.

| PRELIMINARY TECHNICAL MANUAL

“b.- 1
i

L)

- 1280

- UM ELEKTRONIK-BAUTEILE

~ EschenstraBe 2 - Postfach 1252 - 8028 Taufkirchen bei Miinchen

Telefon (089) 61208-0 - Telex 522106 - Telefax (089) 612 08-2&;

" Table of Contents

| Cﬁépter 1. 2280 Architectural Overview

1.1 Introduction . . e e i e e e e e e Ce e C 11
1.2 MPU Architectural Features . « ¢ o o o e o o e 1=2
1.2.1 System and User Modes . v . . . o o o o e 1-2
1.2.2 Address Spaces .« . o ¢ o o o & « o e e . 1-2-
1.2-3 Data Types e & ¢ ® @& + e o o o0 e & e o o 1"’2
102.& Addl‘&SSlng MOdBS e ® e & o o . ‘o *] 1""3
1.2.5 [nStI‘UCt].Oﬂ Set ¢ ‘¢ & & o o o o * o o 0] 1-3 .-
1.2.6 Exception Conditions « o o e . 1=3
1.2.7 Memory Management « « « « « o & « o o o . 1-3
1.2.8 Cache Memory . c o e e e . e o . . 1-4
* 1.209 Ref[’eSh e e ¢ o -. o-o. . . L Y o. * o s o 'Y 1"’&
102.10 Ol'l-Chlp Pel‘ipherals e« & o o o. L] e & o' * . 1""& .
1.2.11 Multiprocessor Mode c o e e . 14
1.2.12 Extendeg Instruction Facility . c o o o . 1-4
_1.3 Benefits of the Architecture e o o o . 1-5 |
1.4.1 High.Ihroughput . . ; . . ;‘:'. | e v s . 1-5
1.4.2 Integration of System Functions « o o o . 1=5
1.4.3 Operating System Support . . . c o o e W 1-5
10&04 COde Def'ISlty s @ . @ . . @ . o e * @ . * 1"'5 .
1.4.5 Compiler Efficiency « « o o + & c s e o . 1-5
| 1.& Summary. e ¢ @ s o o ® ® o—.t oo oo oo o:o oo .0-0] o‘-o » ‘. ® o'- 1"'6 -"Hh-.-”'
';‘) . f - .
. Chapter 2. Address Spaces 'j
201 IntrOdUCtiOﬂ 3 - » » » o []] [] » » - [] [[. 2-1
2.2 CPU Register fFile . . . ¢« o s o o o c o o o . 2-1
2.3 CPU Control Registers . PR e o o e . 2-2
2.4 Memory Address Spaces . e o o s s e o o o o .« 2-3
2.5 1/0 Address Space . . . ¢ o o o o s o o e o o o . 2=4
Chapter 3. CPU Control Registers L
3.1 Intl‘OdUCt.lOﬂ . .‘o . | S [] L T s * » * e ® s @® . @ . .' 3"'1
3.2 System Configuration Registers . . « . « « ¢ « ¢ .+ . .« 3=1
3.2.1 Bus Timing‘and Initialization Register C . 31
3.2.2 Bus Timing and Control Register 3-2
30203 LDCB]. Add[‘eSS RBngtE[‘])] . .) []] []) . 3“"3
3.2.4 Cache Control Register . « ¢ &« ¢ o o« & o o & . 3-3

Table of Contents (Continued)

3.3 System Status Registers . « « « &« o & & & .:. e e s s o s o e o s e 34

3.4

3.3.17 Master Status Register ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o
3.3.2 Intertupt Status Register . « . ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ & o o o 3=4.
3.3.3 Interrupt/Trap Vector Table Pointer . . . « ¢« ¢« ¢ &+ ¢ o o & 3-5
3.3.& 1/0 Page ReQISter e & & & & & & 5 & & * & S 2 & *» *» » 1 2 3""5
3.3.5 Trap Control RegiSter « « ¢« o « o« ¢ o o o o o ¢« o o o o o o 3=5
3.3.6 System Stack Limit Register . . « . . + ¢ ¢« ¢ ¢ ¢ o ¢« ¢ o« + 3-6
Chapter 4. Addressing Modes and Data Types
) a.1 IntrOdUCt ion - - » L & L L] » [- [] L] [2 L L] L L L] L] L] [» [] . L L 4 a-1)
4.2 Addressing Mode DesScTipltions . o ¢ o 4 o ¢ o ¢ o o o o o o o o o o 4-1
- 4.2.1 Rengter (R’ RX) " » '; e @ o e o o e & & ® & & ° e e o o ll»-'l
h: 402.2 Imedlate (IM) & & & & e & P 8 8 ® & ¢ & & 2 » 6 o ¢ » =& o a-1
4.2.3 Indirect Register (IR) . o ¢ ¢ ¢ & ¢ ¢ o 0 o 0o o v o o o o 42
4. 2. 4 Direct Address (DA) []] [] * L J] L .. ® L] L] ® [] L ® *] [] 0‘ | a-z
4.2.5 Indexed (X) ® & 8 & & e s s " ° e e+ o ® & & & & 9 e & s o 4"'3
4.2.6 ShOI.‘t Index (SX) ® 5 ® e & B ¢ & & ¢ & » & & ° > =8 2 o 0 4—3
a0207 Relatlve Addl‘BSS (RA) & & 5 8 & & & o ; s & o & e & o ° ° ‘l-ll
4.2.8 Stack Pointer Relative (SR) . . « v o ¢« ¢ o v o ¢ ¢ o o o & 45
a. 2. 9 Base Index (BX) : L L 2] L 4 » » o ® L |] .. L » » [L J L] & L ® L a-s ' ‘
4. 3 Data Iypes [] [J |]] -] ® L] L L - ® L » [] ® L L] |] L . L J ® [] . L L 4 [] [] a-s
Chapter 5. Instruction Set -
5.1 Int rOdUCt ion [] [] L L . L J L L 4 . L [4 L] L [® ®] » L J »]] L] [] L] |] L] 5-1
5.2 Processor Flags [] L J] L - [3 | 3 ® L & L] L] L 4 L L] L L J L] » L [J L L 5-1
502.1 Carry Flag (C) L] L] L L a L] ® ® [] L] ; L] L] L] L] L L - L] L] L] 5-1
50 202 Add/SUth‘GCt Flag (N) ® e @ o P & 8 & 2 S 4 & o » & e o o 5"1
5.2.3 Parity/Overflow Flag (P/V) ¢« ¢ ¢ ¢ ¢« ¢ o o ¢ o o o o o o o 5=2
502-“ Half-cart‘y Flag (H) e & o & & & 0 & 8 ¢ 5 B s 2 8 o » o 5""2
'502.5 ZBPO Flag (Z) ¢ & & & & o o o+ & 9 0 s 2 e e s 0 s o o o 5-2
5.206 Slgn Flag (S) *® & & @& & & @ ® * & » & & e 5 & & > = > » 5"2
5.2.7 Condition Codes .« ¢« ¢ o o o o o ¢ o o 6 o o o o o o o o & 52
5.3 Instruction Execution and Exceptions . ¢« « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o 9=3
5.3.1 Instruction Execution and Inteftupts c o o o o s o o s o & 93
5.3.2 Instruction Execution and Traps .« « ¢ ¢« ¢ ¢ o o o o o o o« 2=3

