
Game Boy: Complete Technical Reference

gekkio
https://gekkio.fi
September 26, 2019

Revision 50

cba
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://gekkio.fi
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Preface



IMPORTANT: This document focuses at the mo-
ment on 1st and 2nd generation devices (models
before the Game Boy Color), and some hardware
details are very different in later generations.

Be very careful if you make assumptions about
later generation devices based on this document!

1

How to read this document



This is something that hasn’t been verified, but would make a lot of sense.



This explains some caveat about this documentation that you should know.



This is a warning about something.

0.1 Formatting of numbers

When a single bit is discussed in isolation, the value looks like this: 0, 1.
Binary numbers are prefixed with 0b like this: 0b0101101, 0b11011, 0b00000000. Values are prefixed with

zeroes when necessary, so the total number of digits always matches the number of digits in the value.
Hexadecimal numbers are prefixed with 0x like this: 0x1234, 0xDEADBEEF, 0xFF04. Values are prefixed

with zeroes when necessary, so the total number of characters always matches the number of nibbles in the
value.

Examples:

4-bit 8-bit 16-bit
Binary 0b0101 0b10100101 0b0000101010100101
Hexadecimal 0x5 0xA5 0x0AA5

2

3

0.2 Register definitions

Register 0.1: 0x1234 - This is a hardware register definition

R/W-0 R/W-1 U-1 R-0 R-1 R-x W-1 U-0
VALUE<1:0> - BIGVAL<7:5> FLAG -

bit 7 6 5 4 3 2 1 bit 0
Top row legend:

R Bit can be read.

W Bit can be written. If the bit cannot be read, reading returns a constant value defined in the bit list
of the register in question.

U Unimplemented bit. Writing has no effect, and reading returns a constant value defined in the bit
list of the register in question.

-n Value after system reset: 0, 1, or x.

1 Bit is set.

0 Bit is cleared.

x Bit is unknown (e.g. depends on external things such as user input).

Middle row legend:
VALUE<1:0> Bits 1 and 0 of VALUE
- Unimplemented bit
BIGVAL<7:5> Bits 7, 6, 5 of BIGVAL
FLAG Single-bit value FLAG

In this example:

• After system reset, VALUE is 0b01, BIGVAL is either 0b010 or 0b011, FLAG is 0b1.

• Bits 5 and 0 are unimplemented. Bit 5 always returns 1, and bit 0 always returns 0.

• Both bits of VALUE can be read and written. When this register is written, bit 7 of the written value goes
to bit 1 of VALUE.

• FLAG can only be written to, so reads return a value that is defined elsewhere.

• BIGVAL cannot be written to. Only bits 5-7 of BIGVAL are defined here, so look elsewhere for the low
bits 0-4.

Contents

Preface 1

How to read this document 2
0.1 Formatting of numbers . 2
0.2 Register definitions . 3

Contents 4

I Sharp SM83 CPU core 7

1 Sharp SM83 instruction set 8
1.1 8-bit load and store instructions . 8
1.2 16-bit load and store instructions . 8
1.3 8-bit arithmetic instructions . 8
1.4 16-bit arithmetic instructions . 8
1.5 Rotate, shift, and bit operation instructions . 8
1.6 Control flow instructions . 8

JP nn . 8
JP HL . 8
JP cc, nn . 9
JR r . 9
JR cc, r . 9
CALL nn . 10
CALL cc, nn . 10
RET . 11
RET cc . 11
RETI . 11
RST n . 12

1.7 Miscellaneous instructions . 12
HALT . 12
STOP . 12
DI . 12
EI . 12
CCF . 13
SCF . 13
NOP . 13
DAA . 14
CPL . 14

II Game Boy SoC peripherals and features 15

2 Boot ROM 16
2.1 Boot ROM types . 16

DMG boot ROM . 17
MGB boot ROM . 17
SGB boot ROM . 17
SGB2 boot ROM . 17
Early DMG boot ROM . 17

4

CONTENTS 5

3 DMA (Direct Memory Access) 18
3.1 Object Attribute Memory (OAM) DMA . 18

OAM DMA address decoding . 18
OAM DMA transfer timing . 19
OAM DMA bus conflicts . 19

4 PPU (Picture Processing Unit) 20

5 Port P1 (Joypad, Super Game Boy communication) 21

6 Serial communication 22

III Game Boy game cartridges 23

7 MBC1 mapper chip 24
7.1 MBC1 registers . 24
7.2 ROM in the 0x0000-0x7FFF area . 25

ROM banking example 1 . 26
ROM banking example 2 . 26

7.3 RAM in the 0xA000-0xBFFF area . 26
RAM banking example 1 . 27

7.4 MBC1 multicarts ("MBC1M") . 27
ROM banking example 1 . 27
Detecting multicarts . 28

7.5 Dumping MBC1 carts . 28

8 MBC2 mapper chip 29
8.1 MBC2 registers . 29
8.2 ROM in the 0x0000-0x7FFF area . 30
8.3 RAM in the 0xA000-0xBFFF area . 30
8.4 Dumping MBC2 carts . 31

9 MBC3 mapper chip 32

10 MBC30 mapper chip 33

11 MBC5 mapper chip 34
11.1 MBC5 registers . 34

12 MBC6 mapper chip 36

13 MBC7 37

14 HuC-1 mapper chip 38

15 HuC-3 mapper chip 39

16 MMM01 40

17 TAMA5 41

Appendices 43

A Instruction set tables 43

B Memory map tables 46

C Game Boy external bus 51
C.1 Bus timings . 51

D Chip pinouts 53
D.1 CPU chips . 53

CONTENTS 6

D.2 Cartridge chips . 54

Bibliography 55

Part I

Sharp SM83 CPU core

7

Chapter 1

Sharp SM83 instruction set

1.1 8-bit load and store instructions

1.2 16-bit load and store instructions

1.3 8-bit arithmetic instructions

1.4 16-bit arithmetic instructions

1.5 Rotate, shift, and bit operation instructions

1.6 Control flow instructions

JP nn

Unconditional jump to the absolute address specified by the operand nn.

Opcode + data 0b11000011 + LSB of nn + MSB of nn
Length 3 bytes

Duration 4 machine cycles

Flags -

Timing
Purpose Decode LSB of nn MSB of nn Internal delay Decode

Memory Read: PC Read: PC+1 Read: PC+2 Read: nn

Pseudocode opcode = read(PC++)
if opcode == 0xC3:
nn = unsigned_16(lsb=read(PC++), msb=read(PC++))
PC = nn

JP HL

Unconditional jump to the absolute address specified by the register HL.

Opcode 0b11101001
Length 1 bytes

Duration 1 machine cycle

Flags -

Timing
Purpose Decode Decode

Memory Read: PC Read: HL

Pseudocode opcode = read(PC++)
if opcode == 0xE9:
PC = HL

8

CHAPTER 1. SHARP SM83 INSTRUCTION SET 9



In some documentation this instruction is written as JP [HL]. This is very misleading, since brackets
are usually used to indicate a memory read, and this instruction simply copies the value of HL to PC.

JP cc, nn

Conditional jump to the absolute address specified by the operand nn, depending on the condition cc.
Note that the operand (absolute address) is read even when the condition is false!

Opcode + data 0b110cc010 + LSB of nn + MSB of nn
Length 3 bytes

Duration 3 machine cycles (cc=false), or 4 machine cycles (cc=true)

Flags -

Timing (cc=false)
Purpose Decode LSB of nn MSB of nn Decode

Memory Read: PC Read: PC+1 Read: PC+2 Read: PC+3

Timing (cc=true)
Purpose Decode LSB of nn MSB of nn Internal delay Decode

Memory Read: PC Read: PC+1 Read: PC+2 Read: nn

Pseudocode opcode = read(PC++)
if opcode in [0xC2, 0xD2, 0xCA, 0xDA]:
nn = unsigned_16(lsb=read(PC++), msb=read(PC++))
if F.check_condition(cc):
PC = nn

JR r

Unconditional jump to the relative address specified by the signed operand r.

Opcode + data 0b00011000 + offset r
Length 2 bytes

Duration 3 machine cycles

Flags -

Timing
Purpose Decode Value of r Internal delay Decode

Memory Read: PC Read: PC+1 Read: PC+2+r

Pseudocode opcode = read(PC++)
if opcode == 0x18:
r = signed_8(read(PC++))
PC = PC + r

JR cc, r

Conditional jump to the relative address specified by the signed operand r, depending on the condition cc.
Note that the operand (relative address offset) is read even when the condition is false!

