular to this
direction.

With a characteristic example of these considerations we
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meet in the case of the spectrum of a hydrogen atom exposed
to an external field of force which possesses axial symmetry
round an axis through the nucleus. In analogy with the
resolution of the motion of an ordinary conditionally peri-
odic system which possesses an axis of symmetry in its con-
stituent harmonic vibrations, discussed in Part I on page 61,
it follows from the discussion of the general character of the
secular perturbations on page 104 that the motion of the
electron in the perturbed atom in this case can be resolved
in a number of linear harmonic vibrations parallel to the axis
with frequencies τωP + t1v1 and in a number of circular har-
monic rotations perpendicular to the axis with frequencies
τωP + t1v1 +v2. In complete analogy with the considerations
in Part I, we are therefore led to conclude that in the present
case only two types of transitions between the stationary
states of the perturbed atom are possible. In the transitions
of the first type n2 will remain unaltered and the emitted
radiation will give rise to components of the hydrogen lines
which will show linear polarisation parallel to the axis. In the
transitions of the second type n2 will change by one unit and
the emitted radiation will show circular polarisation when
viewed in the direction of the axis. Remembering that, ac-
cording to the conditions (61), the angular momentum of
the system round the axis in the stationary states is equal

to n2
h

2π
, it will be seen moreover that, also in the present

case, these conclusions obtain an independent support from
a consideration of conservation of angular momentum during
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the transitions (Compare Part I page 64).1) In the following
we will meet with applications of these considerations when
discussing the effect of electric and magnetic fields on the
hydrogen lines. In the latter case, however, the preceding
considerations need some modifications due to the fact, that
the external forces acting on the electron cannot be derived
from a potential expressed as a function of its positional co-
ordinates; to this point we shall come back in § 5.

Before leaving the general theory of perturbed periodic
systems we shall still consider the problem of the effect on
the spectrum of a periodic system, undergoing secular per-
turbations of conditionally periodic type under the influence
of a given small external field, if this system is further sub-
ject to the influence of a second external field which is small
compared with the first field, but the perturbing effect of

1) Note added during the proof. In an interesting paper by A. Rubi-
nowicz (Phys. Zeitschr. XIX, p. 441 and p. 465 (1918)) which has just
been published, a similar consideration of conservation of angular mo-
mentum has been used to draw conclusions, as regards the possibility
of transitions between the stationary states of a conditionally periodic
system possessing an axis of symmetry, and as regards the character
of the polarisation of the radiation accompanying these transitions. In
this way Rubinowicz has arrived at several of the results discussed
in the present paper; in this connection, however, it may be remarked
that, from a consideration of conservation of angular momentum, it is
not possible, even for systems possessing axial symmetry, to obtain as
complete information, as regards the number and polarisation of the
possible components, as from a consideration based on the resolution
of the motion of the electron in harmonic vibrations.
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which is yet large compared with the small effects on the
motion, proportional to the square of the intensity of the
first perturbing field, which were neglected in the preced-
ing calculations. This problem is closely analogous to the
problem, briefly discussed in Part I, of the effect of a small
perturbing field on the spectrum of an ordinary condition-
ally periodic system which allows of separation of variables.
As mentioned on page 64, we have in this case, quite inde-
pendent of the possibility of separation of variables for the
perturbed system, that in general the motion under the in-
fluence of the external field may still be represented as a sum
of harmonic vibrations by a formula of the type (31), if we
look apart from small terms proportional to the square of
the perturbing forces. Corresponding to this we have in the
case under consideration that, independent of the nature of
the second external field, the resultant secular perturbations
may in general be expressed as a sum of harmonic vibrations
of small frequencies of the type (54), if we look apart from
small terms of the same order as the product of the secular
perturbations produced by the first external field with the
square of the ratio between the intensities of the forces due
to the first and those due to the second external field. Let
us denote this ratio by µ and let, as above, λ represent a
small constant of the same order as the ratio between the
external forces due to the first field and the internal forces
of the system. On the basis of the general relation between
energy and frequency in the stationary states, we may then
expect that it is possible to fix the motion in these states
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for the perturbed periodic system in the presence of both
external fields with neglect of small terms of the same or-
der as the largest of the quantities µ2 and λ, and to fix the
corresponding values for the energy with neglect of small
terms of the same order as the largest of the quantities λµ2

and λ2.1) In general, however, the effect on the spectrum of
the perturbed system, produced by the second external field,
may be calculated without considering the perturbing effect
of this field in detail. In fact, it is in general possible, by
means of the principle of the mechanical transformability of
the stationary states, with the approximation mentioned to
determine the alteration of the energy of the system, due to
the presence of the second external field, directly from the
character of the secular perturbations produced by the first
external field only. Thus let us assume that the second field
is slowly established at a uniform rate within a time interval
of the same order of magnitude as that in which the system
will pass approximately through any state belonging to the
cycle of shapes and positions, which the orbit passes through
in the stationary states in the presence of the first external
field only. Denoting a time interval of this order by ϑ and

1) In analogy with the considerations on page 97 it may be expected,
however, that these limits for the definition of the energy in the station-
ary states will hold only for the great majority among a large number
of atomic systems. Thus in the present case we must be prepared to
find that for a small fraction of the systems of the same order as µ2

(if µ2 > λ) the energy will differ from that fixed by the method under
consideration by small quantities of the same order as µλ.
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the potential of the first perturbing field by Ω and that of the
second by ∆Ω, we get then, by a calculation quite analogous
to that given in Part I on page 17 for the alteration in the
mean value of the energy of a periodic system during a slow
establishment of a small external field, that the alteration
in the mean value of α1 + Ω taken over a time interval of
the same order as ϑ, due to the establishment of the second
external field, will be a small quantity of the same order of
magnitude as ϑ(∆Ω)2; but with the notation used above this
means, in general, a small quantity of the same order as λµ2.
It follows consequently that, with this approximation, the al-
teration in the energy in a given stationary state, due to the
presence of the second perturbing field, is equal to the mean
value of the potential of this field taken over the cycle of
shapes and positions, which the orbit would pass through in
the corresponding stationary state of the perturbed system
under the influence of the first external field only. In general,
the effect on the spectrum will therefore consist in a small
displacement of the original components proportional to the
intensity of the forces due to the second perturbing field; and
as regards the degree of approximation with which these dis-
placements are defined, it will be seen from the above that,
if µ is smaller than

√
λ, the fixation of the energy in the

stationary states in the presence of the second external field,
and therefore also the determination of the frequencies of the
spectral lines by means of (1), allow of the same degree of
approximation as the fixation of the energy in the stationary
states of the original perturbed periodic system. If µ is larger
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than
√
λ, however, the stationary states will in general not

be as well defined as for the original system, and from rela-
tion (1) we may therefore expect that the components will
be diffuse, although, as long as µ remains small compared
with unity, the width of the components will remain small
compared with the displacements from their positions in the
presence of the first external field alone. Only when µ be-
comes of the same order as unity, the simultaneous effect of
both perturbing fields may be expected to consist in a diffu-
sion of the lines of the undisturbed periodic system; unless
of course the secular perturbations due to the simultaneous
presence of both fields are still of conditionally periodic type,
as it may happen in special problems. In certain cases the
second external field will not only give rise to small displace-
ments of the original components but also to the appearance
of new components of small intensities proportional to µ2.
This occurs if for the original perturbed periodic system, due
to some peculiarity of the motion, some of the coefficients
Cτ,t1,..., ts−1 in the expressions (65) for the displacements of
the particles as a sum of harmonic vibrations, correspond-
ing to certain combinations of the numbers τ , t1, . . . , ts−1,
are equal to zero, while in the presence of the second exter-
nal field these coefficients are small quantities proportional
to µ (compare Part I, page 64).1) In the preceding con-

1) As regards the degree of definition with which the positions of the
new components will be determined, we must be prepared to find that
the frequencies of these components are only defined with neglect of
small quantities proportional to λµ. Compare the detailed discussion



122

siderations it has been assumed that the perturbed system
in the presence of the first external field is non-degenerate.
In case, however, this system is degenerate, it is obviously
impossible, by a direct application of the principle of the
mechanical transformability of the stationary states, to de-
termine the alteration in the energy in the stationary states
of the system, which will be due to the presence of a second
external field small compared with the first field; because,
as mentioned, the stationary states of the system, in the
presence of this field only, will be determined by a number
of conditions which is less than the number s of degrees of
freedom, and that consequently the cycles of shapes and po-
sitions, which the orbit will pass through in these states, will
not be completely determined. For the calculation of the en-
ergy in the stationary states it will therefore be necessary to
consider the secular perturbing effect of the second external
field on these cycles. In the special case where the secular
perturbations due to the first field are simply periodic, it
wall in this way be seen that the problem of the fixation of
the stationary states in the presence of the second external
field, by means of the method exposed in this section, may
be reduced to the problem of the fixation of the stationary
states of a system of s − 2 degrees of freedom. If, as in the
applications considered below, s is equal to 3, this problem
allows of a general solution, and we must therefore expect
that in this case the effect on the spectrum of the perturbed

of the example in § 5 on page 192.
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system produced by an arbitrary second external field, which
is small compared with the first, will consist in the splitting
up of every component into a number of separate compo-
nents, just as the effect of an arbitrary small external field
on the lines of the spectrum of a simple periodic system of
two degrees of freedom. We will meet with applications of
the above considerations when considering the effect on the
hydrogen spectrum of the combined action of different ex-
ternal fields and when considering the effect of an external
field on the spectra of other elements, which latter problem
will be discussed in Part III.

§ 3. The fine structure of the hydrogen lines.

An instructive application of the calculations in the last
section may be made in connection with the fine structure
of the hydrogen lines, which, according to Sommerfeld’s
theory mentioned in Part I on page 31, may be explained by
taking into account the small variation of the mass of the
electron with its velocity, claimed by the theory of relativity.
In this connection it must first of all be remarked that all the
general considerations in the preceding sections, as regards
relations between energy and frequency and as regards the
mechanical transformability of the stationary states, hold
unaltered if the relativity modifications are taken into ac-
count. This follows from the fact that the Hamiltonian equa-
tions (4), which are taken as a basis for all the previous calcu-
lations, may be used to describe the motion also in this case.
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If, when the relativity modifications are taken into account,
the motion of the system is simply periodic independent of
the initial conditions, we shall consequently expect that the
stationary states are characterised by the condition I = nh
only, and that the energy and frequency are the same for all
states corresponding to a given value of n in this equation.
Further the stationary states will also in the relativity case
be fixed by (22), if the system is conditionally periodic and
allows of separation of variables; while the stationary states
of a perturbed periodic system, also in the relativity case,
will be characterised by the conditions (67), if the secular
perturbations are of conditionally periodic type.

Now, when the relativity modifications are taken into ac-
count, the motion of the particles in the hydrogen atom will
not, as assumed in § 1, be exactly periodic, but the orbit of
the electron will be of the same type as that, which would
appear on ordinary Newtonian mechanics, if the law of at-
traction between the particles differed slightly from that of
the inverse square. If, for the moment, we consider the mass
of the nucleus as infinite, the system will allow of a sepa-
ration of variables in polar coordinates, and the stationary
states may consequently be fixed by the conditions (16). In
this way Sommerfeld obtained an expression for the total
energy in the stationary states, which, with neglect of small
quantities of higher order than the square of the ratio of the
velocity of the electron and the velocity of light c, is given
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by1)

E = − 2π2N2e4m

h2(n1 + n2)2

[
1 +

π2N2e4

c2h2(n1 + n2)2

(
1 + 4

n1

n2

)]
, (68)

where, as in the calculations in § 1, the charge and the mass
of the electron are denoted by −e and m, and for sake of gen-
erality the charge of the nucleus by Ne. Further n1 and n2

are the integers appearing on the right side of the condi-
tions (16) as factors to Planck’s constant. While n1 may
take the values 0, 1, 2, . . . , it will be seen that n2 can only
take the values 1, 2, . . . , because in the present case there
will obviously not correspond any stationary state to n2 = 0,
since in such a state the electron would collide with the nu-
cleus. Introducing the experimental values for e, h and c,
it is found that e2/hc is a small quantity of the same or-
der as 10−3; and, unless N is large number, the second term
within the bracket on the right side of (68) will consequently
be very small compared with unity. Putting n1 + n2 = n, it
will further be seen that the factor outside the bracket will
coincide with the expression for Wn given by (41) in § 1, if we
look apart from the small correction due to the finite mass of
the nucleus. Due to the presence of the second term within
the bracket, we thus see that, for any value of n, formula (68)

1) A. Sommerfeld, Ann. d. Phys. LI, p. 53 (1916). Compare also
P. Debye, Phys. Zeitschr., XVII, p. 512 (1916). In the special case of
circular orbits (n1 = 0), this expression coincides with an expression
previously deduced by the writer (Phil. Mag. XXIX p. 332 (1915)), by
a direct application of the condition I = nh to these periodic motions.
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gives a set of values for E which differ slightly from each
other and from −Wn. Sommerfeld’s theory leads therefore
to a direct explanation of the fact, that the hydrogen lines,
when observed by instruments of high dispersive power, are
split up in a number of components situated closely to each
other; and, by means of formula (68) in connection with
relation (1), it was actually found possible, within the lim-
its of experimental errors, to account for the frequencies of
the components of this so called fine structure of the hydro-
gen lines. Moreover the theory was supported in the most
striking way by Paschen’s1) recent investigation of the fine
structure of the lines of the analogous helium spectrum, the
frequencies of which are represented approximately by for-
mula (35), if in the expression for K, given by (40), we put
N = 2. As it should be expected from (68), the components
of these lines were found to show frequency differences sev-
eral times larger than those of the hydrogen lines, and from
his measurements Paschen concluded, that it was possible
on Sommerfeld’s theory to account completely for the fre-
quencies of all the components observed.