5.4 Instruction Set Functional Groups « & .

5.4.1
5.4.2
5.4.3
5.4.4

5.4.5
5.4.6

5.4.7
5.4.8
5.4.9

8-bit Load Group ¢ ¢ ¢ o o o &
16-bit Load and Exchange Group .
Block Transfer and Search Group
8-bit Arithmetic and Logic Group
16-bit Arithmetic Group

Bit Manipulation, Rotate and Shift

Program Control Group
Input /Output Instruction Group .
CPU Control Group

L 5.4.10 Extended Instruction Group . . .

5.5 Notation and Binary Encoding
.. 2.6 Instruction Set

Chaptét 6. Interrupts and Traps

6.1
6.2

6.3

. ‘60“

6.5
6.6

N S 9~o§<h o

Introduction . ¢« ¢ ¢« ¢ ¢ ¢ ¢ o ¢ o o o o
Interrupts .« & ¢ ¢ ¢ o ¢ ¢ o o o o o o o
6.2.1 - Interrupt Mode 0 . . ¢« ¢« ¢« « « &
6.2.2 Interrupt Mode 1 . &+ ¢« ¢ ¢ &« ¢ &
6.2.3 Interrupt Mode 2 ¢« ¢ « &
6.2.4 interrupt Mode 3 . . ¢ ¢ ¢ o "
lraps ® & 0 o s & & 5 6 8 8 6 8 6 o o &
e 3.1 Extended Instruction Trap
3.2 Privileged Instruction Trap . . .
3.3 System Call Trap . ¢« ¢ ¢ ¢« ¢« & &
3.4 Access Violation Trap « ¢ ¢« ¢« ¢ o« &
.3.5 System Stack Overflow Warning Trap
e3.6 Division Exception Trap . « « .« &
.3.7 Single-Step Trap . ¢« ¢« ¢ ¢ & & o«
.3.8

Interrupt and Trap Handliﬁg . o

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Breakpoint-on-Halt Trap

Interrupt Acknowledge
Status Saving « « « ¢« ¢ ¢ ¢ o .
Loading New Program Status . .
Executing the Service Routine .
Returning from a Service Routine

Interrupt/Trap Vector Table . . « « « « &
The Fatal Condition « ¢« « ¢« ¢ ¢ ¢ o o o &

#

[] ® L ® L 2 L 2

5-4

54 -
55 .
5-5
5-6
5-6
5-7
5-7
5-9
5.9
5-10

5-10
5-13

6~1
6~1

6-2
6-2
6-2
6-3

6~

6-4
6-4
6-5
6-5
6-5
6-5 -
6-5
6-6

6-6
6-7
6-7
6-9
6-9

6-9
6-11

Table of Contents (Continued)

Chapter 7.

7.7

Memory Management Unit

Introduction . & ¢« ¢ o ¢ o o ¢ o s o o s o o
MMU Architecture . . « « o ¢ o o o o o o o &
Page Description Registers . . . « « ¢ o o &

7.4.1
74,2

Address Translation « ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o

/

] [] L 4 ® L 4
-

Address Translation without Program/Data Separat ion

Address Translation with Program/Data

MMU Control Registers . . ¢« ¢« ¢« ¢« ¢« ¢ & o &

Accessing Page Descriptor Registers

7.6.1
7.6.2
7.6.3

Instruction Aborts

L
]
e
.
[]

Descriptor Select Port . « « o « o &
Block Move Port . ¢« &« ¢ ¢ ¢ o o ¢ o o
Invalidation Port . ¢« ¢ . ¢ ¢ ¢ ¢ ¢ & &

Chapter 8. On-Chip Memory

8.1
8.2
8.3

Introduction

i

Separation

e @ 7""1 .
s ° 7"'2
s 7"3

007"3
..7‘&

007“6

[] | [] []]]] * L 4 L 4] ® L ® L J L * [] L [] L [] ® [] 7-7

o-ooo\oo.ooooooo,oooooooooo.08"‘1

C&Che mmory Mde ® ® [] ..] [[[L ® [| [] ® L [J . & [L J L [[] L [L 8-1

Fixed-Addrgss Mode

Chapter 9. On-Chip Peripherals

9.1
9.2
9.3

9.4

9.5

Int rOdUCt j-on ® L ® ® [] [] L [] L e ® L []

Clock Oscillator .« ¢« ¢« ¢ o ¢ ¢ o ¢ o o o ¢ o
Refresh Controller .« ¢ ¢ ¢ o o ¢ ¢ o o o o o

Counter/Timers .« o« o o o o @ s e s o s s o e

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

WA Channels L [] * L L I. ® & & ® L L ®

Counter/Timer Operating Modes
Gates and Triggers . « « ¢ o o o s

Terminal Count Condition « « « « o o

Counter/Timer Registers « « « o« ¢ « &
Linking Counter/Timers . . « « « o &
Counter/Timer Sequence of Events . .

lypes of DMA Operations

DMA Transfer Modes « ¢« ¢« ¢ o ¢ ¢ o &
ENd-0f-Process .« ¢ ¢« o« o ¢ ¢ o o o o

Priority Resolution . + ¢« ¢« ¢« & « & .