Opcode + data 0b001cc000 + offset r
Length 2 bytes

Duration 2 machine cycles (cc=false), or 3 machine cycles (cc=true)

Flags -

Timing (cc=false)
Purpose Decode Value of r Decode

Memory Read: PC Read: PC+1 Read: PC+2

CHAPTER 1. SHARP SM83 INSTRUCTION SET 10

Timing (cc=true)
Purpose Decode Value of r Internal delay Decode

Memory Read: PC Read: PC+1 Read: PC+2+r

Pseudocode opcode = read(PC++)
if opcode in [0x20, 0x30, 0x28, 0x38]:
r = signed_8(read(PC++))
if F.check_condition(cc):
PC = PC + r

CALL nn

Unconditional function call to the absolute address specified by the operand nn.

Opcode + data 0b11001101 + LSB of nn + MSB of nn
Length 3 bytes

Duration 6 machine cycles

Flags -

Timing
Purpose Decode LSB of nn MSB of nn Internal delay MSB of PC+3 LSB of PC+3 Decode

Memory Read: PC Read: PC+1 Read: PC+2 Write: SP-1 Write: SP-2 Read: nn

Pseudocode opcode = read(PC++)
if opcode == 0xCD:
nn = unsigned_16(lsb=read(PC++), msb=read(PC++))
write(--SP, msb(PC))
write(--SP, lsb(PC))
PC = nn

CALL cc, nn

Conditional function call to the absolute address specified by the operand nn, depending on the condition cc.
Note that the operand (absolute address) is read even when the condition is false!

Opcode + data 0b110cc100 + LSB of nn + MSB of nn
Length 3 bytes

Duration 3 machine cycles (cc=false), or 6 machine cycles (cc=true)

Flags -

Timing (cc=false)
Purpose Decode LSB of nn MSB of nn Decode

Memory Read: PC Read: PC+1 Read: PC+2 Read: PC+3

Timing (cc=true)
Purpose Decode LSB of nn MSB of nn Internal delay MSB of PC+3 LSB of PC+3 Decode

Memory Read: PC Read: PC+1 Read: PC+2 Write: SP-1 Write: SP-2 Read: nn

Pseudocode opcode = read(PC++)
if opcode in [0xC4, 0xD4, 0xCC, 0xDC]:
nn = unsigned_16(lsb=read(PC++), msb=read(PC++))
if F.check_condition(cc):
write(--SP, msb(PC))
write(--SP, lsb(PC))
PC = nn

CHAPTER 1. SHARP SM83 INSTRUCTION SET 11

RET

Unconditional return from function.

Opcode 0b11001001
Length 1 byte

Duration 4 machine cycles

Flags -

Timing
Purpose Decode LSB of PC MSB of PC Internal delay Decode

Memory Read: PC Read: SP Read: SP+1 Read: new PC

Pseudocode opcode = read(PC++)
if opcode == 0xC9:
PC = unsigned_16(lsb=read(SP++), msb=read(SP++))

RET cc

Conditional return from function, depending on the condition cc.

Opcode 0b110cc000
Length 1 byte

Duration 2 machine cycles (cc=false), or 5 machine cycles (cc=true)

Flags -

Timing (cc=false)
Purpose Decode Internal delay Decode

Memory Read: PC Read: PC+1

Timing (cc=true)
Purpose Decode Internal delay LSB of PC MSB of PC Internal delay Decode

Memory Read: PC Read: SP Read: SP+1 Read: new PC

Pseudocode opcode = read(PC++)
if opcode in [0xC0, 0xD0, 0xC8, 0xD8]:
if F.check_condition(cc):
PC = unsigned_16(lsb=read(SP++), msb=read(SP++))

RETI

Unconditional return from function. Also enables interrupts by setting IME=1.

Opcode 0b11011001
Length 1 byte

Duration 4 machine cycles

Flags -

Timing
Purpose Decode LSB of PC MSB of PC Internal delay Decode

Memory Read: PC Read: SP Read: SP+1 Read: new PC

Pseudocode opcode = read(PC++)
if opcode == 0xD9:
PC = unsigned_16(lsb=read(SP++), msb=read(SP++))
IME = 1

CHAPTER 1. SHARP SM83 INSTRUCTION SET 12

RST n

Unconditional function call to the absolute fixed address defined by the opcode.

Opcode 0b11xxx111
Length 1 byte

Duration 4 machine cycles

Flags -

Timing
Purpose Decode Internal delay MSB of PC+1 LSB of PC+1 Decode

Memory Read: PC Write: SP-1 Write: SP-2 Read: new PC

Pseudocode opcode = read(PC++)
if opcode in [0xC7, 0xD7, 0xE7, 0xF7, 0xCF, 0xDF, 0xEF, 0xFF]:
n = rst_address(opcode)
write(--SP, msb(PC))
write(--SP, lsb(PC))
PC = unsigned_16(lsb=n, msb=0x00)

1.7 Miscellaneous instructions

HALT

STOP

DI

Disables interrupt handling by setting IME=0 and cancelling any scheduled effects of the EI instruction if any.

Opcode 0b11110011
Length 1 byte

Duration 1 machine cycle

Flags -

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

Pseudocode opcode = read(PC++)
if opcode == 0xF3:
IME = 0

EI

Schedules interrupt handling to be enabled after the next machine cycle.

Opcode 0b11111011
Length 1 byte

Duration 1 machine cycle (+ 1 machine cycle for the effect)

Flags -

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

Pseudocode opcode = read(PC++)
if opcode == 0xFB:
IME_scheduled = true

CHAPTER 1. SHARP SM83 INSTRUCTION SET 13

CCF

Flips the carry flag, and clears the N and H flags.

Opcode 0b00111111
Length 1 byte

Duration 1 machine cycle

Flags N = 0, H = 0, C = ⋆

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

Pseudocode opcode = read(PC++)
if opcode == 0x3F:
flags.N = 0
flags.H = 0
flags.C = ~flags.C

SCF

Sets the carry flag, and clears the N and H flags.

Opcode 0b00110111
Length 1 byte

Duration 1 machine cycle

Flags N = 0, H = 0, C = 1

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

Pseudocode opcode = read(PC++)
if opcode == 0x37:
flags.N = 0
flags.H = 0
flags.C = 1

NOP

No-operation. This instruction doesn’t do anything, but can be used to add a delay of one machine cycle and
increment PC by one.

Opcode 0b00000000
Length 1 byte

Duration 1 machine cycle

Flags -

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

Pseudocode opcode = read(PC++)
if opcode == 0x00:
// nothing

CHAPTER 1. SHARP SM83 INSTRUCTION SET 14

DAA

Opcode 0b00100111
Length 1 byte

Duration 1 machine cycle

Flags Z = ⋆, H = 0, C = ⋆

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

CPL

Flips all the bits in the A register, and sets the N and H flags.

Opcode 0b00101111
Length 1 byte

Duration 1 machine cycle

Flags N = 1, H = 1

Timing
Purpose Decode Decode

Memory Read: PC Read: PC+1

Pseudocode opcode = read(PC++)
if opcode == 0x2F:
A = ~A
flags.N = 1
flags.H = 1

Part II

Game Boy SoC peripherals and features

15

Chapter 2

Boot ROM

The Game Boy SoC includes a small embedded boot ROM, which can be mapped to the 0x0000-0x00FF
memory area. While mapped, all reads from this area are handled by the boot ROM instead of the external
cartridge, and all writes to this area are ignored and cannot be seen by external hardware (e.g. the cartridge
MBC).

The boot ROM is enabled by default, so when the system exits the reset state and the CPU starts execution
from address 0x0000, it executes the boot ROM instead of instructions from the cartridge ROM. The boot ROM
is responsible for showing the initial logo, and checking that a valid cartridge is inserted into the system. If
the cartridge is valid, the boot ROM unmaps itself before execution of the cartridge ROM starts at 0x0100.
The cartridge ROM has no chance of executing any instructions before the boot ROM is unmapped, which
prevents the boot ROM from being read byte by byte in normal conditions.



Don’t confuse the boot ROM with the additional SNES ROM in SGB/SGB2 that is executed by the SNES
CPU.