We shall not enter here on the details of the calculation
leading to (68), but shall only show how this formula may be
simply interpreted from the point of view of perturbed pe-
riodic systems. Thus, by a simple application of relativistic
mechanics, it is found that, if the equation of a Keplerian el-

1) F. Paschen, Ann. d. Phys. L, p. 901 (1916). See also E. J.
Evans and C. Croxson, Nature, XCVII, p. 56 (1916).
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lipse in polar coordinates is given by r = f(ϑ), the equation
of the orbit of the electron in the case under consideration
will be given by r = f(γϑ) where γ is a constant given by

γ2 = 1−
(
Ne2

pc

)2

, in which expression p denotes the angular

momentum of the electron round the nucleus.1) Now in the
stationary states the quantity in the bracket, which is of the
same order of magnitude as the ratio between the velocity
of the electron and the velocity of light, will be very small,
unless N is a large number, and it will therefore be seen that
the orbit of the electron can be described as a periodic orbit
on which a slow uniform rotation is superposed. Denoting
the frequency of revolution in the periodic orbit by ω and the
frequency of the superposed rotation by vR, we have, with
neglect of small quantities of higher order than the square of
the ratio between the velocity of the electron and the velocity
of light,

vR = ω(1− γ) =
1

2
ω

(
Ne2

pc

)2

. (69)

Comparing this formula with equation (62) and remembering
that, with the approximation in question, p may be replaced
by the quantity denoted in § 2 by α2, we see that the fre-
quency of the secular rotation of the orbit will be the same
as that which would appear, if the variation of the mass of
the electron was neglected, but if the atom was subject to a
small external central force the mean value of the potential

1) See f. inst. A. Sommerfeld, loc. cit. p. 47.
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of which, taken over a revolution of the electron, was equal
to

ψ = −ωπN
2e4

c2α2

. (70)

This is simply shown, however, to be equal to the expression
for ψ corresponding to a small attractive force varying as
the inverse cube of the distance. In fact, let the potential of
such a force be given by Ω = C/r2, where C is a constant
and r the length of the radius vector from the nucleus to the
electron. By means of the relation α2 = mr2ϑ̇, where ϑ is
the angular distance of the radius vector from a fixed line in
the plane of the orbit, we get then

ψ =
1

σ

∫ σ

0

C

r2
dt =

ωmC

α2

∫ 2π

0

dϑ =
2πωmC

α2

,

which expression is seen to coincide with (70), if C = −N
2e4

2c2m
.

If the relativity modifications are taken into account, and
if for a moment we would imagine that the nucleus, in ad-
dition to its usual attraction, exerted a small repulsion on
the electron, proportional to the inverse cube of the distance
and equal and opposite to the attraction just mentioned, we
would therefore obtain a system for which, with neglect of
small quantities of higher order than the square of the ra-
tio between the velocity of the electron and the velocity of
light, every orbit would be periodic independent of the ini-
tial conditions, and for which consequently the stationary
states would be fixed by the single condition I = nh. Now
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the actual hydrogen atom may obviously be considered as a
perturbed system, formed by this periodic system, when it is
exposed to a small central field for which the value of ψ is
given by (70). With the approximation mentioned, we get
therefore for the total energy in the stationary states of the
atom

E = E ′n −
8π4N4e8m

h4c2

1

n3n
, (71)

where E ′n is the energy in the stationary states of the periodic
system just mentioned, and where the last term is obtained
by introducing in (70) the value of α2 given by (64) and the
value of ωn given by (41), neglecting the small correction
due to the finite mass of the nucleus. Remembering that
in our notation n1 + n2 = n and n2 = n, it will be seen
that, as regards the small differences in the energy of the
different stationary states corresponding to the same value
of n, formula (71) gives the same result as Sommerfeld’s
formula (68). In fact, comparing (68) and (71), we get

E ′n = −2π2N2e4m

h2n2

(
1− 3π2N2e4

c2h2n2

)
, (72)

which is seen to be a function of n only. This expression
might also have been deduced directly from the condition
I = nh by considering, for instance, a circular orbit, in which
case the calculation can be very simply performed.

In connection with the above calculations, it may be re-
membered that the fixation of the stationary states, leading
to the formulæ (68) or (71), is based on the assumption,
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that the motion of the electron can be determined as that
of a mass point which moves in a conservative field of force,
according to the laws of ordinary relativistic mechanics, and
that we have looked apart from all such forces which, ac-
cording to the ordinary theory of electrodynamics, would
act on an accellerated charged particle, and which consti-
tute the reaction from the radiation which on this theory
would accompany the motion of the electron. Some proce-
dure of this kind, which means a radical departure from the
ordinary theory of electrodynamics, is obviously necessary in
the quantum theory in order to avoid dissipation of energy
in the stationary states. Since we are entirely ignorant as
regards the mechanism of radiation, we must be prepared,
however, to find that the above treatment will allow to de-
termine the motion in the stationary states, only with an
approximation which looks apart from small quantities of
the same order as the ratio between the radiation forces in
ordinary electrodynamics and the main forces on the elec-
tron due to the attraction from the nucleus.1) Now it is

1) Compare Part I, page 6. It may in this connection be noted that
the degree of approximation, involved in the determination of the fre-
quencies of an atomic system by means of relation (1) if in the fixation
of the stationary states we look apart from small forces of the same or-
der of magnitude as the radiation forces in ordinary electrodynamics,
would appear to be intimately connected with the limit of sharpness of
the spectral lines, which depends on the total number of waves contained
in the radiation emitted during the transition between two stationary
states. In fact, from a consideration based on the general connection
between the quantum theory and the ordinary theory of radiation, it
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easily shown that this ratio will be a small quantity of the

same order of magnitude as N2

(
e2

pc

)3

, and it would there-

fore beforehand seem justified in the expression for the total
energy in the stationary states to retain small terms of the
same order as the second term in (71), while at the same
time it might appear highly questionable, whether, in the
complete expression for the total energy in the stationary
states deduced by Sommerfeld and Debye on the basis of
the conditions (16), it has a physical meaning to retain terms
of higher order than those retained in formula (68); unless
N is a large number, as in the theory of the Röntgenspectra
to be discussed in Part III.

While the preceding considerations, which deal with the
determination of the energy in the stationary states of the
hydrogen atom, allow to determine the frequency of the ra-
diation which would be emitted during a transition between
two such states, they leave quite untouched the problem of
the actual occurrence of these transitions in the luminous
gas, and therefore give no direct information about the num-

seems natural to assume that the rate, at which radiation is emitted
during a transition between two stationary states, is of the same order
of magnitude as the rate, at which radiation would be emitted from the
system in these states according to ordinary electrodynamics. But this
will be seen to imply that the total number of waves in question will
just be of the same order as the ratio between the main forces acting
on the particles of the system and the reaction from the radiation in
ordinary electrodynamics.
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ber and relative intensities of the components into which the
hydrogen lines may be expected to split up as a consequence
of the relativity modifications. This problem has recently
been discussed by Sommerfeld,1) who in this connection
emphasises the importance of the different a-priori probabil-
ities of the stationary states, characterised by different sets
of values of the n’s in the conditions (16). Thus Sommer-
feld attempts to obtain a measure for the relative intensities
of the components of the fine structure of a given line, by
comparing the intensities observed with the products of the
values of the a-priori probabilities of the two states, involved
in the emission of the components under consideration; and
he tries in this connection to test different expressions for
these a-priori probabilities (See Part I, page 47). In this
way, however, it was not found possible to account in a sat-
isfactory manner for the observations; and the difficulty in
obtaining an explanation of the intensities on this basis was
also strikingly brought out by the fact, that the number and
relative intensities of the components observed varied in a re-
markable way with the experimental conditions under which
the lines were excited. Thus Paschen found a greater num-
ber of components in the fine structure of the helium lines,
mentioned above, when the gas was subject to a condensed
interrupted discharge, than when a continuous voltage was
applied. It would seem, however, that all the facts observed
obtain a simple interpretation on the basis of the general con-

1) A. Sommerfeld, Ber. Akad. München, 1917, p. 83.
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siderations about the relation between the quantum theory
of line spectra and the ordinary theory of radiation discussed
in Part I. According to this relation, we shall assume that
the probability, for a transition between two given station-
ary states to take place, will depend not only on the a-priori
probability of these states, which is determining for their
occurrence in a distribution of statistical equilibrium, but
will also depend essentially on the motion of the particles
in these states, characterised by the harmonic vibrations in
which this motion can be resolved. Now, in the absence of
external forces, the motion of the electron in the hydrogen
atom forms a special simple case of the motion of a con-
ditionally periodic system possessing an axis of symmetry,
and may therefore be represented by trigonometric series of
the type deduced for such motions in Part I. Taking a line
through the nucleus perpendicular to the plane of the orbit
as z-axis, we get from the calculations on page 59

z = const.

and
x =

∑
Cτ cos 2π

{
(τω1 + ω2)t+ cτ

}
,

±y =
∑

Cτ sin 2π
{

(τω1 + ω2)t+ cτ
}
,

(73)

where ω1 is the frequency of the radial motion and ω2 is the
mean frequency of revolution, and where the summation is to
be extended over all positive and negative entire values of τ .
It will thus be seen that the motion may be considered as a
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superposition of a number of circular harmonic vibrations,
for which the direction of rotation is the same as, or the op-
posite of, that of the revolution of the electron round the
nucleus, according as the expression τω1 + ω2 is positive or
negative respectively. From the relation just mentioned be-
tween the quantum theory of line spectra and the ordinary
theory of radiation, we shall therefore in the present case
expect that, if the atom is not disturbed by external forces,
only such transitions between stationary states will be possi-
ble, in which the plane of the orbit remains unaltered, and in
which the number n2 in the conditions (16) decreases or in-
creases by one unit; i. e. where the angular momentum of the
electron round the nucleus decreases or increases by h/2π.
From the relation under consideration, we shall further ex-
pect that there will be an intimate connection between the
probability of a spontaneous transition of this type between
two stationary states, for which n1 is equal to n′1 and n′′1
respectively, and the intensity of the radiation of frequency
(n′1 − n′′1)ω1 ± ω2, which on ordinary electrodynamics would
be emitted by the atom in these states, and which would
depend on the value Cτ of the amplitude of the harmonic
rotation, corresponding to τ = ±(n′1−n′′1), which appears in
the motion of the electron. Without entering upon a closer
examination of the numerical values of these amplitudes, it
will directly be seen that the amplitudes of the harmonic
rotations, which have the same direction as the revolution
of the electron, in general, are considerably larger than the
amplitudes of the rotations in the opposite direction, and
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we shall accordingly expect that the probability of sponta-
neous transition will in general be much larger for transi-
tions, in which the angular momentum decreases, than for
transitions in which it increases. This expectation is veri-
fied by Paschen’s observations of the fine structure of the
helium lines, which show that, for a given line, the compo-
nents corresponding to the transitions of the former kind are
by far the strongest. On Paschen’s photographs, however,
especially in the case of the application of a condensed dis-
charge to the vacuum tube containing the gas, there appear,
in addition to the main components corresponding to tran-
sitions for which the angular momentum changes by h/2π,
a number of weaker components, corresponding to transi-
tions for which the angular momentum remains unchanged
or changes by higher multipla of h/2π. This fact obtains
a simple interpretation on the considerations in Part I on
page 64 about the influence of small external forces on the
spectrum of a conditionally periodic system. Thus, in the
presence of small perturbing forces, the motion will generally
not remain in a plane, and in the trigonometric series repre-
senting the displacement of the electron in space, there will
occur small terms corresponding to frequencies (τ1ω1 +τ2ω2),
where τ2 may be different from one. In the presence of such
forces, we shall therefore expect that, in addition to the reg-
ular probabilities of the above mentioned main transitions,
there will appear small probabilities for other transitions.1)

1) Note added during the proof. As remarked in Part I, this con-
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A detailed discussion of these problems will be given in a
later paper by Mr. H. A. Kramers, who on my proposal
has kindly undertaken to examine the resolution of the mo-
tion of the electron in its constituent harmonic vibrations
more closely, and who has deduced explicit expressions for
the amplitudes of these vibrations, not only for the motion
of the electron in the undisturbed atom, but also for the
perturbed motion in the presence of a small external homo-
geneous electric field. As it will be shown by Kramers,
these calculations allow to account in particulars for the ob-
servations of the relative intensities of the components of the
fine structure of the hydrogen lines and the analogous helium
lines, as well as for the characteristic way in which this phe-
nomenon is influenced by the variation of the experimental
conditions.

§ 4. The effect of an external electric field
on the hydrogen lines.

As mentioned in the introduction, a detailed theory of the
characteristic effect of an external homogeneous electric field

sideration obtains a striking confirmation by the observation of the
appearance of new series of lines in the ordinary series spectra of he-
lium and other elements, when the atoms are exposed to an intense
external electric field. As it will be discussed more closely in Part III,
it is possible in this way to account in detail for the manifold results,
regarding the appearance of such series in the helium spectrum, which
have been published quite recently by J. Stark (Ann. d. Phys. LVI,
p. 577 (1918)) and by G. Liebert (ibid. LVI, p. 589 and p. 610 (1918)).
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on the hydrogen spectrum, discovered by Stark, has been
given by Epstein and Schwarzschild on the basis of the
general theory of conditionally periodic systems which allow
of separation of variables. Before we enter on the discussion
of the results of the calculations of these authors, we shall
first, however, show how the problem may be treated in a
simple way by means of the considerations about perturbed
periodic systems, developed in § 2.

