
New developments

in link emulation

and packet scheduling

in FreeBSD, linux and Windows

Luigi Rizzo, Università di Pisa

March 29, 2010



Summary

Some recent, network related projects at UNIPI:

◮ The dummynet emulator: new features,
performance, Linux and Windows ports
(mostly supported by the ONELAB2 project - European
Commission)

◮ Fast packet scheduling algorithms: QFQ
(joint work with Fabio Checconi and Paolo Valente, partly
supported by the NETOS project - Univ. di Pisa)

2 / 43



Dummynet



Why emulation

Emulation is a standard tool in protocol and application
testing. It gives you:

◮ ease of configuration/setup;

◮ reproducibility;

◮ more realistic results than simulation.

Several existing options:

◮ dummynet, NISTnet, tc+netem, netpath...

4 / 43



Dummynet

Dummynet is a network emulator developed in 1997 on
FreeBSD, and substantially revised in recent years.
Now available on FreeBSD, OSX, Linux/Openwrt, Windows.

◮ intercepts packets in various points of the protocol stack;
◮ passes packets through a classifier and then to pipes,

which model communication links;
◮ on exit, packets are reinjected in the protocol stack or in

the classifier.
5 / 43



User interface

/sbin/ipfw is the main user interface for the system.
Use is very simple:

ipfw add 100 pipe 1 out dst -ip 1.2.3.4

ipfw add 100 pipe 2 in src -ip 1.2.3.4

ipfw pipe 1 config bw 256 Kbit/s delay 12ms

ipfw pipe 2 config bw 4Mbit/s delay 2ms

6 / 43



Main applications

◮ link emulator (protocol/app testing):
◮ in-node emulator (workstation, Planetlab);
◮ transparent bridge;

◮ local traffic shaping:
◮ share or reserve bandwidth for certain apps;
◮ outgoing or incoming traffic shaping;

◮ traffic shaper in testbeds (Emulab/Planetlab) or ISPs:
◮ must scale to thousands of pipes;
◮ needs extra features for quick classification/demux.

7 / 43



Emulation in Planetlab

As part of the ONELAB2 project, we added dummynet as an
in-node emulator in Planetlab:

◮ users can define independent emulated links;
◮ a frontend hides the complexity of configuration:
◮ client and server modes create typical configurations.

netconfig config client 22,80 IN bw 6Mbit/s OUT bw 256 Kbit/s

8 / 43



Dummynet internals: Pipes

◮ Only model basic features of a link:
◮ queue with configurable size and management policy

(FIFO, RED);
◮ programmable link bandwidth;
◮ deterministic propagation delay;

◮ avoid non deterministic behaviour:
◮ do not deal with error/loss/delay models;
◮ use real traffic to cause perturbations;

◮ ... except for some useful features:
◮ random packet drop and random rule match;
◮ you don’t have to use them if you don’t like the model.

9 / 43



Classifier

A classifier is used to send traffic to different pipes.

◮ we use FreeBSD’s ipfw, which is easy to use and has a
large number of packet matching options;

◮ ipfw has been extend with custom features:
◮ multiple passes, to emulate complex networks;
◮ probabilistic match, to emulate multipath and reordering;
◮ table lookup, to speed up classification and dispatch.

10 / 43



Beyond pipes: queues, schedulers, links

More complex configurations require to split a pipe in its
components – queue, scheduler, link – so we can:

◮ attach multiple queues to one scheduler;

◮ configure scheduler features (algorithm, weights, etc.);

◮ model more complex links (e.g. radio).

11 / 43



Per-flow queues / Flowsets

A flowset is an abstraction used to model per-flow queues. It
has several attributes:

◮ a flow-mask, used to create per-flow queues;
◮ a scheduler to which queues are attached to;
◮ weight/priority and other scheduling parameters;

ipfw queue 1 config sched 5 weight 10

ipfw queue 2 config sched 5 mask dst -ip 0xff weight 1

ipfw add 100 queue 1 src -ip luigi -pc

ipfw add 100 queue 2 src -ip my -subnet /24

fs 2
mask ...