Register 2.1: 0xFF50 - BOOT - Boot ROM lock register

U-1 U-1 U-1 U-1 U-1 U-1 U-1 R/W-0
- - - - - - - BOOT_OFF

bit 7 6 5 4 3 2 1 bit 0
bit 7-1 Unimplemented: Read as 1
bit 0 BOOT_OFF: Boot ROM lock bit

0b1= Boot ROM is disabled and 0x0000-0x00FF works normally.
0b0= Boot ROM is active and intercepts accesses to 0x0000-0x00FF.

BOOT_OFF can only transition from 0b0 to 0b1, so once 0b1 has been written, the boot ROM is
permanently disabled until the next system reset. Writing 0b0 when BOOT_OFF is 0b0 has no
effect and doesn’t lock the boot ROM.

The 1-bit BOOT register controls mapping of the boot ROM. Once 1 has been written to it to unmap the
boot ROM, it can only be mapped again by resetting the system.

2.1 Boot ROM types

Table 2.1: Summary of boot ROM file hashes

Type CRC32 MD5 SHA1
DMG 59c8598e a8f84a0ac44da5d3f0ee19f9cea80a8c 8bd501e31921e9601788316dbd3ce9833a97bcbc
MGB e6920754 71a378e71ff30b2d8a1f02bf5c7896aa 4e68f9da03c310e84c523654b9026e51f26ce7f0
SGB ec8a83b9 d574d4f9c12f305074798f54c091a8b4 aa2f50a77dfb4823da96ba99309085a3c6278515
SGB2 53d0dd63 e0430bca9925fb9882148fd2dc2418c1 93407ea10d2f30ab96a314d8eca44fe160aea734
DMG0 c2f5cc97 a8f84a0ac44da5d3f0ee19f9cea80a8c 8bd501e31921e9601788316dbd3ce9833a97bcbc

16

CHAPTER 2. BOOT ROM 17

DMG boot ROM

The most common boot ROM is the DMG boot ROM used in almost all original Game Boy units. If a valid
cartridge is inserted, the boot ROM scrolls a logo to the center of the screen, and plays a "di-ding" sound
recognizable by most people who have used Game Boy consoles.

This boot ROM was originally dumped by neviksti in 2003 by decapping the Game Boy SoC and visually
inspecting every single bit.

MGB boot ROM

This boot ROM was originally dumped by Bennvenn in 2014 by using a simple clock glitching method that
only requires one wire.

SGB boot ROM

This boot ROM was originally dumped by Costis Sideris in 2009 by using an FPGA-based clock glitching
method [5].

SGB2 boot ROM

This boot ROM was originally dumped by gekkio in 2015 by using a Teensy 3.1 -based clock glitching method
[2].

Early DMG boot ROM

Very early original Game Boy units released in Japan (often called "DMG0") included the launch version
"DMG-CPU" SoC chip, which used a different boot ROM than later units.

This boot ROM was originally dumped by gekkio in 2016 by using a clock glitching method invented by
BennVenn.

Chapter 3

DMA (Direct Memory Access)

3.1 Object Attribute Memory (OAM) DMA

OAM DMA is a high-throughput mechanism for copying data to the OAM area (a.k.a. Object Attribute Mem-
ory, a.k.a. sprite memory). It can copy one byte per machine cycle without involving the CPU at all, which is
much faster than the fastest possible memcpy routine that can be written with the SM83 instruction set. How-
ever, a transfer cannot be cancelled and the transfer length cannot be controlled, so the DMA transfer always
updates the entire OAM area (= 160 bytes) even if you actually want to just update the first couple of bytes.

The Game Boy CPU chip contains a DMA controller that coordinates transfers between a source area and the
OAM area independently of the CPU. While a transfer is in progress, it takes control of the source bus and the
OAM area, so some precaution is needed with memory accesses (including instruction fetches) to avoid OAM
DMA bus conflicts. OAM DMA uses a different address decoding scheme than normal memory accesses, so
the source bus is always either the external bus or the video RAM bus, and the contents normally visible to the
CPU in the 0xFE00-0xFFFF address range cannot be used as a source for OAM DMA transfers.

The upper 8 bits of the OAM DMA source address are stored in the DMA register, while the lower 8 bits
used by both the source and target address are stored in the DMA controller and are not accessible directly. A
transfer always begins with 0x00 in the lower bits and copies exactly 160 bytes, so the lower bits are never in
the 0xA0-0xFF range.

Writing to the DMA register updates the upper bits of the DMA source address and also triggers an OAM
DMA transfer request, although the DMA transfer does not begin immediately.

Register 3.1: 0xFF46 - DMA - OAM DMA control register

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DMA<7:0>

bit 7 6 5 4 3 2 1 bit 0
bit 0 DMA<7:0>: OAM DMA source address

Specifies the top 8 bits of the OAM DMA source address.

Writing to this register requests an OAM DMA transfer, but it’s just a request and the actual DMA
transfer starts with a delay.

Reading this register returns the value that was previously written to the register. The stored value
is not cleared on reset, so the initial value before the first write is unknown and should not be relied
on.



Avoid writing 0xE0-0xFF to the DMA register, because some poorly designed flash carts can trigger
bus conflicts or other dangerous behaviour.

OAM DMA address decoding

The OAM DMA controller uses a simplified address decoding scheme, which leads to some addresses being
unusable as source addresses. Unlike normal memory accesses, OAM DMA transfers interpret all accesses in
the 0xA000-0xFFFF range as external RAM transfers. For example, if the OAM DMA wants to read 0xFF00,

18

CHAPTER 3. DMA (DIRECT MEMORY ACCESS) 19

it will output 0xFF00 on the external address bus and will assert the external RAM chip select signal. The P1
register which is normally at 0xFF00 is not involved at all, because OAM DMA address decoding only uses the
external bus and the video RAM bus. Instead, the resulting behaviour depends on several factors, including
the connected cartridge. Some flash carts are not prepared for this unexpected scenario, and a bus conflict or
worse behaviour can happen.

Table 3.1: OAM DMA address decoding scheme

DMA register value Used bus Asserted chip select signal
0x00-0x7F external bus external ROM (A15)
0x80-0x9F video RAM bus video RAM (MCS)
0xA0-0xFF external bus external RAM (CS)

OAM DMA transfer timing

TODO

OAM DMA bus conflicts

TODO

Chapter 4

PPU (Picture Processing Unit)

Register 4.1: 0xFF40 - LCDC - PPU control register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LCD_EN WIN_MAP WIN_EN TILE_SEL BG_MAP OBJ_SIZE OBJ_EN BG_EN
bit 7 6 5 4 3 2 1 bit 0

Register 4.2: 0xFF41 - LCDC - PPU status register

U-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
- INTR_LYC INTR_M2 INTR_M1 INTR_M0 LYC_STAT LCD_MODE<1:0>
bit 7 6 5 4 3 2 1 bit 0

Register 4.3: 0xFF42 - SCY - Vertical scroll register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SCY<7:0>

bit 7 6 5 4 3 2 1 bit 0

Register 4.4: 0xFF43 - SCX - Horizontal scroll register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SCX<7:0>

bit 7 6 5 4 3 2 1 bit 0

Register 4.5: 0xFF44 - LY - Scanline register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LY<7:0>

bit 7 6 5 4 3 2 1 bit 0

Register 4.6: 0xFF45 - LYC - Scanline compare register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LYC<7:0>

bit 7 6 5 4 3 2 1 bit 0

20

Chapter 5

Port P1 (Joypad, Super Game Boy communication)

Register 5.1: 0xFF00 - P1 - Joypad/Super Game Boy communication register

U-1 U-1 W-0 W-0 R-x R-x R-x R-x
- - P15 P14 P13 P12 P11 P10
bit 7 6 5 4 3 2 1 bit 0

bit 7-6 Unimplemented: Read as 1
bit 5 P15:

bit 4 P14:

bit 3 P13:

bit 2 P12:

bit 1 P11:

bit 0 P10:

21

Chapter 6

Serial communication

Register 6.1: 0xFF01 - SB - Serial data register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SB<7:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-0 SB<7:0>: Serial data

Register 6.2: 0xFF02 - SC - Serial control register

R/W-0 U-1 U-1 U-1 U-1 U-1 U-1 R/W-0
SIO_EN - - - - - - SIO_CLK
bit 7 6 5 4 3 2 1 bit 0

bit 7 SIO_EN:

bit 6-1 Unimplemented: Read as 1
bit 0 SIO_CLK:

22

Part III

Game Boy game cartridges

23

Chapter 7

MBC1 mapper chip

The majority of games for the original Game Boy use the MBC1 chip. MBC1 supports ROM sizes up to 16 Mbit
(128 banks of 0x4000 bytes) and RAM sizes up to 256 Kbit (4 banks of 0x2000 bytes). The information in this
section is based on my MBC1 research, Tauwasser’s research notes [6], and Pan Docs [3].