Consider an electron of mass m and charge −e, rotating
round a positive nucleus of infinite mass and of charge Ne,
and subject to a homogeneous electric field of intensity F ,
and let us for the present neglect the small effect of the rel-
ativity modifications. Using rectangular coordinates, and
taking the nucleus as origin and the z-axis parallel to the
external field, we get for the potential of the system relative
to the external field, omitting an arbitrary constant,

Ω = eFz.

Calculating now the mean value of Ω over a period σ of
the undisturbed motion, we see at once, from considerations
of symmetry, that this mean value ψ will depend only on the
component of the external electric force in the direction of
the major axis of the orbit. We have therefore

ψ = eF cosϕ
1

σ

∫ σ

0

r cosϑ dt,

where ϕ is the angle between the z-axis and the major axis,
taken in the direction from the nucleus to the aphelium, and
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where r is the length of the radius-vector from the nucleus
to the electron, and ϑ the angle between this radius-vector
and the major axis. By means of the well known equations
for a Keplerian motion

r cosϑ = α(cosu+ ε),
dt

σ
= (1 + ε cosu)

du

2π
,

where 2α is the major axis, ε the eccentricity and u the so
called eccentric anomaly, this gives

ψ = eF cosϕ
1

2π

∫ 2π

0

α(cosu+ ε)(1 + ε cosu) du

=
3

2
εαeF cosϕ.

(74)

We see thus that ψ is equal to the potential energy rel-
ative to the external field, which the system would possess,
if the electron was placed at a point, situated on the ma-
jor axis of the ellipse and dividing the distance 2εa between
the foci in the ratio 3 : 1. This point may be denoted as
the “electrical centre” of the orbit. From the approximate
constancy of ψ during the motion, proved in § 2, it follows
therefore in the first place that, with neglect of small quanti-
ties of the same order of magnitude as the ratio between the
external force and the attraction from the nucleus, the elec-
trical centre will during the perturbations of the orbit remain
in a fixed plane perpendicular to the direction of the exter-
nal force. From the considerations in § 2 it follows further,
that the total energy in the stationary states of the system
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in the presence of the field, with neglect of small quantities
proportional to F 2, will be equal to En +ψ, where En is the
energy of the hydrogen atom in its undisturbed stationary
state. Since both ε and cosϕ are numerically smaller than
one, we obtain therefore at once from (74) a lower and an
upper limit for the possible variations of the energy in the
stationary states, due to the field. Introducing from (41) the
values of En and αn, and neglecting, here as well as in the fol-
lowing calculations in this section, the small correction due
to the finite mass of the nucleus—not only in the expression
for the additional energy but, for the sake of brevity, also in
the main term—we get for these limits

E = −2π2N2e4m

h2n2
± 3h2n2

8π2Nem
F, (75)

which formula coincides with the expression previously de-
duced by the writer by applying the condition I = nh to the
two (physically not realisable) limiting cases, corresponding
to z = 1 and cosϕ = ±1, in which the orbit remains periodic
in the presence of the field.1)

In order to obtain further information as to the values
of the energy in the stationary states in the presence of the

1) See N. Bohr, Phil. Mag. XXVII, p. 506 (1914) and XXX, p. 394
(1915). Compare also E. Warburg, Verh. d. D. Phys. Ges. XV, p. 1259
(1913), where it was pointed out, for the first time, that the effect of
an electric field on the hydrogen lines to be expected on the quantum
theory was of the same order of magnitude as the effect observed by
Stark.
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field, it is necessary to consider more closely the variation
of the orbit during the perturbations. Since the external
forces possess axial symmetry, the problem of the stationary
states might be treated by means of the procedure indicated
in § 2 on page 107. In the present special case, however,
the stationary states of the atom may be very simply de-
termined, due to the fact that the secular perturbations are
simply periodic independent of the initial shape and posi-
tion of the orbit, so that we are concerned with a degenerate
case of a perturbed periodic system. This property of the
perturbations follows already from some calculations given
by Schwarzschild1) in a previous attempt to explain the
Stark effect of the hydrogen lines, without the help of the
quantum theory, by means of a direct consideration of the
harmonic vibrations into which the motion may be resolved,
according to the analytical theory of conditionally periodic
systems. Starting from the above result, that the electrical
centre moves in a plane perpendicular to the direction of the
external field, the periodicity of the perturbations may also
be proved in the following way, by means of a simple con-
sideration of the variation of the angular momentum of the
electron round the nucleus, due to the effect of the external
electric force.

Using again rectangular coordinates with the nucleus at the
origin and the z-axis parallel to the direction of the electric force,
and calling the coordinates of the electrical centre ξ, η, ζ, we have

1) K. Schwarzschild, Verh. d. D. Phys. Ges. XVI, p. 20 (1914).
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according to formula (74)

ξ2 + η2 + ζ2 =

(
3

2
εα

)2

, ζ = const. (1∗)

Denoting the components parallel to the x y and z-axis of the
angular momentum of the electron round the nucleus, considered
as a vector, by Px, Py and Pz, we have next

P 2
x + P 2

y + P 2
z = (1− ε2)(2πmα2ω)2, Pz = const. (2∗)

Since the angular momentum is perpendicular to the plane of the
orbit, we have further

ξPx + ηPy + ζPz = 0. (3∗)

Now we have for the mean values of the rates of variation of
Px and Py with the time

DPx
Dt

= eFη,
DPy
Dt

= −eFξ. (4∗)

From this we get, differentiating (1∗) and (2∗) with respect to
the time, and remembering that α and ω remain constant during
the perturbations,

ξ
Dξ

Dt
+ η

Dη

Dt
= −K2

(
Px

DPx
Dt

+ Py
DPy
Dt

)
= −eFK2(ηPx − ξPy),

(5∗)

where

K =
3

4πmαω
. (6∗)
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On the other hand we have, differentiating (3∗) and introduc-
ing (4∗),

Px
DPx
Dt

+ Py
DPy
Dt

= 0,

which together with (5∗) gives

Dξ

Dt
= eFK2Py,

Dη

Dt
= −eFK2Px,

from which we get, by means of (4∗),

D2ξ

Dt2
= −e2F 2K2ξ,

D2η

Dt2
= −e2F 2K2η,

the solution of which is

ξ = A cos 2π(vt+ a), η = B cos 2π(vt+ b), (7∗)

where A, a, B and b are constants, and where, introducing (6∗),
we have

v =
eFK

2π
=

3eF

8π2mαω
. (8∗)

During the perturbations the electrical centre will thus
perform slow harmonic vibrations perpendicular to the di-
rection of the electric force, with a frequency which is pro-
portional to the intensity of the electric field, but, for a given
value of F , quite independent of the initial shape of the or-
bit and its position relative to the direction of the field. For
the value of this frequency in the multitude of states of the
perturbed system, for which the mean value of the inner en-
ergy is equal to the energy En in a stationary state of the
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undisturbed system corresponding to a given value of n, we
get from the above calculation, introducing for α and ω the
values of αn and ωn given by (41),

vF =
3hn

8π2Nem
F. (76)

Now from the periodic motion of the electrical centre we may
conclude that, in the presence of the field, the system will be
able to emit or absorb a radiation of frequency vF , and that
accordingly the possible values of the additional energy of the
system in the presence of the field will be given directly by
Planck’s fundamental formula (9), holding for the possible
values of the total energy of a linear harmonic vibrator, if in
this formula ω is replaced by the above frequency vF . Since
further a circular orbit, perpendicular to the direction of the
electric force, will not undergo secular perturbations during
a slow establishment of the field, and therefore must be in-
cluded among the stationary states of the perturbed system,
we get for the total energy of the atom in the presence of the
field

E = En + nvFh = −2π2N2e4m

n2h2
+

3h2nn

8π2Nem
F, (77)

where n is an entire number which in the present case may
be taken positive as well as negative. From a comparison be-
tween (75) and (77), we see that the presence of the external
field imposes the restriction on the motion of the atom in the
stationary states, that the plane in which the electrical cen-
tre of the orbit moves must have a distance from the nucleus
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equal to an entire multiple of the nth part of its maximum

distance
3

2
αn.

The result, contained in formula (77), is in agreement
with the expression for the total energy in the stationary
states, deduced by Epstein and Schwarzschild by means
of the general theory of conditionally periodic systems based
on the conditions (22). The treatment of these authors rests
upon the fact, that, as mentioned in Part I, the equations of
motion for the electron in the present problem may be solved
by means of separation of variables in parabolic coordinates
(compare page 36). Taking for q1 and q2 the parameters of
the two paraboloids of revolution, which pass through the
instantaneous position of the electron and which have their
foci at the nucleus and their axes parallel to the direction
of the field, and for q3 the angular distance between the
plane through the electron and the axis of the system and
a fixed plane through this axis, the momenta p1, p2, p3 will
during the motion depend on the corresponding q’s only, and
the stationary states will be fixed by three conditions of the
type (22). With neglect of small quantities proportional to
higher powers of F , the final formula for the total energy,
obtained by Epstein in this way, is given by

E = − 2π2N2e4m

h2(n1 + n2 + n3)2

− 3h2(n1 + n2 + n3)(n1 − n2)

8π2Nem
F, 1)

(78)
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where n1, n2, n3 are the positive entire numbers which occur
as factors to Planck’s constant on the right sides of the
mentioned three conditions.

As regards the possible values of the total energy of the
hydrogen atom in the presence of the electric field, it will be
seen that (78) coincides with (77) if we put n1 +n2 +n3 = n
and n1−n2 = n. At the same time it will be observed, how-
ever, that the motion in the stationary states, as fixed by the
procedure followed by Epstein, is more restricted than was
necessary in order to secure the right relation between the
additional energy and the frequency of the secular pertur-
bations. Thus, in addition to the condition which fixes the
plane in which the electrical centre moves, Epstein’s theory
involves the further condition, that the angular momentum
of the electron round the axis of the perturbed system is
equal to an entire multiple of h/2π; which multiple is seen
to be even or uneven, according as n+n is an even or an un-
even number respectively. This circumstance is intimately
connected with the fact that, although the perturbed sys-
tem under consideration is degenerate if we look apart from
small quantities proportional to the square of the intensity
of the external force, the degenerate character of the system
does not reveal itself from the point of view of the theory
of stationary states based on the conditions (22), because
the system under consideration allows of separation of vari-
ables only in one set of positional coordinates. On the other

1) P. Epstein. Ann. d. Phys. L, p. 508 (1916).
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hand, this degenerate character of the system has been em-
phasised by Schwarzschild1) on the basis of the theory
of stationary states based on the introduction of angle vari-
ables, in which the periodicity properties of the motion play
an essential part. In a later discussion of this point Ep-
stein2) calls attention to the fact that, if small quantities
proportional to the square of the electric force are taken into
account, the system appears no more as degenerate; and he
finds therein a justification of the fixation of the stationary
states by means of (22). From the point of view of perturbed
systems, this would mean that the motion in the stationary
states of the system in question, as fixed by (22), would cer-
tainly be stable for infinitely small disturbances, but that
we should expect finite deviations from the motion in these
states, already if the system was exposed to a second per-
turbing field, the intensity of which was only of the same
order as the product of the external electric force with the
ratio between this force and the attraction from the nucleus.
A closer consideration, however, in which regard is taken to
the influence of the relativity modifications, learns that the
degree of stability of the motion in the stationary states, as
determined by (22), actually is often much higher, the order
of magnitude of the external force, necessary to cause finite
deviations from this motion, being of the same order as the
product of the attraction from the nucleus with the square

1) K. Schwarzschild, Ber. Akad. Berlin, 1916, p. 548.
2) P. Epstein, Ann. d. Phys. LI, p. 168 (1916).
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of the ratio of the velocity of the electron and the velocity
of light. To this point we shall come back at the end of this
section, when considering the simultaneous perturbing influ-
ence on the motion of the election in the hydrogen atom, due
to the relativity modifications and an external electric field.