DMA Linking « ¢ o o o o« o ¢ o o o o o
DMA Registers . . « + . + o o o o o &
DMA Sequence of Events . . « + . . .
DMA Programming: Linked DMAs
DMA Programming: DMAs Linked to UART

L []] ® L L 4 ® ® L 4 ® ® [] L *] . ® L J o ® [] . & .. [] 8-4

s @ 9"1
¢ ® 9"1
e o 9-2

¢« o« 9-3 .
¢ o« 9-3

e « 9-4
.« o« 9-4
o o 9-7
e o 9-7

. .« 9-10
.« » 9-10
e o 9-11
« o 9-12
e o 9-12
« o 9=-13
e o 9-15
.« o 9-16
o« o 9-17

9.6 UART
 9.6.1 Transmitter Operation .
9.6.2 Receiver Operation . .
9.6.3 UART Registers . . . &
9.6.4

| 9.7 UART Bootstrapping Upt ion . [] [] ® [] L .. ® []] L . .:' .‘ ; [] .. L | [] L [] 9-21 |

UART Operation

L 2 . * L 2] L] ®]] ® [] L L L 9 L] L 2 L L ® [] L * [] L * [] * * *® 9-17 '

9-17

9-18

9-18

9-21 - -

Chapter 10. Multiprocessor Configurations - | lo
10.1 IntrOdUCt idn .. L L J . I. .“ » '.' L ../ ® ® L ® .‘ » L L ® L] L L] ® '.. -.. L . 10-1 . ' .
10.2 S1ave PrOCESSOTS « o o « o o o o o o 6 o o o o o o o o o o o o o o 10-1 " - .
10.3 Tightly Coupled Multiple Processors « . « « o « o o o o o o s o o 10-2
1003.1 The Local Addl“ess Reglstel‘ ¢« & » & ¢ @ * » *» ® e o .o- & o 10"2 . t .
10.3.2 Bus Request Protocols . . o ¢ ¢ ¢ 0 ¢ ¢ ¢ ¢ o o o o ¢ o o 10-2 ", '
10.3.3 Examples of the Use of the Global Bus . « « o o « &« & » « 10-4 -
10.4 Loosely Coupled Multiple CPUS « o o« o o o o o o o o s o o o o o o 10-6
10.5 Coprocessors and the Extended Processing Architecture 10-6
- 10.5.1 Extended Instructions : ¢ e e o s s s o o o o o o 10-6: : , ;
10.5.2 Extended Instruction Execution Sequence 10-7
mmter 11. Reset . - L J . [] L] . ® .- L] > »] L]] [] ® a o |] [] L » .. L [4 [] 11-1 . l l
" Chapter 12. 280 Bus External Interface lz
‘) 12.1 IntrOduction .. |] » L J L] ® [] .. L |] .‘ L] [] [a [] .. [] [] | L » L L L [12-1 |
; 1 2. 2 BUS Ope rat ions L J L ® L] |] ® L | ® ® L] L | J » L3 [3 | L] L 4 L] L J ® » L 12-2
12,3 Pin Descriptions « « + ¢ ¢ o o ¢ o o o o o o e e o o o o e o o 12-3
12.4 Bus Configuration and Timing « « &« ¢ 4 o ¢ o ¢ ¢ v o o o o o o o o 12-4
12.5 Transactions . o o o o o o o o ¢ o s o o o o o ¢ o o o s o s o o 12-&;
| 12.5.1 Memory TrénsaCtiohs _.'. e o o o o o o R 28
© 12.5.2 RETL Transactions « + ¢ o « o o o o o o o o o o o o o o o 12-9
‘\” 12.5.3 Halt and Refresh Transactlons e o e o s s o e s s e e s o 1229
12.5.4 1/0 Transactions « o« « ¢ o o o o o o o e s o o o o o o o 12-10
12.5.5 Interrupt Acknowledge Transactions . . « . « . . ¢ o . o o 12-12
. 12.5.6 DMA Fley TP&DS&CthﬂS . & e e o o o ® . 9 " o @ e @ ' 12"'13
12.6 Requests L L L] ® ‘. L L L L . L [] |] L @ L L . L] L] L ® . L] . L J [2 12"1“ -'
‘ 12.6.1 Interrdpt Requests .I .. L] ® |] L] L L J - » * L 4 »] L L 3 L J > [3 12""1[‘.
12.6.2 Local Bus RequestS o v v o o o o o ¢ ¢ o o o o o o o o o o 12215 -
.120603 GlObal BUS Requests L I . @ s » e & o] * e o) : ® e o 12-15

vii

Table of Contents (Continuéd)

Chapter 13. Z-8BUS External Interface

"13.1 INETOdUCEION « 4 v o « o o o o o o o o o o o o o o s s e o o o oo 131
13,2 Bus Operations o o« « o o o o o ¢ o o o o o o s o o 6 s o o ¢ o o o 13=2
13.3 Pin DeSCTIPtionNS o v o s o o o o o o o o o s o o o o o o o o o o « 13=3
13.4 Bus Configuration and TiMing o « « o o o o o o o o o o o s o o o « 13-4
13.5 Transactions « « o « ¢ o o o o o o o o o o o o s o s o o o o oo o 13-4

13.5.17 Memory Transactions . « v o o« o o o o o o o o o o o o o o 13=5
13.5.2 Halt and Refresh Transactions . . ¢« ¢« ¢ ¢ ¢ ¢ ¢ & o & o« « 13-10
13.5.3 I/0 TransactionS o o « « o o o o « o o o o o o o o o o s o 13-11
13.5.4 Interrupt Acknowledge Transactions . . . « ¢ ¢ ¢ ¢ ¢ o +» « 13-13

. 13.5.5 Extended Processing Unit (EPU) Transactions c e e e e . s 13214
13.5.6 DMA Flyby Transactions . « o o« ¢ o o o o o o ¢ 2 o o o o o 13=17

13.6 ReQUéStS [] |] ; ® L J L L L J L] .. » » » L] ® » ’. [[] ‘. » » » L J . ‘. .‘ L 13-18
15.6.1 Intérrupt Requests . « « « « & C e e e e e e s eae e . 13-19

13.602 Local BLIS RGQUGStS e o o @ o”o°o ® o @ o @ e o o s o s o o 13""19
13.6.3 Global Bus ReqUESES &« ¢ ¢ ¢ ¢ ¢ « « o o o o o o o o o o o« 13-19