7.1 MBC1 registers



These registers don’t have any standard names and are usually referred to using their address ranges
or purposes instead. This document uses names to clarify which register is meant when referring to
one.

The MBC1 chip includes four registers that affect the behaviour of the chip. Of the cartridge bus address
signals, only A13-A15 are connected to the MBC, so lower address bits don’t matter when the CPU is accessing
the MBC and all registers are effectively mapped to address ranges instead of single addresses. All registers are
smaller than 8 bits, and unused bits are simply ignored during writes. The registers are not directly readable.

Register 7.1: 0x0000-0x1FFF - RAMG - MBC1 RAM gate register

U U U U W-0 W-0 W-0 W-0
RAMG<3:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAMG<3:0>: RAM gate register
0b1010= enable access to cartridge RAM
All other values disable access to cartridge RAM

The RAMG register is used to enable access to the cartridge SRAM if one exists on the cartridge circuit
board. RAM access is disabled by default but can be enabled by writing to the 0x0000-0x1FFF address range
a value with the bit pattern 0b1010 in the lower nibble. Upper bits don’t matter, but any other bit pattern in
the lower nibble disables access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xA000-0xBFFF are ignored, and reads
return undefined values. Pan Docs recommends disabling RAM when it’s not being accessed to protect the
contents [3].



We don’t know the physical implementation of RAMG, but it’s certainly possible that the 0b1010 bit
pattern check is done at write time and the register actually consists of just a single bit.

24

CHAPTER 7. MBC1 MAPPER CHIP 25

Register 7.2: 0x2000-0x3FFF - BANK1 - MBC1 bank register 1

U U U W-0 W-0 W-0 W-0 W-1
BANK1<4:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-5 Unimplemented: Ignored during writes

bit 4-0 BANK1<4:0>: Bank register 1
Never contains the value 0b00000.
If 0b00000 is written, the resulting value will be 0b00001 instead.

The 5-bit BANK1 register is used as the lower 5 bits of the ROM bank number when the CPU accesses the
0x4000-0x7FFF memory area.

MBC1 doesn’t allow the BANK1 register to contain zero (bit pattern 0b00000), so the initial value at reset
is 0b00001 and attempting to write 0b00000 will write 0b00001 instead. This makes it impossible to read
banks 0x00, 0x20, 0x40 and 0x60 from the 0x4000-0x7FFF memory area, because those bank numbers have
0b00000 in the lower bits. Due to the zero value adjustment, requesting any of these banks actually requests
the next bank (e.g. 0x21 instead of 0x20).

Register 7.3: 0x4000-0x5FFF - BANK2 - MBC1 bank register 2

U U U U U U W-0 W-0
BANK2<1:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-2 Unimplemented: Ignored during writes

bit 1-0 BANK2<1:0>: Bank register 2

The 2-bit BANK2 register can be used as the upper bits of the ROM bank number, or as the 2-bit RAM bank
number. Unlike BANK1, BANK2 doesn’t disallow zero, so all 2-bit values are possible.

Register 7.4: 0x6000-0x7FFF - MODE - MBC1 mode register

U U U U U U U W-0
MODE

bit 7 6 5 4 3 2 1 bit 0
bit 7-1 Unimplemented: Ignored during writes

bit 0 MODE: Mode register
0b1= BANK2 affects accesses to 0x0000-0x3FFF, 0x4000-0x7FFF, 0xA000-0xBFFF
0b0= BANK2 affects only accesses to 0x4000-0x7FFF

The MODE register determines how the BANK2 register value is used during memory accesses.



Most documentation, including Pan Docs [3], calls value 0b0 ROM banking mode, and value 0b1 RAM
banking mode. This terminology reflects the common use cases, but "RAM banking" is slightly mis-
leading because value 0b1 also affects ROM reads in multicart cartridges and cartridges that have a 8
or 16 Mbit ROM chip.

7.2 ROM in the 0x0000-0x7FFF area

In MBC1 cartridges, the A0-A13 cartridge bus signals are connected directly to the corresponding ROM pins,
and the remaining ROM pins (A14-A20) are controlled by the MBC1. These remaining pins form the ROM
bank number.

CHAPTER 7. MBC1 MAPPER CHIP 26

When the 0x0000-0x3FFF address range is accessed, the effective bank number depends on the MODE
register. In MODE 0b0 the bank number is always 0, but in MODE 0b1 it’s formed by shifting the BANK2
register value left by 5 bits.

When the 0x4000-0x7FFF addess range is accessed, the effective bank number is always a combination of
BANK1 and BANK2 register values.

If the cartridge ROM is smaller than 16 Mbit, there are less ROM address pins to connect to and therefore
some bank number bits are ignored. For example, 4 Mbit ROMs only need a 5-bit bank number, so the BANK2
register value is always ignored because those bits are simply not connected to the ROM.

Table 7.1: Mapping of physical ROM address bits in MBC1 carts

ROM address bits
Accessed address Bank number Address within bank

20-19 18-14 13-0
0x0000-0x3FFF, MODE = 0b0 0b00 0b00000 A<13:0>
0x0000-0x3FFF, MODE = 0b1 BANK2 0b00000 A<13:0>
0x4000-0x7FFF BANK2 BANK1 A<13:0>

ROM banking example 1

Let’s assume we have previously written 0x12 to the BANK1 register and 0b01 to the BANK2 register. The
effective bank number during ROM reads depends on which address range we read and on the value of the
MODE register:

Value of the BANK1 register
0b 10010

Value of the BANK2 register
0b 01

Effective ROM bank number (reading 0x4000-0x7FFF)
0b 01 10010 (= 50 = 0x32)

Effective ROM bank number (reading 0x0000-0x3FFF, MODE = 0b0)
0b 00 00000 (= 0 = 0x00)

Effective ROM bank number (reading 0x0000-0x3FFF, MODE = 0b1)
0b 01 00000 (= 32 = 0x20)

ROM banking example 2

Let’s assume we have previously requested ROM bank number 68, MBC1 mode is 0b0, and we are now
reading a byte from 0x72A7. The actual physical ROM address that will be read is going to be 0x1132A7 and
is constructed in the following way:

Value of the BANK1 register 0b 00100
Value of the BANK2 register 0b 10
ROM bank number 0b 10 00100 (= 68 = 0x44)
Address being read 0b 01 11 0010 1010 0111 (= 0x72A7)
Actual physical ROM address 0b 1 0 001 00 11 0010 1010 0111 (= 0x1132A7)

7.3 RAM in the 0xA000-0xBFFF area

Some MBC1 carts include SRAM, which is mapped to the 0xA000-0xBFFF area. If no RAM is present, or RAM
is not enabled with the RAMG register, all reads return undefined values and writes have no effect.

On boards that have RAM, the A0-A12 cartridge bus signals are connected directly to the corresponding
RAM pins, and pins A13-A14 are controlled by the MBC1. Most of the time the RAM size is 64 Kbit, which

CHAPTER 7. MBC1 MAPPER CHIP 27

corresponds to a single bank of 0x2000 bytes. With larger RAM sizes the BANK2 register value can be used
for RAM banking to provide the two high address bits.

In MODE 0b0 the BANK2 register value is not used, so the first RAM bank is always mapped to the
0xA000-0xBFFF area. In MODE 0b1 the BANK2 register value is used as the bank number.