In the deduction of formula (78) there is looked apart,
not only from the effect on the motion of the electron due to
the small modifications in the laws of mechanics claimed by
the theory of relativity, but also from the effect of possible
forces which might act on the electron, corresponding to the
reaction from the radiation in ordinary electrodynamics. If,
however, for the moment we exclude all stationary states for
which the angular momentum round the axis of the system
would be equal to zero (n3 = 0), the total angular momen-
tum of the electron round the nucleus will during the pertur-
bations always remain larger than or equal to h/2π, just as
in the stationary states considered in the theory of the fine
structure; and, according to the considerations on page 128,
we shall therefore expect that the effect of the neglect of
possible “radiation” forces will be small compared with the
effect of the relativity modifications. On the other hand, if
the intensity of the electric field is of the same order of mag-
nitude as that applied in Stark’s experiments, the effect of
these modifications must again be expected to be very small
compared with the total effect of the electric force on the hy-
drogen lines, since the perturbing effect of this force on the
Keplerian motion of the electron will be very large compared
with the corresponding effects of the relativity modifications.
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If, on the contrary, we would consider a state of the atom
for which n2 was equal to zero, the orbit would be plane and
would during the perturbations assume shapes, for which the
total angular momentum round the nucleus was very small,
and in which the electron during the revolution would pass
within a very short distance from the nucleus. In such a
state the effect of the relativity modifications on the mo-
tion of the electron would be considerable, but quite apart
from this a rough calculation shows that the amount of en-
ergy, which, on ordinary electrodynamics, would be emitted
during the intervals in which the angular momentum during
the perturbations of the orbit remains small, is so large that
it would hardly seem justifiable to calculate the motion and
the energy in these states by neglecting all forces correspond-
ing to the radiation forces in ordinary electrodynamics. We
need not, however, enter more closely on these difficulties,
because, on the general considerations in Part I about the
a-priori probability of the different stationary states, we are
forced to conclude that, for any value of the external elec-
tric field, no state which would correspond to n3 = 0 will
be physically possible; since any such state might be trans-
formed continuously, and without passing through a degen-
erate system, into a state which obviously cannot represent
a physically realisable stationary state (compare page 49).
In fact, if we imagine that an external central field of force,
varying as the inverse cube of the distance from the nucleus,
is slowly established, it would be possible to compensate the
secular effect of the relativity modifications and to obtain
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orbits in which the electron would pass within any given,
however small, distance from the nucleus. As regards the
other stationary states fixed by (22), which correspond to
n3 > 1, we shall according to the considerations in Part I
expect that their a-priori probabilities are all equal.1)

1) By a simple enumeration it follows from this result, that the total
number of different stationary states of the hydrogen atom, subject to
a small homogeneous electric field, which corresponds to a stationary
state of the undisturbed atom, characterised by a given value of n in the
condition I = nh, is equal to n(n + 1). This expression is directly ob-
tained, if we remember that n = n1+n2+n3 and if we count each state,
characterised by a given combination of the positive integers n1, n2, n3,
as double, corresponding to the two possible opposite directions of ro-
tation of the electron round the axis of the field. With reference to
the necessary stability for a small variation of the external conditions
of the statistical distribution of the values of the energy among a large
number of atoms in temperature equilibrium (see Note on page 82), it
will be seen that the expression n(n+1) may be taken as a measure for
the relative value of the a-priori probability of the different stationary
states of the undisturbed hydrogen atom, corresponding to different val-
ues of n. The problem of the determination of this a-priori probability
has been discussed by K. Herzfeld (Ann. d. Phys. LI, p. 261 (1916))
who, by an examination of the volumes of the different extensions in
the phase space which might be considered as belonging to the different
stationary states of the hydrogen atom, has arrived at an expression
for the a-priori probability of these states which differs from the above.
From the point of view, as regards the principles of the quantum the-
ory, taken in the present paper, a consideration of this kind, however,
does not, as explained in Part I on page 47, afford a rational means
of determining the a-priori probability of the stationary states of an
atomic system.
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As regards the comparison between the theory and the
experiments, it will be remembered that Stark found that
every hydrogen line in the presence of an electric field was
split up in a number of polarised components, in a way dif-
ferent for the different lines. When viewed parallel to the di-
rection of the field, there appeared a number of components
polarised parallel to the field and a number of components
polarised perpendicular to the field; when viewed in the di-
rection of the field, only the latter components appeared,
but without showing characteristic polarisation. Apart from
the marked symmetry of the resolution of every line, the
distances between successive components and their relative
intensities varied in an apparently irregular way from com-
ponent to component. As pointed out by Epstein and
Schwarzschild, however, it is possible by means of (78),
in connection with relation (1), to account in a convincing
way for Stark’s measurements as regards the frequencies
of the components. Especially a closer examination of these
measurements showed that all the differences between the
frequencies of the components were equal to entire multipla
of a certain quantity, which was the same for all lines in the
spectrum and, within the limits of experimental errors, equal

to the theoretical value
3hF

8π2Nem
. On the other hand, the

theories of Epstein and Schwarzschild gave no direct in-
formation as regards the question of the polarisation and in-
tensity of the different components. Comparing formula (78)
with Stark’s observations, Epstein pointed out, however,
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that the polarisation of the different components observed
could apparently be accounted for by the rule: that a transi-
tion between two stationary states gives rise to a component
polarised parallel to the field, if n3 remains unchanged or
is changed by an even number of units; while a component,
corresponding to a transition in which n2 is changed by an
uneven number of units, is polarised perpendicular to the
field. This result may be simply interpreted on the basis of
the general formal relation between the quantum theory of
line spectra and the ordinary theory of radiation. In fact, it
was shown in Part I that, for a conditionally periodic sys-
tem possessing an axis of symmetry, we shall expect only
two types of transitions to be possible. In transitions of
the first type n3 remains unchanged, and the emitted ra-
diation is polarised parallel to the axis of symmetry, while
the transitions of the second type, in which n3 varies by
one unit, give rise to a radiation of circular polarisation in a
plane perpendicular to this axis (see page 64). In order to
show that this agrees with the empirical rule of Epstein,
it may be noted in the first place that, for any component
which might be ascribed to a certain transition in which
n3 changes by a given entire number of units, there exists
always another transition which will give rise to a radiation
of the same frequency but in which n3 remains unchanged or
changes by one unit, according to whether the given num-
ber is even or uneven. Next it will be seen that, in case of
the effect of an electric field on the hydrogen spectrum, we
cannot detect by means of direct observations the circular
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polarisation of the radiation corresponding to transitions of
the second type; because, for each transition giving rise to a
radiation of circular polarisation in one direction, there will
exist another transition giving rise to a radiation which pos-
sesses the same frequency but is polarised in the opposite
direction. Besides on the problem of the polarisations of the
different components into which the hydrogen lines are split
up in the presence of the electric field, the general considera-
tions in Part I allow also to throw light on the question of the
relative intensities of these components, by considering the
harmonic vibrations into which the motion of the electron
in the stationary states can be resolved. Compared with the
problem of the relative intensities of the components of the
fine structure of the hydrogen lines, the present problem is
simpler in that respect, that the stationary states may be
assumed to be a-priori equally probable. Since the different
components, into which a given hydrogen line is split up in
the electric field, correspond to transitions between pairs of
states which for all components have very nearly the same
values for the total energy, these states may therefore be
expected to be of approximately equal occurrence in the lu-
minous gas. According to the considerations in Part I, we
shall consequently assume that for a given hydrogen line the
relative intensities of the different Stark effect components,
corresponding to transitions between different pairs of sta-
tionary states characterised by n1 = n′1, n2 = n′2, n3 = n′3
and n1 = n′′1, n2 = n′′2, n3 = n′′3 respectively, will be in-
timately connected with the intensities of the radiations of



153

frequency (n′1−n′′1)ω1 + (n′2−n′′2)ω2 + (n′3−n′′3)ω3, which on
ordinary electrodynamics would be emitted by the atom in
the two states involved in the transition in question; ω1, ω2,
and ω3 being the fundamental frequencies entering in the ex-
pression (31) for the displacement of the electron. In order
to test how far such a connection is actually brought out by
the observations, it is necessary to determine the numeri-
cal values of the amplitudes of the harmonic vibrations into
which the motion of the electron can be resolved. The exam-
ination of this problem has been undertaken by Mr. H. A.
Kramers, who has deduced complete expressions for these
amplitudes, by means of which it was found possible, for each
of the hydrogen lines Hα, Hβ, Hγ and Hδ, to account in a
convincing way for the apparently capricious laws which gov-
ern the intensities of the components observed by Stark.1)
This agreement offered at the same time a direct experimen-

1) Note added during the proof. In recent papers H. Nyquist (Phys.
Rev. X, p. 226 (1917)) and J. Stark (Ann. d. Physik, LVI, p. 569
(1918)) have published measurements on the effect of an electric field
on certain lines of the helium spectrum which is given by (35), if in (40)
we put N = 2. As will be seen from (78), the differences between the
frequencies of the components into which these lines are split up will,
for the same intensity of the external electric field, be smaller than
for the hydrogen lines. In conformity with this it was not possible,
with the experimental arrangement used by the authors mentioned, to
observe separately the numerous components to be expected on the
theory, but only to obtain certain rough features of the resolution of
the lines in question. For the interpretation of these observations a
detailed consideration of the relative intensities to be expected for the
different theoretical components is therefore essential; and, as it will be
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tal support for the conclusions mentioned above: that there
exist no stationary states corresponding to n3 = 0, while the
stationary states corresponding to other values of n2 are a-
priori equally probable; and that transitions can only take
place between pairs of stationary states for which n3 is the
same or differs by one unit. A general discussion of these
problems will be given by Kramers in the paper, mentioned
on page 136 in the last section, in which also the problem of
the intensity of the fine structure components is treated in
detail.

In the former section and in the present we have seen, how
the problems of the influence of the relativity modifications
on the lines of the hydrogen spectrum and of the influence of
an external electric field on this spectrum can be treated, by
regarding the motion of the electron as a perturbed periodic
motion, and by fixing the stationary states on the basis of the
relation between the energy and the frequencies of the secular
perturbations. As it was done originally by Sommerfeld
and Epstein, both these problems can also be treated by
means of the theory of the stationary states of conditionally
periodic systems which allow of separation of variables in a
fixed set of positional coordinates. If, however, we consider
the problem of the simultaneous influence on the hydrogen
spectrum of the relativity modifications and a homogeneous

shown in Kramers’ paper, it is possible, on the basis of the calculation
of the amplitudes of the harmonic vibrations into which the motion
of the electron in the stationary states can be resolved, to account
satisfactorily for Nyquist’s and Stark’s results.
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electric field of any given intensity, there does not exist a
set of coordinates for which a separation of variables can be
obtained. On the other hand it is possible, also in this case,
to apply the general considerations about perturbed periodic
systems developed in the preceding. In fact, with reference
to the treatment given in § 3 of the problem of the fine struc-
ture of the hydrogen lines, it will be seen that the deviations
of the orbit of the electron from a Keplerian ellipse in the
problem under consideration will be the same as the secular
perturbations produced on a Keplerian motion by the simul-
taneous influence of an external homogeneous field of force
and an external central force proportional to the inverse cube
of the distance from the nucleus. Since these two fields to-
gether form a perturbing field possessing axial symmetry, it
follows therefore that the secular perturbations, when the
relativity modifications are taken into account, will be con-
ditionally periodic and that the problem of the stationary
states may be treated by means of the method mentioned
in § 2 on page 107. In this way we obtain in the first place
the result, that, for any value of the intensity of the external
electric field, we must expect that the hydrogen lines will be
split up in a number of sharp components. Next, since for
any value of this intensity different from zero the system will
be non-degenerate, it follows from the conditions (61), that
we must assume that the angular momentum round the axis
of the field is always equal to an entire multiple of h/2π; in
consistence with the assumption of the validity of the anal-
ogous condition involved in the fixation of the stationary
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states by means of the method of separation of variables,
when applied to an explanation of the Stark effect with
neglect of the relativity modifications (compare page 145).
On the basis of the conditions (61) it is possible to predict
in detail, how the fine structure of the hydrogen lines will
be influenced by an increasing electric field until, for a suffi-
ciently large intensity of this field, the phenomenon develops
gradually into the ordinary Stark effect. The problem of
this transmutation will be treated in a later paper by Mr.
H. A. Kramers,1) who has kindly drawn my attention to
this interesting application of the method of perturbations,
and has thereby given a valuable impetus to the detailed
elaboration of this method as regard the treatment of more
complicate problems.

§ 5. The effect of a magnetic field
on the hydrogen spectrum.

A theory of the Zeeman effect of the hydrogen fines
based on the quantum theory of line spectra has, as men-
tioned in the introduction, been given independently by
Sommerfeld and by Debye. The calculations of these
authors rest upon the fact, that it is possible, also in the
presence of a magnetic field, to write the equations of mo-

1) Besides the discussion of this problem, the paper in question will
contain a general treatment of the theory of perturbed periodic systems
from the point of view of the possibility of describing the motion by
means of angle variables (compare Note on page 112).
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tion of the electron in the canonical Hamiltonian form given
by (4), if the momenta p1, p2, p3 which are conjugated to the
positional coordinates of the electron q1, q2, q3, are defined
in a suitable way. In complete analogy to the problem of
the fixation of the stationary states of an atomic system
when the relativity modifications are taken into account, it
follows therefore that, if these equations can be solved by the
method of separation of variables, we obtain, by fixing the
stationary states by means of the conditions (22), a relation
between the total energy of the atom in the presence of a
magnetic field and the fundamental frequencies characteris-
ing the motion of the electron, which is exactly the same as
that holding between the energy and frequencies in the sta-
tionary states of an ordinary conditionally periodic system.
By a procedure analogous to that applied by Burgers in
his proof of the mechanical invariance of the relations (22)
for slow changes of the external conditions, mentioned in
Part I on page 36, it may further be proved that also in the
presence of a magnetic field these relations are invariant,
when regard is taken to the effect of the induced electric
forces which, according to the ordinary theory of electrody-
namics, will accompany a variation of the magnetic field.
In the following, however, we shall not treat the problem of
the influence of an external magnetic field on the hydrogen
spectrum by means of the method of separation of variables,
but in analogy to the treatment of the problems of the fine
structure and of the Stark effect of the hydrogen lines,
given in the preceding sections, we shall treat the problem
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from the point of view of the theory of perturbed periodic
systems. Before entering on the detailed discussion of the
necessary modifications to be introduced in the general con-
siderations in § 2, in order that they may be applied also to
the problem of the fixation of the stationary states of the
atom in the presence of external magnetic forces, we shall for
the sake of illustration first show how it is possible in certain
cases to treat the problem of the effect of a homogeneous
magnetic field on the hydrogen spectrum in a simple way,
which will be seen to present a close formal analogy with
the theory originally devised by Lorentz on the basis of
the classical theory of electrons.