...
x.255

x.2

x.1

fs 1

12 / 43



Links

Links can model more than bandwidth and delay:

◮ uniform random loss;
ipfw pipe 1 config plr 0.06 // 6% loss on this link

◮ reordering (through probabilistic matching):
// 30% of packets go to pipe 1, 70% go to pipe 2

ipfw add 100 prob 0.3 pipe 1 dst -ip 1.2.3.4

ipfw add 100 pipe 2 dst -ip 1.2.3.4

ipfw pipe 1 config delay 100 ms

ipfw pipe 2 config delay 20ms

◮ MAC overheads (preambles, contentions, link-level rxmit):

◮ use profiles or model the MAC as a scheduler.

13 / 43



Link Profiles

Profiles model the extra air-time for a packet transmission
◮ an empirical function gives the distribution of extra

air-time;

◮ not tied to a specific technology. Can be used for wireless
or wired links of various kinds;

◮ can model low level features (preambles, inter-frame
gaps...) or more complex ones (contentions,
retransmissions, collisions);

◮ of course it is not as precise as full emulation.
14 / 43



Schedulers

Schedulers arbitrate access of multiple flows to the same link

...

◮ newly designed API supports configurable schedulers:
FIFO, DRR, PRIO, WF2Q+, QFQ, KPS;

◮ a MAC layer is a scheduler, too. An 802.11b scheduler
will be available shortly;

◮ schedulers have masks, too:

ipfw queue 1 config sched 5 weight 10 // used for ssh

ipfw queue 2 config sched 5 weight 1 // all other traffic

ipfw add 100 queue 1 out proto tcp src -port 22,53

ipfw add 100 queue 2 out

// each /24 subnet has its own instance

ipfw sched 5 config type QFQ mask src -ip 0 xffffff00

15 / 43



Schedulers (cont)

The scheduler API makes dummynet a tool for testing
schedulers, too:

◮ adding a new scheduler is straightforward;

◮ you can concentrate on your algorithm, don’t have to
worry about classification, getting traffic, locking, etc..

> wc dn_sched *.c

120 553 3766 dn_sched_fifo.c

229 939 6367 dn_sched_prio.c

653 2225 16724 dn_sched_kps.c

864 3466 23302 dn_sched_qfq.c

307 1110 7297 dn_sched_rr .c

373 1854 12080 dn_sched_wf2q.c

16 / 43



Overall structure

Relation between flowsets, masks, queues and schedulers.

...

schedfs 2

...

fs 1
mask src-ip mask src-ip mask dst-ip

17 / 43



Testing framework

We have support to run schedulers in user space.

Controller

Packet
generator

Scheduler

◮ generate traffic for a programmable number of flows,
packet size and weight distribution;

◮ carefully control the operating point of the scheduler;

./ test -alg rr -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_rr n 5004288 10000000 time 0.683968 136.676

./ test -alg qfq -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_qfq n 5004288 10000000 time 0.974142 194.661

./ test -alg kps -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_kps n 5004288 10000000 time 2.855963 570.703

18 / 43



Accuracy

At least three main factors influence the accuracy of
emulation:

◮ timer accuracy (20 µs .. 1 ms or less);

◮ competing traffic (120 µs .. 1.2 ms per competing link);

◮ Operating System interference (virtually unbounded;
normally in the 30 .. 200 µs range).

Accuracy can be improved addressing these three factors.
100 µs is a reasonable target on modern hardware.

19 / 43



Performance

Per-packet processing is the main factor limiting performance.

◮ detailed analysis in April 2010 CCR paper;

◮ split classifier + scheduling + emulation cost;

◮ classifier cost is C + O(R) (number of rules). Normally
400 .. 1000 ns with up to 20 rules.

◮ scheduling from O(1) to O(log N);

◮ emulation: O(log N), 700 .. 1500 ns with 1 .. 1000 flows.

Overall, 2-3 µs/pkt on entry level PC hardware.

20 / 43



Porting

Dummynet has been recently ported to Linux and Windows.

◮ We use the same codebase for all platforms;

◮ very little conditional code (except in headers);

◮ glue libraries to map FreeBSD kernel APIs to underlying
OS APIs.

Main differences between platforms:

◮ internal packet representation;

◮ locking;

◮ packet filtering hooks;

◮ timers (API and resolution);

◮ module loading/unloading;

◮ userland/kernel communication.