Table 7.2: Mapping of physical RAM address bits in MBC1 carts

RAM address bits
Accessed address Bank number Address within bank

14-13 12-0
0xA000-0xBFFF, MODE = 0b0 0b00 A<12:0>
0xA000-0xBFFF, MODE = 0b1 BANK2 A<12:0>

RAM banking example 1

Let’s assume we have previously written 0b10 to the BANK2 register, MODE is 0b1, RAMG is 0b1010 and we
are now reading a byte from 0xB123. The actual physical RAM address that will be read is going to be 0x5123
and is constructed in the following way:

Value of the BANK2 register 0b 10
Address being read 0b 101 1 0001 0010 0011 (= 0xB123)
Actual physical RAM address 0b 10 1 0001 0010 0011 (= 0x5123)

7.4 MBC1 multicarts ("MBC1M")

MBC1 is also used in a couple of "multicart" cartridges, which include more than one game on the same
cartridge. These cartridges use the same regular MBC1 chip, but the circuit board is wired a bit differently.
This alternative wiring is sometimes called "MBC1M", but technically the mapper chip is the same. All known
MBC1 multicarts use 8 Mbit ROMs, so there’s no definitive wiring for other ROM sizes.

In MBC1 multicarts bit 4 of the BANK1 register is not physically connected to anything, so it’s skipped. This
means that the bank number is actually a 6-bit number. In all known MBC1 multicarts the games reserve 16
banks each, so BANK2 can actually be considered "game number", while BANK1 is the internal bank number
within the selected game. At reset BANK2 is 0b00, and the "game" in this slot is actually a game selection
menu. The menu code selects MODE 0b1 and writes the game number to BANK2 once the user selects a
game.

From a ROM banking point of view, multicarts simply skip bit 4 of the BANK1 register, but otherwise the
behaviour is the same. MODE 0b1 guarantees that all ROM accesses, including accesses to 0x0000-0x3FFF,
use the BANK2 register value.

Table 7.3: Mapping of physical ROM address bits in MBC1 multicarts

ROM address bits
Accessed address Bank number Address within bank

19-18 17-14 13-0
0x0000-0x3FFF, MODE = 0b0 0b00 0b0000 A<13:0>
0x0000-0x3FFF, MODE = 0b1 BANK2 0b0000 A<13:0>
0x4000-0x7FFF BANK2 BANK1<3:0> A<13:0>

ROM banking example 1

Let’s assume we have previously requested "game number" 3 (= 0b11) and ROM bank number 29 (= 0x1D),
MBC1 mode is 0b1, and we are now reading a byte from 0x6C15. The actual physical ROM address that will
be read is going to be 0xF6C15 and is constructed in the following way:

Value of the BANK1 register 0b 1 1101
Value of the BANK2 register 0b 11
ROM bank number 0b 11 1101 (= 61 = 0x3D)

CHAPTER 7. MBC1 MAPPER CHIP 28

Address being read 0b 01 10 1100 0001 0101 (= 0x6C15)
Actual physical ROM address 0b 11 11 01 10 1100 0001 0101 (= 0xF6C15)
Detecting multicarts

MBC1 multicarts are not detectable by simply looking at the ROM header, because the ROM type value is just
one of the normal MBC1 values. However, detection is possible by going through BANK2 values and looking
at "bank 0" of each multicart game and doing some heuristics based on the header data. All the included
games, including the game selection menu, have proper header data. One example of a good heuristic is logo
data verification.

So, if you have a 8 Mbit cart with MBC1, first assume that it’s a multicart and bank numbers are 6-bit
values. Set BANK1 to zero and loop through the four possible BANK2 values while checking the data at
0x0104-0x0133. In other words, check logo data starting from physical ROM locations 0x00104, 0x40104,
0x80104, and 0xC0104. If proper logo data exists with most of the BANK2 values, the cart is most likely a
multicart. Note that multicarts can just have two actual games, so one of the locations might not have the
header data in place.

7.5 Dumping MBC1 carts

MBC1 cartridge dumping is fairly straightforward with the right hardware. The total number of banks is read
from the header, and each bank is read one byte at a time. However, BANK1 register zero-adjustment and
multicart cartridges need to be considered in ROM dumping code.

Banks 0x20, 0x40 and 0x60 can only be read from the 0x0000-0x3FFF memory area and only when MODE
register value is 0b1. Using MODE 0b1 has no undesirable effects when doing ROM dumping, so using it at
all times is recommended for simplicity.

Multicarts should be detected using the logo check described earlier, and if a multicart is detected, BANK1
should be considered a 4-bit register in the dumping code.

write_byte(0x6000, 0x01)
for bank in range(0, num_banks):

write_byte(0x2000, bank)
if is_multicart:

write_byte(0x4000, bank >> 4)
bank_start = 0x4000 if bank & 0x0f else 0x0000

else:
write_byte(0x4000, bank >> 5)
bank_start = 0x4000 if bank & 0x1f else 0x0000

for addr in range(bank_start, bank_start + 0x4000):
buf += read_byte(addr)

Listing 1: Python pseudo-code for MBC1 ROM dumping

Chapter 8

MBC2 mapper chip

MBC2 supports ROM sizes up to 2 Mbit (16 banks of 0x4000 bytes) and includes an internal 512x4 bit RAM
array, which is its unique feature. The information in this section is based on my MBC2 research, Tauwasser’s
research notes [7], and Pan Docs [3].



MBC1 is strictly more powerful than MBC2 because it supports more ROM and RAM. This raises a
very important question: why does MBC2 exist? It’s possible that Nintendo tried to integrate a small
amount of RAM on the MBC chip for cost reasons, but it seems that this didn’t work out very well since
all later MBCs revert this design decision and use separate RAM chips.

8.1 MBC2 registers



These registers don’t have any standard names and are usually referred to using one of their addresses
or purposes instead. This document uses names to clarify which register is meant when referring to
one.

The MBC2 chip includes two registers that affect the behaviour of the chip. The registers are mapped
a bit differently compared to other MBCs. Both registers are accessible within 0x0000-0x3FFF, and within
that range, the register is chosen based on the A8 address signal. In practice, this means that the registers
are mapped to memory in an alternating pattern. For example, 0x0000, 0x2000 and 0x3000 are RAMG, and
0x0100, 0x2100 and 0x3100 are ROMB. Both registers are smaller than 8 bits, and unused bits are simply
ignored during writes. The registers are not directly readable.

Register 8.1: 0x0000-0x3FFF when A8=0b0 - RAMG - MBC2 RAM gate register

U U U U W-0 W-0 W-0 W-0
RAMG<3:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAMG<3:0>: RAM gate register
0b1010= enable access to chip RAM
All other values disable access to chip RAM

The 4-bit MBC2 RAMG register works in a similar manner as MBC1 RAMG, so the upper bits don’t matter
and only the bit pattern 0b1010 enables access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xA000-0xBFFF are ignored, and reads
return undefined values. Pan Docs recommends disabling RAM when it’s not being accessed to protect the
contents [3].

29

CHAPTER 8. MBC2 MAPPER CHIP 30



We don’t know the physical implementation of RAMG, but it’s certainly possible that the 0b1010 bit
pattern check is done at write time and the register actually consists of just a single bit.

Register 8.2: 0x0000-0x3FFF when A8=0b1 - ROMB - MBC2 ROM bank register

U U U U W-0 W-0 W-0 W-1
ROMB<3:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-4 Unimplemented: Ignored during writes

bit 3-0 ROMB<3:0>: ROM bank register
Never contains the value 0b0000.
If 0b0000 is written, the resulting value will be 0b0001 instead.

The 4-bit ROMB register is used as the ROM bank number when the CPU accesses the 0x4000-0x7FFF
memory area.

Like MBC1 BANK1, the MBC2 ROMB register doesn’t allow zero (bit pattern 0b0000) in the register, so
any attempt to write 0b0000 writes 0b0001 instead.

8.2 ROM in the 0x0000-0x7FFF area

In MBC2 cartridges, the A0-A13 cartridge bus signals are connected directly to the corresponding ROM pins,
and the remaining ROM pins (A14-A17) are controlled by the MBC2. These remaining pins form the ROM
bank number.

When the 0x0000-0x3FFF address range is accessed, the effective bank number is always 0.
When the 0x4000-0x7FFF address range is accessed, the effective bank number is the current ROMB reg-

ister value.

Table 8.1: Mapping of physical ROM address bits in MBC2 carts

ROM address bits
Accessed address Bank number Address within bank

17-14 13-0
0x0000-0x3FFF 0b0000 A<13:0>
0x4000-0x7FFF ROMB A<13:0>

8.3 RAM in the 0xA000-0xBFFF area

All MBC2 carts include SRAM, because it is located directly inside the MBC2 chip. These cartridges never use
a separate RAM chip, but battery backup circuitry and a battery are optional. If RAM is not enabled with the
RAMG register, all reads return undefined values and writes have no effect.