In these considerations we shall make use of a well known
theorem of Larmor, which states that, if we look apart from
small quantities proportional to the square of the intensity
of the magnetic field, the motion of a system of electrons
moving in a conservative field of force possessing axial sym-
metry round a fixed axis will, in the presence of an external
homogeneous magnetic field parallel to this axis, differ from
a mechanically possible motion of the system without field,
only by a superposed uniform rotation of the entire system
round the axis, the frequency of which is given by

vH =
e

4πme
H, (79)

where H is the intensity of the magnetic field and c the ve-
locity of light, while −e and m represent the charge and
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the mass of an electron.1) If the magnetic field is not con-
stant, but if its intensity increases slowly and uniformly from
zero, it is further simply shown that the electric induction
forces, which will accompany the change in the intensity of
the magnetic force, will just effect that a rotation as that
described will be impressed on the original motion of the
system.2) Moreover, as regards the effect of the magnetic
field on the total energy of the system,3) it will be observed

1) J. Larmor, Aether & Matter, Cambridge 1900, p. 341. This the-
orem, which was established in connection with an attempt to develop
a general theory of the Zeeman effect based on the ordinary theory
of electrodynamics, is directly proved by observing that, with the de-
gree of approximation in question, the accellerations of the electrons
due to the presence of the magnetic field are equal to the changes in
the accellerations of the particles due to the superposed rotation of the
system.

2) Compare P. Langevin, Ann. de Chim. et de Phys. V, p. 70
(1905), who has deduced this result in connection with his well known
theory of the magnetic properties of atomic systems based on the clas-
sical theory of electrons.

3) In an earlier paper (Phil. Mag. XXVII, p. 506 (1914)) the writer
had assumed that the total energy in the stationary states of the hy-
drogen atom in the presence of a magnetic field would not be different
from the energy in the corresponding states without field, as far as
small quantities proportional to the intensity of the magnetic force are
concerned; the effect on the kinetic energy of the electron due to the
superposed rotation being assumed to be compensated by some kind
of “potential” energy of the whole atom relative to the magnetic field.
This assumption seemed not only suggested by the absence of paramag-
netism in many elements, the atoms and molecules of which, according
to the theory to be discussed in Part IV, must be expected to possess
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a resultant angular momentum, but it was especially thought to be
supported by the fact, that the spectrum, emitted by hydrogen in the
presence of a magnetic field, apparently did not form a combination
spectrum of the type which should be expected, it the frequency of the
radiation, emitted during a transition between two stationary states of
the atom in the presence of the field, could be calculated directly from
the values of the energy in these states by means of relation (1). As
remarked by Debye (Phys. Zeitschr. XVII, p. 511 (1916)), this view,
however, would not be reconcilable with Einstein’s theory of temper-
ature radiation (see Part I, page 8) which implies the general validity
of relation (1); and, moreover, as will be shown in the following, the
Zeeman effect of the hydrogen lines may actually be considered, not
as involving a deviation from the combination principle, but rather as
affording an instructive example of a systematic disappearance of cer-
tain possible combination lines, for which a simple explanation can be
obtained from a consideration based on the general formal relation be-
tween the quantum theory of line spectra and the ordinary theory of
radiation. Further, with reference to this relation—and remembering
that on ordinary electrodynamics the magnetic field will not directly
influence the exchange of energy during a process of radiation, since
the forces due to this field, being always perpendicular to the direction
of the velocity, will not perform work on the moving electron—it seems
also natural to assume that it is possible, simply from the effect of the
superposed rotation on the kinetic energy of the electron, to determine
the effect of the magnetic field, as regards the differences between the
values of the energy in the different stationary states of the atom. Now,
in a discussion of the spectrum to be expected on the quantum theory,
we are concerned only with these differences and not with the absolute
values of the additional energy of the system due to the presence of
the magnetic field. It would therefore be possible to escape from the
difficulty, mentioned above, as regards the absence of paramagnetism,
by assuming that only the energy in the so called “normal” state of an
atomic system (i. e. the stationary state of the system which possesses



161

that the superposed rotation under consideration will not af-
fect the mutual potential energy of the particles, while, with
neglect of small quantities proportional to H2, it will produce
a change in the kinetic energy equal to 2πPvH , where P rep-
resents the total angular momentum of the system round the
axis, taken in the same direction as that of the superposed
rotation.

From these results it follows that the motion of the elec-
tron in any stationary state of a hydrogen atom, which is ex-
posed to a homogeneous magnetic field, will—if we look apart
from small quantities proportional to the square of the inten-
sity of the magnetic force and to the product of this intensity
with the ratio between the mass of the electron and that of
the nucleus—differ from the motion in some stationary state
of the atom in the absence of the field, only by a superposed
uniform rotation round an axis through the nucleus parallel
to the magnetic force with a frequency given by (79). Due to
the degenerate character of the system formed by the atom

the smallest value for the total energy; see Part IV) is not altered in
the presence of a magnetic field, as far as small quantities proportional
to the intensity of the magnetic force are concerned. On this view,
the absence of paramagnetism would thus be a special property of the
normal state, connected with the impossibility of spontaneous transi-
tions from this state to other stationary states of the system. To this
question we shall come back in the following parts of this paper; for
the sake of simplicity, however, we shall not, in the considerations of
this section, enter more closely on the consequences of the mentioned
hypothesis, which would imply small modifications in the form of the
following considerations, but would not affect the results.
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in the absence of the magnetic field, it is not possible, how-
ever, from a consideration of the mechanical effect produced
on the motion of the electron by a slow and uniform estab-
lishment of the magnetic field, to fix the stationary states
of the perturbed atom completely, but in order to fix these
states we must consider more closely the relation between the
additional energy of the system due to the presence of the
magnetic field and the character of the secular perturbations
produced by this field on the orbit of the electron. On the
basis of Larmor’s theorem the discussion of this problem is
very simple. In fact, since the frequency vH is independent
of the shape and position of the orbit, we may proceed in
a manner which is completely analogous to that applied in
the fixation of the stationary states of the hydrogen atom
in the presence of a homogeneous electric field. Thus, look-
ing apart from the effect of the relativity modifications, we
may conclude at once that the total energy in the stationary
states of the atom will be given by

E = En + nvHh, (80)

where n is an entire number which can be positive as well as
negative, while En will be equal to the energy in the corre-
sponding stationary state of the undisturbed atom, which is
given by −Wn in (41). As in the case of the Stark effect,
it will moreover be seen that this formula includes the val-
ues of the energy in such states of the atom, in which the
electron moves in a circular orbit perpendicular to the di-
rection of the field, and which beforehand must be expected
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to be included among the stationary states of the perturbed
system, since such orbits during a slow and uniform estab-
lishment of the external field will not undergo secular pertur-
bations as regards shape and position (compare page 143).
In fact, since in these cases we have P = ±nh/2π, where
n is the entire number characterising the stationary states
of the undisturbed hydrogen atom, it follows from the above
that the total energy in the special stationary states under
consideration will just be represented by the formula (80),
if we put n = ±n. From this formula it will be seen at the
same time, that the presence of the external magnetic field
imposes the restriction on the motion in the stationary states
of the hydrogen atom, that, with neglect of small quantities
proportional to H, the angular momentum of the electron
round the axis of the field will be equal to an entire multiple
of h/2π.

As regards the expression for the total energy of the
hydrogen atom in the presence of the magnetic field, for-
mula (80) is in agreement with the formulæ obtained
by Sommerfeld and Debye on the basis of the condi-
tions (22), holding for conditionally periodic systems which
allow of separation of variables. As shown by these authors,
a system, which consists of an electron moving under the
influence of the attraction from a fixed nucleus and of a ho-
mogeneous magnetic field, allows of separation of variables
in polar coordinates, if the polar axis is chosen parallel to the
magnetic field. Looking apart from the effect of the relativ-
ity modifications, and choosing for q1, q2, and q3 the length
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of the radius vector from the nucleus to the electron, the
angle between this radius vector and the axis of the system,
and the angle which the plane through the electron and this
axis makes with a fixed plane through the axis respectively,
they obtain the following expression for the total energy:1)

E = − 2π2N2e4m

h2(n1 + n2 + n3)2
± ehn3

4πmc
H, (81)

where n1, n2, and n3 are the integers which appear as fac-
tors to Planck’s constant on the right side of the condi-
tions (22). As mentioned this formula gives the same result
as (80); in fact, if we put n = n1 + n2 + n3 and if we look
apart from the small correction due to the finite mass of
the nucleus, the first term in (81) is seen to coincide with
the expression for −Wn given by (41), while the last term
in (81) coincides with the last term in (80), if we put n = n3.
It will be observed, however, that, while in the theories of
Sommerfeld and Debye the stationary states are charac-
terised by three conditions, only two conditions were neces-
sary on the above considerations in order to secure the right

1) A. Sommerfeld, Phys. Zeitschr. XVII, p. 491 (1916) and P. De-
bye, Phys. Zeitschr. XVII, p. 507 (1916). While Debye proceeds
directly by the application of the conditions (22) in a fixed set of
positional polar coordinates, Sommerfeld determines the stationary
states by applying these conditions to the motion of the system rela-
tive to a set of coordinates which rotates uniformly round the polar
axis with the frequency vH ; a procedure which in the special case un-
der consideration is simply shown to give the same result as the direct
application of (22) to fixed polar coordinates.
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relation between the energy and frequencies of the system
in the stationary states. Thus, besides the conditions which
prescribe the length of the major axis of the rotating orbit
and the value of the angular momentum of the system round
the axis of the field, the theories of the mentioned authors
involve the further condition, that the value of the total an-
gular momentum of the electron round the nucleus must be
equal to an entire multiple of h/2π; and that consequently
the minor axis of the orbit has the same values as in a hydro-
gen atom perturbed by a small external central field (com-
pare page 110). This is due to the circumstance, that the
perturbed atom forms a degenerate system if we look apart
from the effect of the relativity modifications, because the
secular perturbations are simply periodic. From the point of
view of separation of variables, this degenerate character of
the system is in the present case, in contrast to the analo-
gous case of the Stark effect, also directly revealed by the
fact, that a separation can be obtained, not only in polar
coordinates, but in any set of axial elliptical coordinates for
which one focus is placed at the nucleus and the other at
some point on the axis of the field. Just as in the case of the
Stark effect, however, the system is no more degenerate as
soon as the relativity modifications are taken into account,
in which case a separation of variables will still be possible
but only in polar coordinates. To this point we shall come
back below.

The observations on the Zeeman effect of the hydrogen
lines show that, if the fine structure is neglected, each line
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is in the presence of a magnetic field split up in a normal
Lorentz triplet; i. e. each line is resolved in three compo-
nents of which the one is undisplaced and polarised parallel
to the direction of the field, while the two other components
possess frequencies, which differ from that of the original line
by vH , and are circularly polarised in opposite directions in a
plane perpendicular to the direction of the field. As pointed
out by Sommerfeld and by Debye, the frequencies of a
Lorentz triplet are included among the frequencies of the
components deduced from (81) by application of relation (1).
In addition to the observed components, however, we might
from (81) and (1) expect the appearance of a number of com-
ponents, displaced from the original positions of the lines by
higher multipla of vH . For the non-appearance of these com-
ponents the theories of Sommerfeld and Debye offered no
explanation, no more than for the polarisation of the compo-
nents observed; except that Sommerfeld in this connection
draws attention to the fact, that the law governing the ob-
served polarisations exhibits a certain analogy to the empir-
ical rule of Epstein concerning the observed polarisations
of the components of the Stark effect of the hydrogen lines
(see page 149). On the other hand, just as in case of the lat-
ter effect, an explanation of the number of the components
observed and their characteristic polarisations is directly ob-
tained on the basis of the general formal relation between
the quantum theory of line spectra and the ordinary theory
of radiation. In the first place we have at once from Lar-
mor’s theorem, denoting the frequency of revolution of the
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electron in a stationary state of the undisturbed hydrogen
atom by ω, that the motion of the electron, in a correspond-
ing stationary state of the atom in the presence of the field,
may be resolved in a number of linear harmonic vibrations
parallel to the direction of the magnetic force with frequen-
cies τω, where τ is a positive integer, and in a number of
circular harmonic rotations perpendicular to this direction
with frequencies τω+vH or τω−vH , according as the direc-
tion of rotation is the same as or the opposite of that of the
superposed rotation. Next, with neglect of small quantities
proportional to H2 we have for the difference in the total
energy between two neighbouring states of the perturbed
system under consideration

δE = δE0 + δE = ω δI + vH δI, (82)

where En and ω are the values of the energy and frequency
and I is the value of the quantity defined by (5), all corre-
sponding to the state of the undisturbed system which would
appear if the magnetic force vanished at a slow and uniform
rate, while E is the additional energy due to the presence of
the magnetic field and I the angular momentum of the sys-
tem round the axis of the field multiplied by 2π and taken in
the same direction as that of the superposed rotation. Since
(82) has exactly the same form as relation (66), and since in
the stationary states we have I = nh and I = nh, we are
therefore from a consideration, quite analogous to that given
in § 2 on page 114, led to the conclusion, that, in the presence
of the magnetic field, only two types of transitions between
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stationary states are possible. For both types of transitions
the integer n may change by any number of units, but in
transitions of the first type the integer n will remain con-
stant and the emitted radiation will be polarised parallel to
the direction of the field, while in transitions of the second
type n will decrease or increase by one unit and the emitted
radiation will be circularly polarised in a plane perpendicular
to the field, the direction of the polarisation being the same
as or the opposite of that of the superposed rotation respec-
tively. Remembering that, with neglect of small quantities
proportional to the magnetic force, the angular momentum
of the system round the axis of the field remains unaltered
in transitions of the first type and changes by h/2π in tran-
sitions of the second type, it will be seen that this conclusion
is independently supported by a consideration of conserva-
tion of angular momentum during the transitions, like that
given in Part I on page 64.