13

w . Appendix A. 780/2280 Compatibility . . « . o v o v .o w e o a . o Adl

Appendix B. 7280 MPU Instruction Formats '. O - B
. Appendix C. Instructions in Alphabetic Order C-t
"~ Appendix D. Instructions in Numeric Order . . . ‘. e o o o o o s o o » D=1

. Appendix E. Instruction Timing e A

.. Appendix F. Compatible Peripheral Famili€S . . . « o o o o o o o o o o F=1

. - . * . * -
- . . - -
N . + . . . L . . L3 -
. - . . * + " L] * Y .)
s - . .
N ’ L - . ‘ " .
s . . . - . . *
- - » . - . . - - - * . .
. L] - * . - A +
»* - . . n . .
* .
. . . .
. + . " * - . - . . .
. . -) . . . ’
. . .t . + . . " . ¥ . . .
* - - “ . ' . .
- . . M * i . * * . " .
. . . K . . . - .
. . - . .
. - . . + . . *
. - * - . " * . B
. . . L ! . Lt ‘ ' ~
- - + - .
. . :)
. * - -
. . . .
. . - . . A .
[. . - .
. T L. M
N N) - h - * . ' . "
. . . K
L - -
k] . - * -
. f . . - .
. " - - * . . L3 L - * k] .
- * . - .o N
. * . - . ‘ N Ll .
* - " - - * - . ’
. : H ¥ M - -
-, [. ‘ N *, . . *
3 * * .
+ . - - - '.
* a . N R . T
P . . R T .
. " . .
- W
. . - - .
* . M . . . - > . *
1
. . T !
. - M M . -
N B . - ' + B
. . . : . . [
. . N
. . .] . .
. L] . - . - . . - N .
~ . .. i
’ - - . - . .
L . . - .
. .]
. . . . \
- * : - * + *
* 4
. ﬁ . * " A -
. . . -
- 1
r ., - - . .
[o A
. .
- *
o- B -
. .) i
. " . . -) ! +
. . . * . e 4
- - N oo e
+ L - * - » . i -

viii

. - N
PR .

LIST OF ILLUSTRATIONS AND TABLES

Paqe |
Number By

Figure , _ |
Number N . e :
1-1. Block Dlagram......;...1 1
2-1, Register File OrganizatioN.eesceececcscossceoscoscccsossocccscossssl=]
2-2. CPU Control RegisSterS.ccevrececsesccccsccscososccsccscsscsoscsssssslo=l
2-3. "~ Numbering of Bits Within a Byte.sseeeeceecocccocsccoccccsccnsel=3
2-4. Formats, Multiple-Byte Data Elements 1n Memoryeeeceeoeoecoesesss2=-4
3-1. Bus Timing and Initialization Register..ccceecececcccccceccesld=t
3-2. Bus Timing and Control Register...ccccceeccesccccscscccocscsosoelr=2
3-3. Local Address Register...cccececcececccecsccccccscscssoscnccsccncscer=3
3-4. Cache CoNtrol RegiSter.cscecescsscsccscsccssascscccsssssssossacssed=3
3-5. Master Status Register.cccceececececceccccccacsacssssascscscsscascelr=l
3-6. Interrupt Status Register..cceccececcecccsccscosccosccsscsccscsscscselr=D'
3-7. Interrupt/Trap Vector Table Pointer....ceeeeeeesceceascscaneaald=
3-8, I/0 Page REgiSLer .uceeeveceeecaseeesssseasoasescsossossssssassaad=d
3-9. Trap Control Register.icceceeecceccescscecssosscsacscscscccscsocnscsceld=5
3-10. System Stack Limit Regilster.ccecescecccccescsscssccscccsscscsscssci=b
5-1. Flag REQiStersesssesseeseeasooessssosesncasososassscscassesasnssS=T"
6-1. Mode 2 Interrupt ProcessinNgececccecescececesccsccsccsscsccssseebe3
6-2. Instruction Execution Sequence...............................6-6
6-3. Format of Saved Status on System Stack ‘ | o
Due to a Mode 3 Interrupt..cececececeecescoscscscsosssessoscsseb-8
7-1. Page Descriptor Registereeeeesecececsoceecscscescsoancacsoansoel=2"
7-2. Address Translation Without Program/Data Separation..cececsee/?7=3
7-3. Address Translation With Program/Data SeparationN.ccecscceccee/=8 "
-4, MMU Master Control Registereeceeececdececcsecscsccsscsscocscscseccel=5
8-1. Cache Organizatl1oN.cececcececocorescosscceccscscscscnsscsssosscesscsB=T
9-1. Refresh Rate Register..............;.........................9-1
9-2. MPU Counter/Timer Block DiBgraMe ceeeoceoseossooosensoossnenssedn?
9-3. Counter 0perat1on With Gate Only.oesecececcoccacoscesccsoccneesd=3
V-4, Counter Operation With Trigger ONly..eeeeceoscescocessocsneesd=ll
9-5. Counter Operation With Gate and Trigger.cececeeceececsececess¥d=-4
Y-6. Counter/Timer Configuration Reglster.........................9 5
v-7. Counter/Timer Command/Status RegiSter...eeeecececeesconsoesesdubh
9-8. Modes of Operation.ccccceccecccoscscsossecsoscssvssscssososssossccscesdm 11
9-9. DMA Master Control RegiSterleeeeececcccocoscesovoccosonsocsasesd=l3
9-10 Transaction Descriptor Register.cecceeeccecececscscsccocssccossd=13
9-11. Source & Destination Address Registers Format..ceccococecoese 9-15
9-12., General Format, Asynchronous TransSmisSSiON.ccesccesecsscsccscceesd=17
9-13. Byte Assembled by Receiver for 5-bit Character with Parity.,..9-18
9-14, UART Configuration Register.cccceeeccececcersccccsccssccassccecl-18
Y-15. Transmitter Control/Status RegisSter.eceeeecececceccccoscocecncsesd=19
Y-16. Receiver Control/Status Register..c.cececeeeocecccccscscnsasssad=20
10-1 Multiprocessor ConfigurationsS..cc.ececeeeonscoccecossssncsoessll=1
10-2. Local Address Register..cceesenseseceotescsncestcnvsconssonsseell=2
10-3 State Diagram for CPU Bus Request Protocol....cceeeeeeocccoasel0=3
10-4 Tightly Coupled Processors With Shared Global Memory.e.eee...10-4
10-5. Tightly Coupled Processors Without Global Memory..seeeeoeesesl0-5
10-6 2280 MPU as an I/0 ProCeSSOl .eectcseccscccccccscscoccocscsscssesll=H

1X

Table of Contents (Continu'ed)

10""70
10"80
12-1,

12-2.
12‘-3.