MBC2 RAM is only 4-bit RAM, so the upper 4 bits of data do not physically exist in the chip. When writing
to it, the upper 4 bits are ignored. When reading from it, the upper 4 data signals are not driven by the chip,
so their content is undefined and should not be relied on.

MBC2 RAM consists of 512 addresses, so only A0-A8 matter when accessing the RAM region. There is no
banking, and the 0xA000-0xBFFF area is larger than the RAM, so the addresses wrap around. For example,
accessing 0xA000 is the same as accessing 0xA200, so it is possible to write to the former address and later read
the written data using the latter address.

Table 8.2: Mapping of physical RAM address bits in MBC2 carts

RAM address bits
Accessed address

8-0
0xA000-0xBFFF A<8:0>

CHAPTER 8. MBC2 MAPPER CHIP 31

8.4 Dumping MBC2 carts

MBC2 cartridges are very simple to dump. The total number of banks is read from the header, and each bank
is read one byte at a time. ROMB zero adjustment must be considered in the ROM dumping code, but this
only means that bank 0 should be read from 0x0000-0x3FFF and not from 0x4000-0x7FFF like other banks.

for bank in range(0, num_banks):
write_byte(0x2100, bank)
bank_start = 0x4000 if bank > 0 else 0x0000
for addr in range(bank_start, bank_start + 0x4000):

buf += read_byte(addr)

Listing 2: Python pseudo-code for MBC2 ROM dumping

Chapter 9

MBC3 mapper chip

MBC3 supports ROM sizes up to 32 Mbit (256 banks of 0x4000 bytes), and RAM sizes up to 256 Kbit (4 banks
of 0x2000 bytes). It also includes a real-time clock (RTC) that can be clocked with a quartz crystal on the
cartridge even when the Game Boy is powered down. The information in this section is based on my MBC3
research, and Pan Docs [3].



The largest known official game release with MBC3 has only a 16 Mbit ROM chip. This is why most
documentation, including Pan Docs [3], claims that MBC3 only supports up to 16 Mbit. However, this
is technically incorrect since the chip can handle a 32 Mbit ROM.

32

Chapter 10

MBC30 mapper chip

MBC30 is a variant of MBC3 used by Japanese Pokemon Crystal to support a larger RAM chip. Featurewise
MBC30 is almost identical to MBC3, but supports RAM sizes up to 512 Kbit (8 banks of 0x2000 bytes). Infor-
mation in this section is based on my MBC30 research.



The circuit board of Japanese Pokemon Crystal includes a 1 Mbit RAM chip, but MBC30 is limited to
512 Kbit RAM. One of the RAM address pins is unused, so half of the RAM is wasted and is inaccessible
without modifications. So, the game only uses 512 Kbit and there is a mismatch between accessible and
the physical amounts of RAM.

33

Chapter 11

MBC5 mapper chip

The majority of games for Game Boy Color use the MBC5 chip. MBC5 supports ROM sizes up to 64 Mbit
(512 banks of 0x4000 bytes), and RAM sizes up to 1 Mbit (16 banks of 0x2000 bytes). The information in this
section is based on my MBC5 research, and The Cycle-Accurate Game Boy Docs [1].

11.1 MBC5 registers

Register 11.1: 0x0000-0x1FFF - RAMG - MBC5 RAM gate register

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
RAMG<7:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-0 RAMG<7:0>: RAM gate register

0b00001010= enable access to cartridge RAM
All other values disable access to cartridge RAM

The 8-bit MBC5 RAMG register works in a similar manner as MBC1 RAMG, but it is a full 8-bit register so
upper bits matter when writing to it. Only 0b00001010 enables RAM access, and all other values (including
0b10001010 for example) disable access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xA000-0xBFFF are ignored, and reads
return undefined values. Pan Docs recommends disabling RAM when it’s not being accessed to protect the
contents [3].



We don’t know the physical implementation of RAMG, but it’s certainly possible that the 0b00001010
bit pattern check is done at write time and the register actually consists of just a single bit.

Register 11.2: 0x2000-0x2FFF - ROMB0 - MBC5 lower ROM bank register

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-1
ROMB0<7:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-0 ROMB0<7:0>: Lower ROM bank register

The 8-bit ROMB0 register is used as the lower 8 bits of the ROM bank number when the CPU accesses the
0x4000-0x7FFF memory area.

34

CHAPTER 11. MBC5 MAPPER CHIP 35

Register 11.3: 0x3000-0x3FFF - ROMB1 - MBC5 upper ROM bank register

U U U U U U U W-0
ROMB1

bit 7 6 5 4 3 2 1 bit 0
bit 7-1 Unimplemented: Ignored during writes

bit 0 ROMB1: Upper ROM bank register

The 1-bit ROMB1 register is used as the most significant bit (bit 9) of the ROM bank number when the CPU
accesses the 0x4000-0x7FFF memory area.

Register 11.4: 0x4000-0x5FFF - RAMB - MBC5 RAM bank register

U U U U W-0 W-0 W-0 W-0
RAMB<3:0>

bit 7 6 5 4 3 2 1 bit 0
bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAMB<3:0>: RAM bank register

The 4-bit RAMB register is used as the RAM bank number when the CPU accesses the 0xA000-0xBFFF
memory area.

Chapter 12

MBC6 mapper chip

MBC6 supports ROM sizes up to 16 Mbit (256 banks of 0x2000 bytes), and RAM sizes up to 4 Mbit (128 banks
of 0x1000 bytes). The information in this section is based on my MBC6 research.

36

Chapter 13

MBC7

TODO.

37

Chapter 14

HuC-1 mapper chip

HuC-1 supports ROM sizes up to 8 Mbit (64 banks of 0x4000 bytes), and RAM sizes up to 256 Kbit (4 banks of
0x2000 bytes). It also includes a sensor and a LED for infrared communication. The information in this section
is based on my HuC-1 research.

38

Chapter 15

HuC-3 mapper chip

HuC-3 supports ROM sizes up to 16 Mbit (128 banks of 0x4000 bytes), and RAM sizes up to 1 Mbit (16 banks
of 0x2000 bytes). Like HuC-1, it includes support for infrared communication, but also includes a real-time-
clock (RTC) and output pins used to control a piezoelectric buzzer. The information in this section is based on
my HuC-3 research.

39

Chapter 16

MMM01

TODO.

40

Chapter 17

TAMA5

TODO.

41

Appendices

42

Appendix A

Instruction set tables

These tables include all the opcodes in the Sharp SM83 instruction set. The style and layout of these tables was
inspired by the opcode tables available at pastraiser.com [4].

43

A
PPEN

D
IX

A
.

IN
STR

U
C

TIO
N

SET
TA

BLES
44

8-bit loads and stores 16-bit loads and stores 8-bit arithmetic 16-bit arithmetic Rotates, shifts, and bit operations Control flow Miscellaneous Undefined