With reference to formula (80), it will be seen that the
above results are in complete agreement with the experi-
ments on the Zeeman effect of the hydrogen lines, as re-
gards the frequencies and polarisations of the observed com-
ponents. On the other hand, the observed intensities are
directly accounted for, independent of any special theory
about the origin of the lines. In fact, from a consideration
of the necessary “stability” of spectral phenomena, it fol-
lows that the total radiation of the components, in which a
spectral line, which originally is unpolarised, is split up in
the presence of a small external field, cannot show charac-
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teristic polarisation with respect to any direction. In case
of the Zeeman effect of the hydrogen lines, it is therefore
necessary beforehand to expect that the intensity of the ra-
diation, summed over all directions, corresponding to each of
the three components in which every line is split up must be
the same. From the point of view of the quantum theory of
line spectra, it will be seen that by means of considerations
of this kind we may inversely obtain a certain amount of di-
rect quantitative information as regards the probabilities of
spontaneous transition between different sets of stationary
states, holding also in the region where the integers charac-
terising these states are not large and where consequently
the estimate of the values of these probabilities, based on
the formal relation between the quantum theory and the or-
dinary theory of radiation, gives results which are only of an
approximative character. This point will be discussed more
closely in Kramers’ paper on the relative intensities of the
components of the fine structure and the Stark effect of the
hydrogen lines.

A procedure quite analogous to that applied above may
be used to treat the problem of the effect of a homogeneous
magnetic field on the hydrogen spectrum, also when the rel-
ativity modifications are taken into account, and when the
atoms at the same time are exposed to a small external field
of force of constant potential, which possesses axial symme-
try round an axis through the nucleus parallel to the mag-
netic force; because also in this case we can obviously make
direct use of Larmor’s theorem. We shall not, however,
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proceed in this way, but shall come back to these questions
when we have shown how, by a simple modification of the
general considerations of perturbed periodic systems given
in § 2, it is possible to represent the theory of the stationary
states of the hydrogen atom in the presence of a small mag-
netic field on a form, which allows to discuss the effect on the
hydrogen spectrum also if the atom is exposed to a magnetic
field which is not homogeneous, or to discuss the effect of a
homogeneous magnetic field if electric forces, which do not
possess axial symmetry round an axis through the nucleus
parallel to the magnetic field, are acting on the atom at the
same time.

In order to examine the general problem of the secular
perturbations of the orbit of the electron in the hydrogen
atom which take place if the atom is exposed to small exter-
nal forces which, entirely or partly, are of magnetic origin,
we shall, as in the usual theory of planetary perturbations,
take our starting point in the equations of motion in their
canonical form. Now the equations of motion of an electron
of charge −e, which besides by an electric field of potential V
is acted upon by a magnetic field of vector potential A (de-
fined by divA = 0 and curlA = H, where H is the magnetic
force considered as a vector), can be written in the Hamil-
tonian form given by (4), if, just as in the absence of the
magnetic field, E is taken equal to the sum of the kinetic en-
ergy T of the electron and its potential energy −eV relative
to the electric field, while the momenta which are conjugated
to the positional coordinates q1, q2, q3 of the electron in space
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are defined by the equations1)

p′k = pk −
e

c

∂(vA)

∂q̇k
, (k = 1, 2, 3) (83)

where the p’s are the momenta defined in the usual way (com-
pare page 15), and where (vA) represents the scalar product
of the velocity of the electron v and the vector potential A,
considered as a function of the q’s and of the generalised ve-
locities q̇1, q̇2, q̇3. If we now assume that the effect of the
magnetic forces on the motion of the electron is so small
compared with the effect of the electric forces, that in the
calculations we may look apart from all terms proportional
to H2, it is simply seen that the energy function E in (4), ob-
tained by introducing the momenta defined by (83), will dif-
fer from the corresponding function, holding in the absence
of the magnetic field, only by the addition of a term which is

linear in the momenta and equal to
e

c
(vA). In fact, denoting

E expressed as a function of the q’s and p’s by ϕ(p, q), we get
from (83) together with (4), with the approximation under
consideration,

E − ϕ(p′, q) = −
3∑
1

∂ϕ

∂p′k
(p′k − pk) =

3∑
1

∂E

∂p′k

e

c

∂(vA)

∂q̇k

=
e

c

3∑
1

q̇k
∂(vA)

∂q̇k
=
e

c
(vA).

1) See f. inst. G. A. Schott: Electromagnetic Radiation, App. F
(Cambridge, 1912).
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From this it follows that, with neglect of small quantities
proportional to the square of the magnetic forces, the per-
turbations of the orbit of the electron in a hydrogen atom,
which besides to a small external electric field of potential
is exposed to a small external magnetic field of vector po-
tential A, are given by a set of equations of the same form
as (44) in § 2, but where the α’s and β’s are replaced by a set
of quantities α′1, α′2, α′3, β′1, β′2, β′3, which are related to the q’s
and p′’s and the time in the same way as the orbital constants
α1, α2, α3, β1, β2, β3 for the undisturbed atom are related to
the q’s and p’s and the time through the equations (18), and

where Ω is replaced by the expression −eΦ +
e

c
(vA), consid-

ered as a function of the α′’s and β′’s and the time. Since
now, at any moment, the quantities α′1, α′2, α′3, β′1, β′2, β′3
differ from the corresponding orbital constants α1, α2, α3,
β1, β2, β3 only by small terms proportional to the intensity
of the magnetic field, we see therefore that, with neglect of
small quantities of the same order as the variation in the
orbital constants within a single period, the secular pertur-
bations of the shape and position of the orbit of the electron
will again be given by the equations (46), if in the present
case ψ is taken equal to the sum of the mean value ψE of the
potential energy −eΦ of the electron relative to the external

electric forces and the mean value ψM of the quantity
e

c
(vA),

both taken over an osculating orbit corresponding to some
moment during the revolution and expressed as functions of
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α1, α2, α3, β1, β2, β3.1) The latter mean value, however, is
easily seen to allow of a simple interpretation. In fact, we
have

ψM =
e

c

1

σ

∫ σ

0

(vA) dt = −eω
c
B, (84)

where ω is the frequency of revolution of the electron in the
osculating orbit, and where B represents the total flux of
magnetic force through this orbit, taken in the same direc-
tion as that of the magnetic force which would arise from the
motion of the electron according to ordinary electrodynam-
ics.

From the considerations in § 2 it follows now in the first
place that, with neglect of small quantities proportional to
the square of the external forces, ψ = ψE + ψM will remain
constant during the perturbations within a time interval,
sufficiently long for the perturbing forces to produce a con-
siderable change in the shape and position of the orbit of the
electron; i. e. in a time interval of the same order as σ/λ, if
λ, just as in § 2, denotes a small quantity of the same or-
der as the ratio between the external forces acting on the
electron and the attraction from the nucleus. From a con-
sideration analogous to that given in § 2, we may further

1) If the relativity modifications are taken into account, the orbit
of the electron in the undisturbed atom is not strictly periodic, but it
will be seen that the secular variations of this orbit are still obtained
from the equations (46), if only, to the expression for ψ as defined in
the text, a term is added which is equal to the expression for ψ given
by formula (70) in § 3.
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conclude that, in the stationary states of the perturbed sys-
tem, the quantity ψ = ψE + ψM may be taken equal to the
additional energy of the system due to the presence of the
external fields. In fact, let us imagine that these fields are
slowly established at a uniform rate within a time interval
from t = 0 to t = ϑ, where ϑ is a quantity of the same order
as σ/λ. For the total alteration in the inner energy of the
system during this process we get then, with neglect of small
quantities proportional to λ2,

∆ϑα1 = e

∫ ϑ

0

t

ϑ

3∑
1

∂Φ

∂qk
q̇k dt−

e

c

∫ ϑ

0

ωB

ϑ
dt,

where the first term represents the work done on the system
by the slowly increasing external electric forces, while the
second term represents the work performed by the induced
electric forces which accompany the variation in the intensity
of the magnetic field. By partial integration of the first term,
we get from this equation, with the approximation under
consideration,

∆ϑα1 − eΦϑ = − e
ϑ

∫ ϑ

0

(
Φ +

ω

c
B
)
dt

=
1

ϑ

∫ ϑ

0

(ψE + ψM) dt =
1

ϑ

∫ ϑ

0

ψ dt.

(85)

Now the expression on the left side of this equation is equal
to the change in the total energy of the system due to the
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establishment of the external field. Since the expression on
the right side is seen to be a small quantity of the same order
as λα1, it follows therefore from(85) in the first place that
the secular variations of α2, α3, β2, β3 during the increase
of the fields will, just as in the case considered in § 2 (see
page 91), be given by a set of equations of the same form as

(46), where ψ is replaced by
t

ϑ
ψ, and where again α1 may be

considered as a constant. Also in the present case it follows
therefore that ψ will remain constant during the establish-
ment of the external fields, and we see consequently that
the expression on the right side of (85) will be simply equal
to ψ, a result which, with reference to the principle of the
mechanical transformability of the stationary states, leads
to the conclusion mentioned above, that the value of the
additional energy in the stationary states of the perturbed
system is given by the value of ψ in these states.

From the above considerations it follows that the problem
of the stationary states of the hydrogen atom in the presence
of external electric and magnetic forces may be treated in a
manner, which is exactly analogous to that applied in § 2 in
case of a periodic system exposed to a small external field of
constant potential. Thus, if the secular perturbations as de-
termined by (46) are of conditionally periodic type, we shall
expect that, with neglect of small quantities proportional
to λ, the cycles of shapes and positions which the orbit of the
electron passes through in the stationary states of the per-
turbed system will be characterised by the conditions (55),
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and that the possible values of the additional energy of the
atom in the stationary states will be fixed by these condi-
tions with neglect of small quantities proportional to λ2. We
shall therefore conclude that, also in the presence of exter-
nal magnetic forces, the lines of the hydrogen spectrum will,
if only the secular perturbations are of conditionally peri-
odic type, be split up in a number of sharp components, the
frequencies of which are determined by means of the condi-
tions (67) together with relation (1). As regards the prob-
lem of the intensities and polarisation of these components,
we may further proceed in a way quite analogous to that
followed in § 2. In fact, if the secular perturbations are of
conditionally periodic type, the displacement of the electron
in any given direction may be represented as a sum of har-
monic vibrations by an expression of the same type as (65).
Moreover it can be proved that the difference in the total en-
ergy of two neighbouring states of the perturbed atom will
again be given by the expression (66).1) The general consid-
erations in § 2 will therefore apply without alterations to the
problem of the intensity and polarisation of the components
into which the hydrogen lines are split up in the presence
of small external forces, also if these forces are entirely or
partly of magnetic origin. Similarly, it will be seen that the
effect on the spectrum of a perturbed hydrogen atom, which

1) Compare Note on page 112. Also in the presence of small mag-
netic forces, it will be possible to describe the motion of the perturbed
system by means of a suitably chosen set of angle variables, if only the
secular perturbations are of conditionally periodic type.
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will be due to the presence of a second external field small
compared with the first, also in this case may be discussed
directly by means of the considerations at the end of § 2.

We meet with a direct application of the preceding con-
siderations, if the hydrogen atom is exposed to the simulta-
neous influence of an external electric and an external mag-
netic field, which possess axial symmetry round a common
axis through the nucleus. Introducing the same set of orbital
constants as described in § 2 on page 104, we get in this
case that ψM , as well as ψE, and consequently the function
ψ = ψE + ψM which enters in the equations (46), will, be-
sides on α1, depend on α2, β2 and α3 but not on β3. The
general character of the secular perturbations of the orbit of
the electron will therefore be the same as in the case, consid-
ered in § 2, where the atom is exposed only to an electric field
of axial symmetry, and the conditions which fix the station-
ary states of the perturbed atom will again be expressed by
the relations (61). As regards the question of the probability
of spontaneous transition between the stationary states, we
get moreover, just as in § 2, from a consideration of the har-
monic vibrations into which the motion of the electron can be
resolved, that only two types of transitions will be possible;
in transitions of the first type n2 remains unaltered, and the
accompanying radiation is polarised parallel to the direction
of the common axis of the perturbing fields; in transitions of
the second type n2 decreases or increases by one unit, and
the accompanying radiation will be circularly polarised in a
plane perpendicular to this axis. In this connection it may
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be remarked, however, that the number of components, into
which a given hydrogen line is split up in the presence of
a magnetic field, will in general be double as large as the
number of components which appear in the presence of an
external electric field of axial symmetry. In fact, in the latter
case the motions of the electron in two stationary states of
the perturbed atom, corresponding to the same value of n,
will be symmetrical with respect to a plane through the axis,
and these states will possess the same values for the addi-
tional energy, if n1 is the same while the values of n2 are nu-
merically equal but have opposite signs. On the other hand,
if the atom is exposed also to a magnetic field, this will not
hold, because the value of the function ψM , in contrast to
the value of ψE, will not possess the same sign for two orbits
which have the same shape and position relative to the axis,
but for which the direction of revolution of the electron is
reversed. Considering two states of the perturbed atom for
which the values of n1 are the same and the values of n2 are
numerically equal but have opposite signs, we get therefore,
if the atom is exposed only to a magnetic field of axial sym-
metry, that the values of the additional energy will be equal
with exception of the sign; while, if the atom is exposed to a
magnetic as well as to an electric field, the additional energy
in two such states will in general differ also as regards its nu-
merical value. In contrast to what in general will take place
if the atom is exposed to an electric field of axial symmetry,
it will thus be seen that, if the hydrogen atom is exposed only
to a magnetic field possessing axial symmetry, the ensemble
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of components into which a given hydrogen line is resolved
will be completely symmetrical with respect to the position
of the original line, as regards the frequencies as well as the
intensities and polarisations. Moreover it follows from the
above, that if we consider a hydrogen atom exposed to an
electric field of axial symmetry and imagine that an external
magnetic field, which possesses symmetry round the same
axis, is gradually established, each component which appears
in the presence of the first field only will split up into two
components, in such a way that each component polarised
parallel to the axis will split up into two components of the
same polarisation, while each component polarised perpen-
dicular to the axis, and which originally showed no polari-
sation when viewed in a direction parallel to the axis, will
split up into two components showing circular polarisations
in opposite directions. If the magnetic field is small, the new
components will be placed symmetrically with respect to the
position of the original components and their intensities will
be approximately equal, but when the perturbing influence
of the magnetic forces on the motion of the electron becomes
of the same order of magnitude as that of the external electric
forces, the components in question will in general be placed
unsymmetrically with respect to their original position, and
their intensities may differ considerably.