. 12-4.

12-5.
12-6.
12-7.
12-8.

. 12"‘90

12"100.
12-11.

12-12,
12"’130

12"‘1"’.

) 12"150

13-10

. -

13-2.
13-3.
13-4,
13-5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.
13-12.
13-13,
13-14.
13-15,
13-16.
13-17.
13-18.

EPU COﬁnection ln 2280 MPU System.......ﬁ........‘..‘....0000001.0-6.
CPU-EPU Instruction Execution SequeENnCe..cecoccsccsocsccccsccsell=?

280 Bus Configuration (Input OPT tied to GND) | '

a) Pin FUunctionNS.ceeesececossccascsacncacsscosascessscsosasssecl2=1
"b) Pin Assignments...eeeeecotroscecrscoccccccccosccsccnsnsescsl2=1
Memory Read Timing.eecceceeoccesasccessocsoososcnossascsosssccnacssl2=5
Memory Write Timing...ceceececcesccococcsscsosssscccconssconcssoel2=6
Memory Read Timing W/One External Wait State......c.cecseceesl2-6
Memory Write Timing W/0One External Wait State..eeeeeccecesee 12=7
Memory Read Timing W/0One Internal Wait State..ceccececcecccecesl2=7
RETI Read TIMiNgececeocsoeseosesossscsescacsossoscsosossocsoeasoescscesl2-B
HBlt TimMing.oeeeceooscoeeososcsosccscsassscsasscccscccscsscsssccssesel2=y
Memory Refresh Timing..coeeceeceeecesevecocscocacsscsscsccsssasssl2=10
I/0 Re8d TiMiNGeeeoeeooosooconsoosooosasesssessascsecasansesessal2=11
I/0 WEite TimiNgGeeeeeeeeosseoossocceesscsenseenssonsecacaseesl2=11
Interrupt Acknowledge SequenCe.....ccceeceeccoscsccssocsseaest2=12
On-Chip DMA Channel Flyby Memory Read TransactiON.ccescecessel12=-13
On-Chip DMA Channel Flyby Memory Write Transaction...........12-14

MUltiprocessor MOde Timing.........O........O..0000000000000012-1‘5..

Z-BUS Configuration (Input OPT tied to +5V or not connected)

a) Pin FUNCLioNS..cceeeesossseecosscssscccssccssossssscsssseeld=~?

b) Pin ASsSignmentS.ceceeceeccseesoscscccssccsosscnssosassaslild=l’
Memory Read TImMiNg.eeeeeeeeeesoocscesscossasssnssocascocnsasnanaelld=b"
Memory Write TiminNgGeeceseeeocecseoossoscossosssscscssoscscassssssid=T
Memory Read Timing With External Wait Cycle...coeeeseocoocsesld=7
Memory Write Timing With External Wait Cycle...ecoeeccsoceceesl3-8
Memory Read Timing With Internal Wait Cycle..ccceeecceccccccesl3-8
Burst Memory Read TiminNg.eecesececeosocscccsnssososccsssscssscseslil=9y
Halt Timing...;..;.......................,...................13-10
Memory Refresh Timing..eecececevosoovsoccsncscsssossassossvconsoesld=1
I/0 Read TiminNGeeececoceooeoooscsesossssassscssssosossoccsocssesascsessl3d=12
I/0 Write Timingeeeoeeeeeeoosseeeoosososasecsosssasassscesesnesl3=12
Interrupt Acknowledge Timinge.eceeeooescecosooosesescacsecnesell=13
Memory to EPU Timingeeeecoeeeecoceosscosscsssccsccsscssncscsccasslild=14
EPU WEite TO MEMOCYeeooeeoooeooeooososeanososesssessoassasssal3=15
EPU To CPU Timingeeeceeceesesesessascassccscnsososscesssasosscssacaeslild=1b
PAUSE TiMingeeeooeoeoococacosossecossesasssescsscsesecoscsscceessl3=16
On-Chip DMA Channel Flyby Memory Read TransactiON.eeesocsccecl13-17
On-Chip DMA Channel Flyby Memory Write TransactioN.c.sseoceceesol13-18
Multiprocessor Mode TimingG.ecececceosccecoscoscoososcssscccscsnsoocalld=19

. &

PRI
* *

.
. .

Table
Number

3"1 °
-3"20
3"3.

'
v &
* o

!
.

|
N e VWN =2\ VWN o = d\C O~ OV B W N -

|
N o O e

®

®

WO ~NSNSONONONONON VOV VY VU VNNV W
'

\C \C € @
}

|
W N 2\
°

Page

Number

CS fField, Bus Timing & Inltlallzatlon Registercececececccccscesd~1

LM Field, Bus Timing & Initialization Register....cccceccccescs3-1
I/0 Field of Bus Timing and Control Register..ccececvseccccccceed=2
HM Field of Bus Timing and Control Register.cccecceccececcccceel=2
DC Field of Bus Timing and Control RegiSter.ceeececocccsccsoccsed=2

Conditlon COdeSOOC..0.0.0......IOO.........‘..0..-..0....O.....'...S-}

B-Blt Load GI‘OUp InStrUCtiOHS.-...............................5-‘!»'

16-Bit Load and Exchange Group InstructionS..cccececeecsccccoceced=b
BIOCk TranSFer and SearCh GrOUP........I....................'.5-5

B-Bit Arithmetic and Logic Group...........‘......‘.............5-6.