Table A.1: Sharp SM83 instruction set
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x NOP LD BC,nn LD (BC),A INC BC INC B DEC B LD B,n RLCA LD (nn),SP ADD HL,BC LD A,(BC) DEC BC INC C DEC C LD C,n RRCA
1x STOP LD DE,nn LD (DE),A INC DE INC D DEC D LD D,n RLA JR r ADD HL,DE LD A,(DE) DEC DE INC E DEC E LD E,n RRA
2x JR NZ,r LD HL,nn LD (HL+),A INC HL INC H DEC H LD H,n DAA JR Z,r ADD HL,HL LD A,(HL+) DEC HL INC L DEC L LD L,n CPL
3x JR NC,r LD SP,nn LD (HL-),A INC SP INC (HL) DEC (HL) LD (HL),n SCF JR C,r ADD HL,SP LD A,(HL-) DEC SP INC A DEC A LD A,n CCF
4x LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B,(HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,H LD C,L LD C,(HL) LD C,A
5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D,(HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,H LD E,L LD E,(HL) LD E,A
6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H,(HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,H LD L,L LD L,(HL) LD L,A
7x LD (HL),B LD (HL),C LD (HL),D LD (HL),E LD (HL),H LD (HL),L HALT LD (HL),A LD A,B LD A,C LD A,D LD A,E LD A,H LD A,L LD A,(HL) LD A,A
8x ADD B ADD C ADD D ADD E ADD H ADD L ADD (HL) ADD A ADC B ADC C ADC D ADC E ADC H ADC L ADC (HL) ADC A
9x SUB B SUB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC B SBC C SBC D SBC E SBC H SBC L SBC (HL) SBC A
Ax AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XOR C XOR D XOR E XOR H XOR L XOR (HL) XOR A
Bx OR B OR C OR D OR E OR H OR L OR (HL) OR A CP B CP C CP D CP E CP H CP L CP (HL) CP A
Cx RET NZ POP BC JP NZ,nn JP nn CALL NZ,nn PUSH BC ADD n RST 0x00 RET Z RET JP Z,nn CB op CALL Z,nn CALL nn ADC n RST 0x08
Dx RET NC POP DE JP NC,nn CALL NC,nn PUSH DE SUB n RST 0x10 RET C RETI JP C,nn CALL C,nn SBC n RST 0x18
Ex LDH (n),A POP HL LD (C),A PUSH HL AND n RST 0x20 ADD SP,e JP HL LD (nn),A XOR n RST 0x28
Fx LDH A,(n) POP AF LD A,(C) DI PUSH AF OR n RST 0x30 LD HL,SP+e LD SP,HL LD A,(nn) EI CP n RST 0x38

n unsigned 8-bit immediate data

nn unsigned 16-bit immediate data

e signed 8-bit immediate data

r signed 8-bit immediate data, relative to PC

A
PPEN

D
IX

A
.

IN
STR

U
C

TIO
N

SET
TA

BLES
45

Table A.2: Sharp SM83 CB-prefixed instructions

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
0x RLC B RLC C RLC D RLC E RLC H RLC L RLC (HL) RLC A RRC B RRC C RRC D RRC E RRC H RRC L RRC (HL) RRC A
1x RL B RL C RL D RL E RL H RL L RL (HL) RL A RR B RR C RR D RR E RR H RR L RR (HL) RR A
2x SLA B SLA C SLA D SLA E SLA H SLA L SLA (HL) SLA A SRA B SRA C SRA D SRA E SRA H SRA L SRA (HL) SRA A
3x SWAP B SWAP C SWAP D SWAP E SWAP H SWAP L SWAP (HL) SWAP A SRL B SRL C SRL D SRL E SRL H SRL L SRL (HL) SRL A
4x BIT 0,B BIT 0,C BIT 0,D BIT 0,E BIT 0,H BIT 0,L BIT 0,(HL) BIT 0,A BIT 1,B BIT 1,C BIT 1,D BIT 1,E BIT 1,H BIT 1,L BIT 1,(HL) BIT 1,A
5x BIT 2,B BIT 2,C BIT 2,D BIT 2,E BIT 2,H BIT 2,L BIT 2,(HL) BIT 2,A BIT 3,B BIT 3,C BIT 3,D BIT 3,E BIT 3,H BIT 3,L BIT 3,(HL) BIT 3,A
6x BIT 4,B BIT 4,C BIT 4,D BIT 4,E BIT 4,H BIT 4,L BIT 4,(HL) BIT 4,A BIT 5,B BIT 5,C BIT 5,D BIT 5,E BIT 5,H BIT 5,L BIT 5,(HL) BIT 5,A
7x BIT 6,B BIT 6,C BIT 6,D BIT 6,E BIT 6,H BIT 6,L BIT 6,(HL) BIT 6,A BIT 7,B BIT 7,C BIT 7,D BIT 7,E BIT 7,H BIT 7,L BIT 7,(HL) BIT 7,A
8x RES 0,B RES 0,C RES 0,D RES 0,E RES 0,H RES 0,L RES 0,(HL) RES 0,A RES 1,B RES 1,C RES 1,D RES 1,E RES 1,H RES 1,L RES 1,(HL) RES 1,A
9x RES 2,B RES 2,C RES 2,D RES 2,E RES 2,H RES 2,L RES 2,(HL) RES 2,A RES 3,B RES 3,C RES 3,D RES 3,E RES 3,H RES 3,L RES 3,(HL) RES 3,A
Ax RES 4,B RES 4,C RES 4,D RES 4,E RES 4,H RES 4,L RES 4,(HL) RES 4,A RES 5,B RES 5,C RES 5,D RES 5,E RES 5,H RES 5,L RES 5,(HL) RES 5,A
Bx RES 6,B RES 6,C RES 6,D RES 6,E RES 6,H RES 6,L RES 6,(HL) RES 6,A RES 7,B RES 7,C RES 7,D RES 7,E RES 7,H RES 7,L RES 7,(HL) RES 7,A
Cx SET 0,B SET 0,C SET 0,D SET 0,E SET 0,H SET 0,L SET 0,(HL) SET 0,A SET 1,B SET 1,C SET 1,D SET 1,E SET 1,H SET 1,L SET 1,(HL) SET 1,A
Dx SET 2,B SET 2,C SET 2,D SET 2,E SET 2,H SET 2,L SET 2,(HL) SET 2,A SET 3,B SET 3,C SET 3,D SET 3,E SET 3,H SET 3,L SET 3,(HL) SET 3,A
Ex SET 4,B SET 4,C SET 4,D SET 4,E SET 4,H SET 4,L SET 4,(HL) SET 4,A SET 5,B SET 5,C SET 5,D SET 5,E SET 5,H SET 5,L SET 5,(HL) SET 5,A
Fx SET 6,B SET 6,C SET 6,D SET 6,E SET 6,H SET 6,L SET 6,(HL) SET 6,A SET 7,B SET 7,C SET 7,D SET 7,E SET 7,H SET 7,L SET 7,(HL) SET 7,A

Appendix B

Memory map tables

46

A
PPEN

D
IX

B.
M

EM
O

R
Y

M
A

P
TA

BLES
47

Table B.1: 0xFFxx registers: 0xFF00-0xFF1F
bit 7 6 5 4 3 2 1 bit 0

0xFF00 P1 P15 buttons P14 d-pad P13  start P12  select P11  B P10  A
0xFF01 SB SB<7:0>
0xFF02 SC SIO_EN SIO_FAST SIO_CLK
0xFF03
0xFF04 DIV DIVH<7:0>
0xFF05 TIMA TIMA<7:0>
0xFF06 TMA TMA<7:0>
0xFF07 TAC TAC_EN TAC_CLK<1:0>
0xFF08
0xFF09
0xFF0A
0xFF0B
0xFF0C
0xFF0D
0xFF0E
0xFF0F IF IF_JOYPAD IF_SERIAL IF_TIMER IF_STAT IF_VBLANK
0xFF10 NR10
0xFF11 NR11
0xFF12 NR12
0xFF13 NR13
0xFF14 NR14
0xFF15
0xFF16 NR21
0xFF17 NR22
0xFF18 NR23
0xFF19 NR24
0xFF1A NR30
0xFF1B NR31
0xFF1C NR32
0xFF1D NR33
0xFF1E NR34
0xFF1F

bit 7 6 5 4 3 2 1 bit 0

A
PPEN

D
IX

B.
M

EM
O

R
Y

M
A

P
TA

BLES
48

Table B.2: 0xFFxx registers: 0xFF20-0xFF3F
bit 7 6 5 4 3 2 1 bit 0

0xFF20 NR41
0xFF21 NR42
0xFF22 NR43
0xFF23 NR44
0xFF24 NR50
0xFF25 NR51
0xFF26 NR52
0xFF27
0xFF28
0xFF29
0xFF2A
0xFF2B
0xFF2C
0xFF2D
0xFF2E
0xFF2F
0xFF30 WAV00
0xFF31 WAV01
0xFF32 WAV02
0xFF33 WAV03
0xFF34 WAV04
0xFF35 WAV05
0xFF36 WAV06
0xFF37 WAV07
0xFF38 WAV08
0xFF39 WAV09
0xFF3A WAV10
0xFF3B WAV11
0xFF3C WAV12
0xFF3D WAV13
0xFF3E WAV14
0xFF3F WAV15