An especially simple example of a magnetic field which
possesses axial symmetry is afforded by the case of a ho-
mogeneous magnetic field, discussed in the beginning of this
section. In this case we have that the total magnetic flux of
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force through the orbit of the electron is equal to the prod-
uct of the intensity H of the magnetic field and the area of
the projection of the orbit on a plane perpendicular to this
field. Since this area is equal to α3/2mω, we get consequently
from (84)

ψM =
eα3

2cm
H. (86)

From the equations (46) it follows therefore that the effect of
a homogeneous magnetic field, which acts upon a hydrogen
atom which at the same time is exposed to an external elec-
tric field possessing axial symmetry round an axis through
the nucleus parallel to the magnetic force, will consist in a
superposition of a uniform rotation of the orbit round the
axis with a frequency equal to

vH =
1

2π

∂ψM
∂α3

=
e

4πmc
H

on the secular perturbations which would take place in the
absence of the magnetic field. This result follows also di-
rectly from Larmor’s theorem, on which the simple consid-
erations about the effect of a homogeneous magnetic field in
the beginning of this section were based. Since a superposed
rotation as that in question will not influence the shape of
the orbit of the electron or its position relative to the axis,
it follows from (61) that the value of ψE in the stationary
states of the atom will not be affected by the presence of the
magnetic field, and that consequently the effect of this field
on the additional energy of the system will simply consist in
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the addition of a term given by

ψM =
e

2mc

n2h

2π
H = n2vHh. (87)

This result was also to be expected from a simple consider-
ation of the mechanical effect produced on the motion by a
slow and uniform establishment of the magnetic field (com-
pare page 159). With reference to the above considerations
as regards the probability of transition between stationary
states, it will be seen to follow from (87), that the presence
of the homogeneous magnetic field will leave the components
polarised parallel to the axis unaltered, but will cause every
component, which in the absence of the field was polarised
perpendicular to the axis, to split up in a symmetrical dou-
blet the members of which will show circular polarisation in
opposite directions, when viewed in the direction of the axis,
and will be displaced from the position of the original com-
ponent by an amount corresponding to a frequency difference
equal to vH .

A simple application of the last result is afforded by the
problem of the simultaneous effect on the hydrogen lines of
a homogeneous electric and a homogeneous magnetic field
which have the same direction. Thus, if the intensities of the
fields are so large that we may look apart from the small
modifications claimed by the theory of relativity, we shall
from the above expect that the effect in question will differ
from the ordinary Stark effect of the hydrogen lines, only
therein that every component polarised perpendicular to the
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field is split up in two symmetrical components correspond-
ing to the outer members of a Lorentz triplet. This seems
to agree with some observations of the effect of two such fields
on the hydrogen line Hα, published by Garbasso.1) The
problem in question might also have been treated by means
of the method of separation of variables, because, as may be
easily shown, the perturbed system—if the relativity modi-
fications are neglected—allows of separation of variables in
parabolic coordinates, just as in the presence of the electric
field only. If, on the other hand, the relativity modifications
are taken into account, the method of separation of variables
cannot be applied, but, with reference to the considerations
at the end of the last section, it will be seen that it is possible,
also in this case, to predict at once the modification in the
effect of an electric field on the fine structure of the hydrogen
lines, which would result from the simultaneous presence of
a parallel magnetic field. Passing to the limiting case where
the intensity of the electric field is equal to zero, it will thus
be seen at once from the preceding, that the effect of a homo-
geneous magnetic field on the fine structure of the hydrogen
lines will consist in the splitting up of every component in
a normal Lorentz triplet. As far as the frequencies of the
components are concerned, this result has been predicted by
Sommerfeld and Debye, who have treated the problem
under consideration by means of separation of variables in
polar coordinates (compare page 165). In connection with

1) A. Garbasso, Phys. Zeitschr. XV, p. 123 (1914).
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the fixation of the stationary states in this problem, it may
be remarked that we must assume that no stationary state
will exist for which the angular momentum round an axis
through the nucleus parallel to the magnetic field would be
equal to zero. In fact, as seen in § 4, we must assume that, in
case of a hydrogen atom exposed to a homogeneous electric
field, no such states will be possible; and by imagining that
the electric field decreases slowly to zero, while at the same
time a magnetic field parallel to the electric field is slowly
established, it would be possible, without passing through
a degenerate system, to obtain a continuous transformation
of the stationary states of the perturbed atom during which
the angular momentum of the electron round the axis would
remain unaltered. With reference to the invariance of the
a-priori probability of the stationary states during such a
transformation (see Part I, page 14 and page 49), we must
therefore conclude that, also in the case of a hydrogen atom
in the presence of a magnetic field, no stationary states exist
for which the angular momentum round the axis would be
equal to zero, although these slates in mechanical respect do
not exhibit singularities from which we might anticipate that
they are physically unrealisable.1)

1) Note added during the proof. In a dissertation which has just ap-
peared, J. M. Burgers (Het Atoommodel van Rutherford-Bohr,
Haarlem 1918) has given a very interesting general survey of the ap-
plications of the quantum theory to the problem of the constitution
of atoms, and has in this connection entered upon several of the ques-
tions discussed in the present paper; for instance on the question of
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the relation between the spectrum of an atomic system, deduced by
application of relation (1) from the values of the energy in the station-
ary states, and the frequencies of the harmonic vibrations into which
the motion in these states can be resolved; and on the question of the
determination of the relative values for the a-priori probability of the
different stationary states of an atomic system by means of Ehren-
fest’s principle of the invariance of these values during a continuous
transformation of the system. As an illustration of the latter considera-
tions, Burgers has deduced an expression for the relative values of the
a-priori probability of the different stationary states of the undisturbed
hydrogen atom, by means of an enumeration of the states, determined
by the conditions (22) when applied in connection with a separation of
variables in polar coordinates, which correspond to a stationary state
of the undisturbed atom, characterised by a given value of n in the con-
dition I = nh. Excluding only such states for which the total angular
momentum of the electron round the nucleus would be equal to zero,
Burgers (loc. cit. p. 259) finds in this way for the value of the a-priori
probability in question (n + 1)2 − 1. In connection with the analo-
gous consideration, given in the Note on page 149 of the present paper,
which leads to a different result, it may be of interest to remark that
the necessary conformity between the relative values for the a-priori
probability of the different stationary states of the undisturbed hydro-
gen atom, deduced from an enumeration of the stationary states of the
atom which appear in the presence of a small external electric field or in
the presence of a small magnetic field respectively, cannot be obtained
if in both cases we would exclude only such states in which the angular
momentum of the electron round the nucleus is always equal to zero.
In fact, while in case of a magnetic field this would give (n + 1)2 − 1
different states corresponding to a given value of n, it would in case of
an electric field give only (n+ 1)2 − 2 such states. On the other hand,
if the possible stationary states are selected in the manner explained in
the text, the conformity in question will obviously be obtained.
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In case we consider the general problem of the effect on a
hydrogen atom of a small electric or magnetic field, which do
not possess axial symmetry round an axis through the nu-
cleus, or of the simultaneous effect of two such fields, which
do not possess such symmetry round a common axis, we
must expect that the secular perturbations of the orbit of
the electron will in general not be of conditionally periodic
type. In such a case we cannot obtain a complete fixation
of the stationary states, and we may conclude that the pres-
ence of the external forces will not give rise to the splitting
up of the hydrogen lines into a number of sharp components
but to a diffusion of these lines. With a simple example,
in which the secular perturbations of the atom seem not to
be of conditionally periodic type, we meet if we consider the
simultaneous effect on the hydrogen spectrum of an external
homogeneous electric field and a homogeneous magnetic field,
the directions of which make an angle with each other. If the
effects of the two fields on the motion of the electron are
of the same order of magnitude we may in this case expect
that the hydrogen lines will not be resolved into sharp com-
ponents but will become diffuse. From the considerations on
page 117 of the effect on the spectrum of a perturbed pe-
riodic system due to a second external field, the perturbing
effect of which is small compared with that of the first, we
may conclude, however, that, if the effect of one of the fields
on the motion of the electron is large compared with that
of the other, the hydrogen lines will still show a resolution
in a number of components, the spectral widths of which
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are small compared with the displacements which they have
undergone due to the presence of the weaker of the external
fields. In the discussion of this problem we shall for sim-
plicity neglect the influence of the relativity modifications,
assuming that the effect on the spectrum produced by each
external field separately is large compared with the inher-
ent fine structure of the hydrogen lines. Denoting, as in § 2,
by µ a small constant of the same order as the ratio between
the forces on the electron due to the weaker of the external
fields and those due to the stronger of these fields, and by λ
a small constant of the same order as the ratio between the
latter forces and the attraction from the nucleus, we have, as
shown on page 119, that, with neglect of small quantities of
the same order of magnitude as λµ2,1) the change in the ad-
ditional energy of the atom due to the presence of the weaker
field is, in general, directly obtained by taking the mean value
of the function ψ, corresponding to the weaker field, over the
cycle of shapes and positions which the orbit of the electron
passes through in the stationary states of the atom in the
presence of the stronger field only. In the special case under
consideration, however, the perturbed system, formed by the
atom in the presence of the stronger field only, is degenerate,
the secular perturbations of the orbit of the electron being of
a simple periodic character. The mean value in question will

1) Rigorously this result holds with neglect of small quantities of the
same order of magnitude as the largest of the quantities λ2 and λµ2,
but for the sake of simplicity it is here and in the following assumed
that µ is not smaller than

√
λ (compare page 119).
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therefore not be completely determined, but will be different
for the different periodic cycles of shapes and positions of the
orbit, which represent the continuous multitude of station-
ary motions which the electron may perform in each of the
stationary states of the atom in the presence of the stronger
field only. In order to fix the stationary states in the pres-
ence of both fields and the change in the additional energy of
the atom due to the presence of the weaker field, it will thus,
as mentioned on page 121, be necessary to examine the rela-
tion between the mean value in question and the frequency
of the slow periodic “secular” variations which the cycles
under consideration will undergo under the influence of the
weaker of the external fields. Now, in the special case under
consideration this problem may be treated very simply, if we
imagine the weaker field as composed of two homogeneous
fields of which the one is parallel and the other perpendic-
ular to the stronger field, and if we consider separately the
secular effect due to each of these fields. In fact, due to the
symmetry with respect to the axis of the stronger field, ex-
hibited by the periodic cycle of shapes and positions which
the orbit of the electron would pass through if the atom were
exposed to this field only, it is easily seen that the contribu-
tion, which the perpendicular component of the weaker field
gives to the mean value of ψ corresponding to the latter field,
will vanish. From this it follows that the secular effect of the
weaker field, with neglect of small quantities proportional
to µ2 will be the same as if only the parallel component of
this field was acting on the atom; and we see consequently
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that, in the stationary states of the atom in the presence
of both fields, the possible cycles of shapes and positions of
the orbit of the electron will be characterised in the same
way as if the weaker field was parallel to the stronger. The
problem, however, of the fixation of the stationary states of
a hydrogen atom in the presence of a homogeneous electric
field and a homogeneous magnetic field, which are parallel
to each other, is very simple. In fact, as it appears from
the considerations on page 179, the stationary states will in
this case be fixed completely by two conditions, of which the
one, in the same way as in the simple theory of the Stark
effect, defines the position of the plane in which the electri-
cal centre of the orbit of the electron moves, while the other
defines the value of the angular momentum of the electron
round the axis of the fields in the same way as in the simple
theory of the Zeeman effect. In connection with the prob-
lem under consideration here, it may be useful for the sake
of illustration to note, that, if the perturbing effect of the
electric field is large compared with that of the magnetic,
the second of these conditions may be said to be imposed
on the system by the slow and uniform rotation, which the
magnetic field produces on the periodic cycle of shapes and
positions of the orbit of the electron, which would appear if
the atom was exposed to the electric field only. If, on the
other hand, the effect of the magnetic field is large compared
with that of the electric field, the first condition may be said
to be imposed on the system by the slow periodic oscilla-
tion in the shape and position relative to the axis, which the
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electric field produces on the uniformly rotating orbit which
the electron would describe if the atom was exposed to the
magnetic field only.