21 / 43



Packet representation

In-kernel packet representation
is similar in principle, differ-
ent in details between BSD
(mbufs), Linux (skbufs) and
Windows (NDIS PACKET).

◮ create mbuf lookalikes on entry, fill with metadata from
native representation;

◮ internally, only use mbufs;

◮ destroy the wrapper on exit.

22 / 43



Locking and other OS APIs

◮ mostly dealt with through macros, preprocessor magic
and wrapper functions;

◮ a 1:1 mapping between equivalent functions was almost
always possible;

◮ hardest part was locating the right API to use (e.g.,
ExSetTimerResolution() on Windows);

◮ changing kernel APIs are very challenging too (Linux
netfilter API is a moving target even within 2.6.X);

23 / 43



Availability and Credits

See http://info.iet.unipi.it/∼luigi/dummynet/
Supported operating systems:

◮ FreeBSD (since 1998), OSX (2006)

◮ Linux/OpenWRT (2009)

◮ Windows XP, Windows 7 (2010)

Credits:

◮ Marta Carbone (Linux port)

◮ Fabio Checconi (QFQ, KPS)

◮ Riccardo Panicucci (scheduler API)

◮ Francesco Magno (Windows port)

24 / 43



O(1) packet scheduling at high

data rates



O(1) packet scheduling at high data rates

...

Why do we care about packet scheduling ?

◮ arbitrate access to common resources;

◮ provide service guarantees and resource isolation;

◮ overprovisioning is not always possible/desirable, today’s
CPUs are too fast;

◮ links are very fast too, so schedulers must keep up with
high data rates and number of flows.

26 / 43



Problem setting and definitions

Many definitions for Service Guarantees. We consider the
deviations of our actual scheduler (Packet System) from the
service offered by an Ideal Fluid System.

W=1

W=1

W=2

W=2

W=2

W=1

...

◮ each flow has a weight Φi , and should receive a fraction
Φi/

∑

j Φj of the total link capacity at any time;

◮ the Fluid System serves all flows simultaneously;

◮ the Packet System serves one packet at a time, is non
preemptable, online, and possibly work-conserving;

27 / 43



Service Guarantees

Because of its nature, a Packet System cannot guarantee
perfect sharing at all times. The magnitude of deviations is an
indicator of the quality of the scheduler.

◮ various quality metrics including

B-WFI = max
k,∆t

[ΦkW (∆t) − Wk(∆t)]

◮ in the best possible Packet System (e.g. WF2Q),
B-WFI = 1 MSS (Optimal B-WFI);

◮ tradeoff between guarantees and complexity:
Xu-Lipton 2002: optimal B-WFI requires Ω(log N) time;
Valente 2004: an O(log N) version of WF2Q;

◮ breaking the O(log N) barrier implies relaxed guarantees.

28 / 43



State of the art of fast schedulers

◮ Priority-based schedulers are fast but give no guarantees
except to the flow with highest priority;

◮ Round Robin schedulers have O(1) time but poor
guarantees (O(N) B-WFI);

◮ some timestamp-based schedulers such as WF2Q give
optimal service guarantees in O(log N) time;

◮ approximated variants of timestamp-based schedulers
(KPS - Karsten 2006; GFQ - Stephens,Bennet,Zhang
1999) have near-optimal guarantees and O(1) time
complexity (but several times slower than RR).

29 / 43



Our result

QFQ is a practical O(1) approximated timestamp-based
scheduler with

◮ near-optimal guarantees (B-WFI ∼5 MSS);

◮ truly constant complexity, independent of number of flows
and configuration parameters;

◮ uses very simple CPU instructions;

◮ 110 ns/pkt on common workstations, compared to 55 ns
for DRR and 400 ns for KPS.

Fair Queueing in software (or inexpensive hardware) is feasible
at GBit/s rates.

30 / 43



QFQ overview

QFQ operates as other timestamp-based schedulers:

◮ track the behaviour of a Fluid System;

◮ for each packet, compute Virtual Start and Finish times;

◮ schedule in Finish time order among packets that are i)
available and ii) already started in the Fluid Server.

The sorting steps imply a O(logN) complexity.

◮ use approximated sorting to reduce complexity;

◮ use careful approximations to preserve guarantees;

◮ use extra data structures to reduce constants.