bit 7 6 5 4 3 2 1 bit 0

A
PPEN

D
IX

B.
M

EM
O

R
Y

M
A

P
TA

BLES
49

Table B.3: 0xFFxx registers: 0xFF40-0xFF5F
bit 7 6 5 4 3 2 1 bit 0

0xFF40 LCDC LCD_EN WIN_MAP WIN_EN TILE_SEL BG_MAP OBJ_SIZE OBJ_EN BG_EN
0xFF41 STAT INTR_LYC INTR_M2 INTR_M1 INTR_M0 LYC_STAT LCD_MODE<1:0>
0xFF42 SCY
0xFF43 SCX
0xFF44 LY
0xFF45 LYC
0xFF46 DMA DMA<7:0>
0xFF47 BGP
0xFF48 OBP0
0xFF49 OBP1
0xFF4A WY
0xFF4B WX
0xFF4C ????
0xFF4D KEY1 KEY1_FAST KEY1_EN
0xFF4E
0xFF4F VBK VBK<1:0>
0xFF50 BOOT BOOT_OFF
0xFF51 HDMA1
0xFF52 HDMA2
0xFF53 HDMA3
0xFF54 HDMA4
0xFF55 HDMA5
0xFF56 RP
0xFF57
0xFF58
0xFF59
0xFF5A
0xFF5B
0xFF5C
0xFF5D
0xFF5E
0xFF5F

bit 7 6 5 4 3 2 1 bit 0

A
PPEN

D
IX

B.
M

EM
O

R
Y

M
A

P
TA

BLES
50

Table B.4: 0xFFxx registers: 0xFF60-0xFF7F, 0xFFFF
bit 7 6 5 4 3 2 1 bit 0

0xFF60
0xFF61
0xFF62
0xFF63
0xFF64
0xFF65
0xFF66
0xFF67
0xFF68 BCPS
0xFF69 BCPD
0xFF6A OCPS
0xFF6B OCPD
0xFF6C ????
0xFF6D
0xFF6E
0xFF6F
0xFF70 SVBK SVBK<1:0>
0xFF71
0xFF72 ????
0xFF73 ????
0xFF74 ????
0xFF75 ????
0xFF76 PCM12 PCM12_CH2 PCM12_CH1
0xFF77 PCM34 PCM34_CH4 PCM34_CH3
0xFF78
0xFF79
0xFF7A
0xFF7B
0xFF7C
0xFF7D
0xFF7E
0xFF7F
0xFFFF IE IE_UNUSED<2:0> IE_JOYPAD IE_SERIAL IE_TIMER IE_STAT IE_VBLANK

bit 7 6 5 4 3 2 1 bit 0

Appendix C

Game Boy external bus

C.1 Bus timings

CLK 4MHz
PHI 1MHz

A0-A14
RD
WR
A15
CS

Data

Figure C.1: External bus idle machine cycle

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data data

(a) 0x0000-0x7FFF1

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data data

(b) 0xA000-0xFDFF

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data

(c) 0xFE00-0xFFFF

Figure C.2: External bus CPU read machine cycles

51

APPENDIX C. GAME BOY EXTERNAL BUS 52

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data data

(a) 0x0000-0x7FFF2

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data data

(b) 0xA000-0xFDFF

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data

(c) 0xFE00-0xFFFF

Figure C.3: External bus timings for CPU write cycles

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data data

(a) 0x0000-0x7FFF3

CLK 4MHz
PHI 1MHz

A0-A14 addr

RD
WR
A15
CS

Data data

(b) 0xA000-0xFFFF

Figure C.4: External bus timings for OAM DMA read cycles

1 Does not apply to 0x0000-0x00FF reads while the boot ROM is enabled. Boot ROM accesses do not affect the external bus, so it is
in the idle state.

2 Does not apply to 0x0000-0x00FF writes while the boot ROM is enabled. Boot ROM accesses do not affect the external bus, so it is
in the idle state.

3 Does not apply to 0x0000-0x00FF accesses while the boot ROM is enabled. Boot ROM accesses do not affect the external bus, so it
is in the idle state.

Appendix D

Chip pinouts

D.1 CPU chips

Figure D.1: DMG/SGB CPU (Sharp QFP080-P-1420)

Figure D.2: MGB/SGB2 CPU (Sharp QFP080-P-1420)

53

APPENDIX D. CHIP PINOUTS 54

D.2 Cartridge chips

Figure D.3: MBC1 (Sharp SOP24-P-450) [6]

Figure D.4: MBC2 (Sharp SOP28-P-450) [7]

Figure D.5: MBC5 (Sharp QFP32-P-0707)

Bibliography

[1] Antonio Niño Díaz (AntonioND). The Cycle-Accurate Game Boy Docs.
https://github.com/AntonioND/giibiiadvance/tree/master/docs.

[2] gekkio. Dumping the Super Game Boy 2 boot ROM.
https://gekkio.fi/blog/2015/dumping-the-super-game-boy-2-boot-rom/.

[3] Pan of ATX, Marat Fayzullin, Felber Pascal, Robson Paul, and Korth Martin. Pan Docs - Everything You
Always Wanted To Know About GAMEBOY.
http://bgb.bircd.org/pandocs.htm.

[4] Gameboy CPU (LR35902) instruction set.
http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html.

[5] Costis Sideris. The quest for dumping GameBoy Boot ROMs!
http://www.its.caltech.edu/~costis/sgb_hack/.

[6] Tauwasser. MBC1 - Tauwasser’s Wiki.
https://wiki.tauwasser.eu/view/MBC1.

[7] Tauwasser. MBC2 - Tauwasser’s Wiki.
https://wiki.tauwasser.eu/view/MBC2.

55

https://github.com/AntonioND/giibiiadvance/tree/master/docs
https://gekkio.fi/blog/2015/dumping-the-super-game-boy-2-boot-rom/
http://bgb.bircd.org/pandocs.htm
http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html
http://www.its.caltech.edu/~costis/sgb_hack/
https://wiki.tauwasser.eu/view/MBC1
https://wiki.tauwasser.eu/view/MBC2

	Preface
	How to read this document
	0.1 Formatting of numbers
	0.2 Register definitions

	Contents
	I Sharp SM83 CPU core
	1 Sharp SM83 instruction set
	1.1 8-bit load and store instructions
	1.2 16-bit load and store instructions
	1.3 8-bit arithmetic instructions
	1.4 16-bit arithmetic instructions
	1.5 Rotate, shift, and bit operation instructions
	1.6 Control flow instructions
	JP nn
	JP HL
	JP cc, nn
	JR r
	JR cc, r
	CALL nn
	CALL cc, nn
	RET
	RET cc
	RETI
	RST n

	1.7 Miscellaneous instructions
	HALT
	STOP
	DI
	EI
	CCF
	SCF
	NOP
	DAA
	CPL

	II Game Boy SoC peripherals and features
	2 Boot ROM
	2.1 Boot ROM types
	DMG boot ROM
	MGB boot ROM
	SGB boot ROM
	SGB2 boot ROM
	Early DMG boot ROM

	3 DMA (Direct Memory Access)
	3.1 Object Attribute Memory (OAM) DMA
	OAM DMA address decoding
	OAM DMA transfer timing
	OAM DMA bus conflicts

	4 PPU (Picture Processing Unit)
	5 Port P1 (Joypad, Super Game Boy communication)
	6 Serial communication

	III Game Boy game cartridges
	7 MBC1 mapper chip
	7.1 MBC1 registers
	7.2 ROM in the 0x0000-0x7FFF area
	ROM banking example 1
	ROM banking example 2

	7.3 RAM in the 0xA000-0xBFFF area
	RAM banking example 1

	7.4 MBC1 multicarts ("MBC1M")
	ROM banking example 1
	Detecting multicarts

	7.5 Dumping MBC1 carts

	8 MBC2 mapper chip
	8.1 MBC2 registers
	8.2 ROM in the 0x0000-0x7FFF area
	8.3 RAM in the 0xA000-0xBFFF area
	8.4 Dumping MBC2 carts

	9 MBC3 mapper chip
	10 MBC30 mapper chip
	11 MBC5 mapper chip
	11.1 MBC5 registers

	12 MBC6 mapper chip
	13 MBC7
	14 HuC-1 mapper chip
	15 HuC-3 mapper chip
	16 MMM01
	17 TAMA5

	Appendices
	A Instruction set tables
	B Memory map tables
	C Game Boy external bus
	C.1 Bus timings

	D Chip pinouts
	D.1 CPU chips
	D.2 Cartridge chips

	Bibliography