If we consider a hydrogen atom which is exposed to the
simultaneous influence of a homogeneous electric field of in-
tensity F and a homogeneous magnetic field of intensity H,
the direction of which makes an angle ϕ with the direction
of the electric field, it follows from the above that, if the per-
turbing influence of the electric field is large compared with
that of the magnetic field, the main effect produced by the
latter field on the spectrum may be described as the splitting
up of each Stark effect component, polarised perpendicu-
lar to the axis of the electric field, into two circularly po-
larised components, corresponding to the outer members of
a Lorentz triplet which would be produced by a magnetic
field of intensity H cosϕ. On the other hand, if the perturb-
ing effect of the magnetic field is large compared with that
of the electric, it follows that the main effect, produced by
the latter field on the spectrum, may be described as the
resolution of the middle component and of each of the outer
components of the normal Zeeman effect into a number of
components, corresponding to the parallel and perpendicu-
lar components respectively of a Stark effect produced by
an electric field of intensity F cosϕ.

The effects just described, however, which are the same
as would take place if only the parallel component of the
weaker field was acting on the atom, will not be the only ef-
fects of the presence of the weaker field on the spectrum. In
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fact, although the perpendicular component of the weaker
field, apart from small quantities proportional to µ2, will
not have any secular effect on the cycle of shapes and posi-
tions which the orbit of the electron would pass through if
the atom was exposed to the stronger field only, it will obvi-
ously produce alterations in the motion of the electron within
this cycle which are proportional to µ. Thus, if the weaker
field was parallel to the stronger, the motion of the electron
in the perturbed atom would be composed of a number of
linear harmonic vibrations parallel to the direction of the
fields, the frequencies of which are of the type |τωP + t1v1|,
and of a number of circular harmonic rotations perpendic-
ular to this direction, the frequencies of which are of the
type |τωP + t1v1 + v2| (compare page 114). In the general
case, however, where the weaker field is not parallel to the
stronger, there will, in the expression for the displacement
of the electron in any given direction, in addition appear a
number of harmonic vibrations the amplitudes of which are
proportional to µ and the frequencies of which, as a closer
consideration of the perturbations learns, are equal to the
sum or difference of the frequency of one of the harmonic
vibrations, in which the motion in this direction could be re-
solved if the external fields were parallel to each other, and
one of the small frequencies of type |t1v1 + v2|, which ap-
pear in the expression for the secular perturbations of the
electron in this case. A part of these additional vibrations
will again possess frequencies of the types |τωP + t1v1| and
|τωP + t1v1 + v2|, and will cause that the motion, instead of
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consisting of vibrations which are exactly linear and exactly
circular as in the case where the external fields are parallel to
each other, will be composed of elliptical harmonic vibrations
which partly are nearly linear and parallel to the direction
of the stronger field and partly nearly circular and perpen-
dicular to this direction. On account of this we shall expect
that, due to the presence of the perpendicular component of
the weaker field, the different components mentioned above
will not be sharply polarised. Further there will, in the mo-
tion of the perturbed atom, also appear a number of circular
harmonic rotations perpendicular to the stronger field, the
amplitudes of which are small quantities proportional to µ,
and the frequencies of which are of the type |τωP+t1v1+2v2|.
From this we shall expect the appearance in the spectrum of
a number of new weak components, corresponding to a type
of transition between stationary states which would not be
possible if the two external fields were parallel to each other.
When considering more closely the frequencies of these new
components, it must be remembered, however, that, as men-
tioned above, the present method of treating the problem
of the perturbations assures us of the conditionally periodic
character of the motion of the electron within a time inter-
val of the same order of magnitude as σ/λ, only if we look
apart from small quantities of the same order as µ2; and we
must therefore be prepared to find that the frequencies of the
vibrations of small amplitudes will not be defined with the
same degree of approximation as the frequencies of the vi-
brations of large amplitudes. Thus, while the frequencies of
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the latter vibrations are defined with neglect of small quan-
tities proportional to λµ2, the frequencies of the small vi-
brations under consideration are obviously defined only with
neglect of small quantities proportional to λµ. In intimate
connection with the general want of definition of the energy
in the stationary states for perturbed systems of the type in
question, we must accordingly be prepared to find that, in
contrast to the strong components, for which we may expect
that by far the larger part of the intensity is contained within
a spectral interval of a width proportional to λµ2, the new
components will be diffused over spectral intervals of a width
proportional to λµ.1) Thus, in case the effect of the exter-

1) Compare Note on page 119. With reference to the general validity
of relation (1), it will be seen that the assumption, that the weak com-
ponents possess this degree of diffusion, implies the assumption, that
the corresponding transitions (the probability of occurrence of which is
very small compared with the probability of the transitions responsible
for the strong components) will generally take place between two states
of the perturbed atom, which do not both belong to the well defined
ensemble of stationary states in which at any moment the great ma-
jority among a large number of atoms will be present. Thus, in case
the effect of the external electric field is large compared with that of
the magnetic field, we may expect that, in both states involved in the
transitions in question, the positions of the plane in which the electrical
centre moves will coincide with positions of this plane in states belong-
ing to the ensemble just mentioned, while the angular momentum of
the electron round the axis of the electric field will generally change
by an amount which will not be equal to an entire multiple of h/2π.
On the other hand, if the effect of the magnetic field is the larger, the
angular momentum of the electron round the axis of this field will, in
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nal electric field is large compared with that of the magnetic
field, we might expect at first sight that, on each side of ev-
ery of the Stark effect components polarised parallel to the
electric force, there would appear a weak component which
would be circularly polarised and be displaced from this com-
ponent by an amount twice that of the displacement of the
strong components into which the perpendicularly polarised
Stark effect components are split up as a consequence of
the small magnetic field. We must be prepared, however, to
find that these weak components will be so diffuse, that they
are not separated from the weak perpendicular component
which has the same frequency as the strong parallel com-
ponents on each side of which the weak components under
consideration would lie, and which appears as a consequence
of the above mentioned want of sharpness as regards the po-
larisation of the strong components. On the other hand, if
the effect of the magnetic field is large compared with that
of the electric field, any weak component of the type under
consideration, which corresponds to transitions in which the
angular momentum of the electron round the axis of the mag-
netic field changes by two times h/2π, will lie at a distance
from the original hydrogen line, which is approximately twice
as large as that of the outer components of the normal Zee-

the transitions in question, change by two times h/2π, while we may
expect that the plane in which the electrical centre moves will generally,
in at least one of the states involved in these transitions, differ from
the positions of this plane in the ensemble of stationary states referred
to.
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man effect, and will therefore be distinctly separated from
the strong components into which each of the components
of the normal Zeeman effect is split up in the presence of
the small electric field. We must be prepared, however, to
find that the weak components will not, as it might be ex-
pected at first sight, form two sets of distinctly separated
lines, but that they will only appear as two diffuse lines of
circular polarisation in opposite directions and of a spectral
width proportional to λµ.1)

§ 6. The continuous hydrogen spectrum.

We shall conclude the considerations of this Part by a
brief discussion of the characteristic continuous spectrum of
hydrogen in the ultra violet region, which is intimately con-
nected with the series spectrum given by (35). This spectrum

1) No experiments, which allow to test the preceding results in detail,
seem to have been recorded, but it would appear that the above consid-
erations afford an explanation of the general character of the remark-
able deviations from a normal Zeeman effect, observed by F Paschen
and E. Back (Ann. d. Phys. XXXIX, p. 897 (1912)) in experiments
in which the hydrogen lines were excited by passing a powerful con-
densed discharge through a capillary tube placed at right angles with
the direction of the magnetic field. Besides the characteristic want of
sharpness of the polarisation of the middle component, exhibited by all
the spectrograms published by Paschen and Back, especially one of
their photographs (Tafel VIII, Bild 4) seems to suggest the presence of
a weak, perpendicularly polarised, diffuse line on each side of the orig-
inal line and at a distance from it twice that of the outer components
of the normal effect.
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consists of a radiation, the frequencies of which are continu-
ously distributed over a spectral interval extending from the
head of the Balmer series in the direction of higher frequen-
cies.1) The existence of a continuous spectrum of this type
is just what should be expected from a natural generalisa-
tion of the principles underlying the quantum theory of series
spectra.2) Thus the spectrum under consideration may be
directly explained by application of relation (1), if we assume
that the complete spectrum, emitted by a system consisting
of a nucleus and of an electron, originates not only from ra-
diations, emitted during transitions between two states be-
longing to the multitude of stationary states in which the
electron describes a closed orbit, characterised by the condi-
tion I = nh, but also from radiations emitted during tran-
sitions between two states, one (or both) of which belong to
the multitude of states in which the electron possesses suffi-
cient energy to remove to infinite distance from the nucleus.
While the electron in the states of the type first mentioned

1) This spectrum has been observed as an emission spectrum in spec-
tra of solar protuberances and planetary nebulae (See J. Evershed,
Phil. Trans. Roy. Soc. 197 A, p. 399 (1901) and W. H. Wright, Lick
Observatory Bulletin, No. 291 (1917)) as well as in direct laboratory
experiments on spectra excited by positive rays (See J. Stark, Ann. d.
Phys. LII, p. 255 (1917)). Further it has been observed as an absorption
spectrum in the spectra of several stars (see W. Huggins, An Atlas of
Representative Stellar Spectra, p. 85 (1899) and J. Hartmann, Phys.
Zeitschr. XVIII p. 429 (1917)).

2) Compare N. Bohr, Phil. Mag. XXVI, p. 17 (1913); and also
P. Debye, Phys. Zeitschr. XVIII, p. 428 (1917).
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may be said to be “bound” by the nucleus to form an atom,
it may in the states of the last mentioned type be described
as “free”. In order to account for the appearance of the con-
tinuous spectrum, it is necessary to assume that the motions
in the latter states are not restricted by extra-mechanical
conditions of the type holding for the former states, but that
all motions, which are consistent with the application of or-
dinary mechanics, will represent physically possible states.
This assumption would also seem to present itself naturally
from the point of view on the principles of the quantum the-
ory, taken in the present paper.1) Thus it will in the first
place be observed that any attempt to discriminate between
the different states of the type in question, by means of con-
siderations of the mechanical stability of stationary states for
slow transformations of the external conditions, would fail on
account of the essentially non-periodic character of the mo-
tion, which is irreconcilable with the idea of invariance of
extra-mechanical conditions for such transformations. Next,
with reference to the formal analogy between the quantum
theory and the ordinary theory of radiation, it will be seen
that the fact, that the motion of a free electron in its hyper-

1) A view contrary to this has been taken by Epstein, who in a
recent paper (Ann. d. Phys. L, p. 815 (1916)) has made an attempt
to obtain an explanation of certain observations on the photoelectric
effect of hydrogen occluded in metals, by applying conditions of the
same type as (22) to states of the hydrogen atom in which the electron
describes a hyperbolic orbit, and has tried in a similar way to develop
a theory of the characteristic β-ray spectra of radioactive substances.
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bolic orbit cannot be resolved in a sum of harmonic vibra-
tions of discontinuously varying frequencies but can only be
represented by a Fourier integral extended over a continuous
range of frequencies, suggests beforehand that the free elec-
tron may pass, under emission or absorption of radiation, to
any one among a continuous multitude of other states corre-
sponding to a continuous multitude of values for the energy
of the system. From the preceding considerations we may in-
fer, by application of (1), that the complete spectrum emit-
ted by the hydrogen atom will, besides the series spectrum
and the continuous ultra-violet spectrum mentioned above,
which corresponds to transitions from a state in which the
electron is free to a stationary state characterised by n = 2
in (41), contain a set of continuous spectra, corresponding
to transitions from free states to other stationary states, and
each extending in the direction of larger frequencies from
one of the values of the frequency, given by (35) if we put
n′ = ∞. Moreover, we may expect the presence of a weak
continuous spectrum, extending as a continuous back ground
over the whole region of frequencies, which will correspond
to transitions between two different states in both of which
the electron is free. The relative intensities of these different
continuous spectra, and the laws according to which the in-
tensity is distributed within each of them, may be expected
to vary to a large extent according to the different conditions
under which the radiation is excited. Thus, while the con-
tinuous spectrum of hydrogen, when observed as emission
spectrum in stars, shows a abrupt beginning at the head
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of the Balmer series, the continuous spectrum, observed by
Stark in his experiments referred to above, was not sharply
limited but showed a pronounced maximum in the spectral
region which corresponds to transitions between two states,
in the first of which the velocity of the free electron relative
to the nucleus, before the “collision” with the latter, was of
the same order of magnitude as the velocity of the positive
rays by means of which the spectrum was excited.

Besides the series spectrum and the connected continu-
ous spectrum just considered, there exists, as well known,
another hydrogen spectrum, the so called many-line spec-
trum, which on account of its complex structure and its re-
semblance with the band spectra, emitted by other elements
and combinations of elements, is generally ascribed to the
hydrogen molecule and not to the atom. This assumption
would also seem to present itself directly from the point of
view of the quantum theory, according to which the simple
structure of the series spectrum is directly connected with
the simple periodic character of the motion of the particles
in the atom, while a spectrum of a complexity of the order
exhibited by the many-line spectrum must be assumed to
originate from a system the motion of which does not show
such simple periodicity properties. The problem of the con-
stitution of the hydrogen molecule, to be expected on the
quantum theory, and the possible motions of the particles of
this system will be treated in Part IV. In this connection
we shall also consider the problem of dispersion of light in
hydrogen gas and the problem of the voltage necessary to
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produce the lines of the series spectrum of hydrogen by an
electric discharge in this gas.

Færdig fra Trykkeriet d. 30, December 1918.
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