16-Bit Arithmetic Operation InstructionsS..ciccececscececsccose 5=7

Bit Manipulation, Rotate and Shift GroUPecccecosscscsccosveessd=8 "

Program Control Group INStructionNS...cecessocevrcccocecsoscceccssd=8
Input/Output Instruction Group InstructionNS.ceceecceeccecscsscsseed=Y
CPU Control GroUPececcececsscecsscocsscecosscscscoscccssosssscscsscosssead=10
Extended INStrUCLiIONS .t eeeeeoececssoscscscsccscscsncscscsscscasesd=10
Encoding of 8-Bit Registers in Instruction Opcodes..ceecceceee5=-11
Grouping of Maskable Interrupt RequestsS...ccecececcececossccnceb-1
INterruUpt MOdeS.ueeseecscoosecccoesosccocosocoosooosccsssscssesbolh

Trap Types...l...............I.......O..............00000000006-7

Interrupt Acknowledge Encoding for 780 Bus PartS..cceceecoccececeoeb=7 -

Interrupt/Trap Vector Table Format..ceecececervsccecscccccossacb=-10
Page Descriptor Register AdAreSSeS..eeeeesoceecoceeessascnsessl=5

MMU Invalidation Port.cceccececscsoencecsccesccscscscccsosscsossocscel=b

I/0 Port Addresses for MMU Control RegiSterS..ceceecscscccecsscel=6

CPU Accesses to On-Chip Memory as CAChE . ereeeseeecacesasnnaneaBa2
On-Chip DMA Accesses (Both Flowthrough and Flyby) Effect

0N ON-Chip Memory 88 CAChE..veeseesooocoosoecssososesssssosesseeB=3

DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location...B8-4

Encoding, IPA Field in C/T Configuration Register.ceeesceecessd=5

I/0 Addresses of Counter/Timer RegiStersS..ceeeecececcsoncocces9=T

Configuration and Command/Status Registers

for Linked Counter/Tlmers............................;........9 8

Encoding of DAD & SAD Fields in DMA Transaction

Descriptor Reglster...9-13
Encoding of Type Field in Transaction Descriptor Register.....9-14
Encoding of BRP Field in Transaction Descriptor Register......9-14
Encoding of ST Field in Transaction Descriptor Register.......9-14
I/0 Addresses of DMA Reglsters................................9 15
CR Field of UART Configuration Register...ccceeeccccoccccscscccsed=19
BC Field of UART. Control RegiSter.ceseeeeeecencenncocncassneead=19

I/0 Addresses of UART RegiSterS...eeeceecscecscocecscooccasoccocesed=20

Reset Value of UART and DMA Registers
When Bootstrap Mpde Is Selected...icieerecdeccetrocococccscnococcseeld=21

i

X 1

A

Table of Cbntents (Continued)

10"‘10
10""'2.
11-1.

11"'2.
13-1.

'B""‘lo

8-20
B-3.
B-ao

Q) o
)

T mmmMmm
'

N e @ & O~ O\
L J

Bus Transactions Involved in fetch of

Extended Instruction Template.....;.....;...;..........;......10-8
Sequence of Transactions for Data Transfers

Between an EPU and MemMOTYeeeceoocoecsocoscsssscssososscsscssescsccsncceell=Y
Effect of a Reset on 72280 CPU & MMU RegistersS.cecesecesccsscesll=2

Effect of a Reset on 72280 On-Chip Peripheral Registers...c.cee.11-3
ST Status Line DeCode..iseeecsossseossosscccsocacsescsoscnssosncsell=b
Format 1 Instruction EncodingSecccecescsccososccocscscsscsscssssbB=2
Format 2 Instruction ENCOdinNgSeceecccoscecsscscccsccccocsccsoscase
Format 3 Instruction EncodingS.cececveseecccccasosscccscccsocceo
Format 4 InStruction ENCOdINGgS ceeceececcesecscsscoocassoccscsseoe
Instruction Execution Times......................},.....}.....
Extended Instruction Execution TimeS.ceeeeeecoccscoccscsocccocesb=-11
Interrupt, Trap; and Special Condition Execution TimeS.eeoeee.bE~-12
Instruction Fetch and Decode TiminNge.eceeeceecoessooccosocoseoseb=13
Data Read TiminQeeeocooceecceoocossscsccsoscsancssccsssscscssscsscsccb=14
Data Write TiminNgeeceecceececoococsscsoossssssosoonsossssssssssssessE=14 -
I/0 Read and Write Timing.eccecoeseeesccscssssscscocsssscssoscecncesk—-1>
EPU Read and Write Timing.ceeeececcesscoccocccscooscscsccssscscsssssb=15
Interrupt Acknowledge TiminQ.ceeeeceesecccoccccosocsonscscccscssseb=15

°
|
NN NN

L
m o @ D
!

{

. Miscellaneous Transaction Timinge..ceccecevssecoscsssccscncecseaesE-16

28‘100 Pe[‘iphel‘al Family.......................................F—1
28000/28500 Perlpheral Family.oo;co;oooooooo;ooooo.oooooo-ooo‘oQF-1

/

xil

Chapter 1 | |
Z280 Archltectural Overwew

1.1 INTRODUCTION

The Z280™ microprocessor unit (MPU) features an |

~advanced 16-bit CPU that is object-code compatible
with the Z80® CPU. The 2280 microprocessor unit
includes memory management, peripherals, memory
refresh logic, cache
‘generators, and a clock oscillator on the same
integrated circuit as the CPU. = The on-chip
peripheral devices include 4 DMA (Direct Memory

Access) channels, 3 counter/timers, and a UART
(Universal Asynchronous Receiver/Transmitter). A"

block diagram of the Z280 MPU is shown in Figure
1-1. This chapter presents some of the features

of the 7280 MPU family, with detailed descriptions |

‘memory, wait state -

GENERAL-
PURPOSE
REGISTER
FILE

" of the various aspects of the processor prov1ded

in succeeding chapters.

‘The 2280 MPU has a multlplexed address/data bus

for communication with external memory and
peripheral devices. Two different bus structures
are supported by the Z280: an 8-bit data bus that

uses 280 Bus control signals, and a 16-bit data

bus that uses Z-BUS® bus control signals. Zilog's
280 and 78500 families of peripherals are easily
interfaced to the Z80 Bus; Zilog's Z8000® family
of peripherals are easily interfaced to the 7-BUS.