31 / 43



QFQ data structures

dequeue()

enqueue()

◮ Approximated sorting based on rounded timestamps and
splitting flows into a constant number of groups;

◮ flow i belongs to group ⌈log2 Li/Φi⌉;

◮ rounding intervals grow exponentially.

32 / 43



QFQ data structures – sorting

dequeue()

enqueue()

◮ Use approximate timestamps for sorting, but exact values
when computing timestamps;

◮ within each group, there is only a finite number of slots,
so we can use bucket sort;

◮ for selection purposes, use same (F − S) for all flows in a
group, so the order on F and S is the same.

33 / 43



QFQ data structures – selection

dequeue()

enqueue()

◮ Manage four Set of Groups. In each set, index reflects
Virtual Time ordering;

◮ the eligible flow with minimum F can be found with one
FFS instruction instead of scanning the groups;

◮ moving groups between sets does not require loops,
either.

34 / 43



QFQ – enqueue

dequeue()

enqueue()

◮ bucket-insert in the group;

◮ update group state and sets.

35 / 43



QFQ – dequeue

dequeue()

enqueue()

◮ locate first bit in set ER;
◮ serve first flow in the first slot of the corresponding group;
◮ possibly put the flow in a new slot;
◮ update group state and sets.

36 / 43



Service guarantees

Service guarantees for QFQ:

B-WFIk = 3φkσi + 2φkL

(remember that Lk/Φk < σi ≤ 2Lk/Φk)

T-WFIk =

(

3

⌈

Lk

φk

⌉

+ 2L

)

1

R

(R is the link’s rate).

37 / 43



Experimental results

Measurements taken by running the kernel code in userspace:

Controller

Packet
generator

Scheduler

◮ generate traffic for a programmable number of flows,
packet size and weight distribution;

◮ carefully control the operating point of the scheduler;

./ test -alg rr -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_rr n 5004288 10000000 time 0.683968 136.676

./ test -alg qfq -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_qfq n 5004288 10000000 time 0.974142 194.661

./ test -alg kps -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_kps n 5004288 10000000 time 2.855963 570.703

38 / 43



Performance comparison – scalability

 0

 100

 200

 300

 400

 500

 600

 700

1 4 16 64 256 1k 4k 32k

ti
m

e 
(n

s)

Flows

enqueue() + dequeue() time, ns

NONE
FIFO
DRR

QFQ

S-KPS
WF2Q+

39 / 43



Mixed workloads

Measurement results in ns for an enqueue()/dequeue() pair
and packet generation. Standard deviations are within 3% of
the average.

Flows NONE FIFO DRR QFQ KPS WF2Q+
1 62 83 105 221 450 210
8 60 80 102 163 543 344
64 59 80 100 158 540 526
512 64 85 110 175 560 740
4k 74 102 157 197 590 1110
32k 62 117 147 222 601 1690

1:32k,2:4k,4:2k,8:1k,128:16,1k:1 flows
mix 92 119 160 255 612 1715

40 / 43



Conclusions

◮ QFQ is a Timestamp-based scheduler with near optimal
service guarantees and true O(1) run time;

◮ 110 ns/pkt, only 2 times slower than RR and 4 times
faster than comparable algorithms;

◮ already available as part of dummynet, together with
several other schedulers;

◮ technical report and code at
http://info.iet.unipi.it/∼luigi/qfq/

◮ Joint work with Fabio Checconi and Paolo Valente;

◮ soon available as a Click module;

41 / 43



Future work

Future work:

◮ detailed performance analysis on low-end hardware
(OpenWRT platforms);

◮ identify performance bottlenecks, memory access
patterns;

◮ investigate feasibility of hardware implementations
(including NETFPGA).

42 / 43



Links and further info

◮ For dummynet
http://info.iet.unipi.it/∼luigi/dummynet/

◮ For QFQ
http://info.iet.unipi.it/∼luigi/qfq/

For everything else, there’s www.google.com

43 / 43


	Summary
	Dummynet
	Introduction
	Architecture
	Applications
	Internals
	Advanced features
	Accuracy and performance

	Fast packet scheduling
	Introduction
	State of the art
	QFQ
	Background on timestamp-based schedulers
	Performance analysis