L ‘ . i‘g
| "RD/DS -
INTERNAL BUS) *HALT/B/W
‘WR/A/W
'ﬁFSHfSTo '
*JORG/ST,
*MiI’ST
“MREG Q/STs
XTALI | N
. FOUR 16-BIT INTERRUPT
DMA CHANNELS CONTROL Y W
XTALO 4
290 BUS
(o-8iT OR oPT
24-8B17T SOURCE (16-8IT)
45V et 24-BIT OESTINATION BUS SCALE CLK
| 18-81T COUNTER wm?.;?me WAIT
GND IR CONTROL GENERATOR - PAUSE

Figure 11

ROY DMASTE EOP 'RxD ™0

RESET OE LBUSREG| GREQ
] BUSACK GACK Ag-A23] ADg-AD,

Ag-As
ADg-AD: g

¢ Signal definition depends on OPT.
+ Eﬁmwdﬁn

+ WMWICT'"Q
+Gﬁ!‘0mmmcnoo

Block Diagram

1-1

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the 7280 MPU is a
binary-compatible extension of the 280 CPU
architecture. High throughput rates for the 7280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to

provide for slower speed bus transaction timing.

A programmable refresh mechanism for dynamic RAMs

and a clock oscillator are provided on-chip.
/

"~ 1.2.1 System and User Modes

Two modes of CPU operation, sysfem and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be

executed and all of the CPU registers can be

accessed, = This mode is intended for use by
programs performing operating system functions.

In user mode, certain instructions that affect the
state of the machine cannot be executed and the

control registers in the CPU are inaccessible. In
general, wuser mode is intended for wuse by

- applications programs. This separation of CPU'.

resources promotes the integrity of the system,
since programs executing in user mode cannot

access those aspects of the CPU that deal with
. time-dependent or system-interface events. |

h

The register = structure has been extended to

" include separate Stack Pointer registers, one for

@ system-mode stack and one for a user-mode

. stack. The system-mode stack is used for saving
- program status on the occurrence of an interrupt

or trap condition, thereby ensuring that the user
stack 1is free of system information. The

' isolation of the system stack from user-mode
_programs further promotes system inteqrity.

- 1.2.2 Addpgss ébaces

Addressing spaces in the Z280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/0 address
space. The CPU register file is identical to the
Z80 register set, with the exception of the
separate system- and user-mode Stack Pointers.

-The A register acts as an B8-bit accumulator; the

HL register is the 16-bit accumulator. These are

suppleménted by four other 8-bit registers (B, C,
D, E) and two other 16-bit registers (IX, 1Y);
the 8-bit registers can be paired for 16-bit

" operation, and each 16-bit register can be treated

as two B-bit registers. The Flag register (F)

contains information about the result of the last

operation. The A, f, B, C, D, E, H, and L

-registers are replicated in an auxiliary bank of

registers. These auxiliary registers can be
exchanged with the primary register bank for fast

context switching.

Several CPU control registers determine the

-operation of the 27280 MPU, For example, the

contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers

-are accessible in system-mode operation only.

The 2280 CPU's logical memory address space is the
gsame as that of the Z80 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MMU. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the 2280 CPU can have up to Gpur
memory address gpaces: .= system-mode program,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The 2280 CPU architecture also disiinguishes“
between the memory and I/0 address spaces and,

therefore, requires specific I/0 instructions. ,"

I/0 addresses in the 2280 CPU are 24 bits long,
with the upper 8 bits provided by an 1/0 page
register in the CPU. SRR o

' 1.2.3 Data Types N

| Hany data typés are supported by the 7280 CPU
. architecture. The basic data type is the 8-bit

byte, which is also the basic addressable memory

. element. The architecture alsc supports opera-

tions on bits, BCD digits, 2-byte words, and byte
strings. | | ‘ ‘ 3

" g-bit shift,

" 1.2.5 Instruction Set

"

W

1.2.4 Addressing Modes

" The operand addressing mode is the method by which
a data operand's location is specified.

CPU supports nine addressing modes, including the

five modes available on the 1Z80 CPU The ‘"

address1ng modes of the 7280 CPU are:

Register

Immediate .

Indirect Register

Direct Address . -

Indexed (with a 16-bit dlsplacement)

Short Index (with an B-bit dlsplacement)
Program Counter (PC) Relative

Stack Pointer (SP) Relative

Base Index :

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
rotate, and bit manipulation
instructions are limited to the Register, Indirect

Register, and Short Index addressing modes. The .

16-bit loads on the addressing registers support

all addressing modes except Short Index, while
other 16-bit operations are limited to the
-~ Register, Immediate, Indirect Register, Index,
fii Direct Address, and PC Relative addressing modes.

. -

. The 2280 CPU instruction set is an expansion of

the 280 instruction set; the enhancements include

~ support for additional addressing modes for the

280 instructions as well as the addition of new

5;instructions. The 2Z280 CPU instruction set

provides a full complement of 8- and 16-bit

" .arithmetic operations, including signed and
* unsigned multiplication and division. Additional
> B8=-bit computational instructions support logical
and decimal operations. Bit manipulation, rotate,
"~ and shift instructions round out the data

manipulation capabilities of the 2280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative

addressing is provided for the Jump and Call

instructions to support position-independent
programs. - - Block move, search, and I/0
instructions provide powerful data movement
capabilities.
have been included to facilitate multitasking,
multiple processor configurations, and typical
high-level language and operating system
functions. | C

In addition, special instructions

%

“' 1.2.6 Exception Conditions - |

The 2280

The 7280 MPU suppsrts three types of exceptions |
(conditions that alter the normal flow of program
execution): ~interrupts, traps, and resets.

Interrupts are asynchronous events typically
triggered by peripherals requiring attention. The
2280 MPU interrupt structure has been signi-
ficantly enhanced by increasing the number of

~ interrupt request lines and by adding an efficient
- means for handling nested interrupts. There are

four modes for handling interrupts:

@. 8080 compatible, in which the interrupting

'5 Vectorsd

device provides the flrst instruction of the
1nterrupt routine..

o 0'-Dedicated interrupts, in which the CPU jumps to

a dedicated address when an interrupt occurs.

interrupt mode, in which the
. interrupting peripheral provides a vector 1nto
- a table of jump addresses. |

o .Enhanced vectored interrupt mode, wherein the

- CPU handles traps and multiple interrupt
 sources, saving control information as well as
the Program Counter when an interrupt occurs. -
The first three modes are compatible with the Z80
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested interrupts
and a sophisticated vectoring scheme. -

Traps are synchronous events that trigger a
special CPU response when certain conditions occur -
during instruction execution. The 27280 CPU
supports a sophisticated complement of traps
including Division Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps. |

Hardware resets occur when the RESET line is
activated and override all other conditions. A
reset causes certain CPU control reglsters to be
initialized.

- 1.2.7 Memory Hanageleﬁt !

Memory management consists primarily of dynamic
relocation, protection, and sharing of memory.

1-3

Proper memory management can provide a logircal
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to

memory, and protect the operating system from
disruption by users. - .. .

The 16-bit addresses manipulated by the pro-

grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (MMU) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from

specifying where information is actually located
in physical memory.

Status information generated by the CPU allows the.

MMU to monitor the intended use of each memory
access. llleqgal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
- areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modified and can
inhibit copies of data from being retained in the
on-chip cache. -

When a memory access violation is detected by the

MMU, a trap condition is generated in the CPU and

execution of the current instruction is auto-

matically aborted. This mechanism facilitates the

easy implementation of virtual memory systems
based on the 2280 MPU. - -

1.2.8 Cache Memory . -~

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache.
is made to the high-speed cache;
access is made to main memory,
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

if not, the

The Z280 MPU includes on-chip memory that can be

ugsed as a cache for programs,
Cache operations, including

data, or both,
updating, are

per formed automatically and are completely trans- -

parent to the user. Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified wunder program
control, instead of being used as a cache,

included on-chip in the Z280 MPUs:

If so, the access -

and the cache .

by the EPU,

- 1.2.9 Refresh

The 127280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register., A 10-bit refresh
address is generated for each refresh operation,

. 1.2.10 On-Chip Peripherals

Severai' programmable devices are

four DMA
channels, three 16-bit counter/timers, and a

UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
2280 MPU's memory after a reset.

peripherél

L

1.2.11 Multiprocessor Mode

| A“special mode of obérétion allows the 2280 MPU to

operate in environments that have a global bus,
wherein the 72280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the 2280 MPU, and
another set of addresses is used for the global
bus. The 2280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the 7280 MPU in multiple-processor configura-
tions., For example, a 7280 MPU could be used sas
an I/0 processor in a Z80000-, Z8000-, or
2280-based system{‘ S e | |

1.2.12 Extended Instruction Facility

The 7280 MPU architecture has a mechanism for
extending the basic instruction set through the
ugse of external devices called Extended Processing
Units (EPUs). Special opcodes have been set'aside
to implement this feature. When the 7280 MPU
encounters an instruction with one of these
opcodes, it performs any indicated address calcu-
lations and data transfers; otherwise, it treats
the "extended instruction"” as if it were executed

-~

'f an EPU is not present, the Z280 MPU can be
programmed to trap when an extended instruction is

encountered so that system software can emulate
the EPU's activity. '

L

1.3 BENEFITS OF THE ARCHITECTURE

The features of the 7280 MPU architecture provide

several significant benefits, including increased
program throughput, increased integration of

system functions, support for operating systems,
and improvements in compiler efficiency and code
density.

1.3.1 High Throughput

Very high tﬁroughput rates can be achieved with

~ the 7280 MPU, due to the cache memory, instruction

pipelining, and high clock rates achievable with
this processor. The CPU clock rate can be scaled

down to provide the bus clock rate, allowing the

designer to use slower, less-expensive memory and
I1/0 devices. Use of the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievable with
the 2280 CPU's expanded instruction set also
contributes to program throughput, since fewer

instructions are needed to accomplish a given
task. - | - |

1.3.2 Integration of System Functions

" Besides a powerful CPU, the Z280 MPU includes

many on-chip devices that previously had to be
implemented in logic external to the micro-
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART. Integration of all
these functions onto a single chip results in a
reduced parts count in a system design, accom-
panied by a resulting reduction in design and
debug time, power requirements, and printed
circuit board space, This increased level of
integration also contributes to system throughput,
gsince the on-chip devices can be accessed quickly
without the need of an external bus transaction.

'1.3.3 Operating System Support

Several of the 7280 MPU's architectural features
facilitate the implementation of multitasking
operating systems for Z280-based systems.

The inclusion of user and system operating modes
improves operating system organization. User-mode
programs are automatically inhibited from per-
forming operating-system type functions. System-

. mode memory can be separated from user-mode memory

and separate stacks can be maintained for system-
mode and user-mode operations. The System Call

ingtruction and the trap mechanism provide a-
controlled means of accessing operating system
functions during user-mode execution. -

The interrupt- and trap-handling mechanisms are "
well suited for operating system implementations.
Several 1levels of interrupts are provided,

allowing for separate control of various peripher- .
al devices (both on and off the chip). A new

interrupt mode is provided, wherein status infor-
mation about the currently executing task is saved

- on the stack and new program status information

for the service routine is automatically loaded
from a special memory area. Traps result in the
same type of program status saving. . In both
cases, status is always saved on the system stack,

- leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid

in task switching and other operating system
chores.

The bn-cﬁip MMU supports a multitasking environ-

ment by providing both a means of quickly

allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage. t

1.3.4 Code Density

Code density affects both probessor speed and

- memory utilization. Code compaction saves memory

gpace and improves processor speed by reducing the
number of instructions that must be fetched and

decoded. The largest reduction in program size

results from the powerful instruction set, where
instructions such as Multiply and Divide help -

substantially reduce the number of instructions |
required to complete a task. -

The efficiency of the instruction set is enhanced
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the 8-bit load, arithmetic, and logical
instructions. | o |

1.3.5 Compiler Efficienéy

For microbrocessor users, the transition From‘
assembly lanquage to high-level languages allows

- greater freedom from architectural dependency and

improves ease of programming. For the 72280 MPUs, -
high-level language support is provided through ‘
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the 7280 instruction set, allowing the 7280 CPU
to easily handle a large amount and variety of
data types. The 2280 CPU's ability to manipulate
many different data types aids 1in compiler
efficiency; since data structures are high-level
constructs frequently wused in
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the 2280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move and Compare instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Numeric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
the Stack Pointer Relative addressing mode is

programming,

especially useful for accessing parameters and

local variables stored on the stack.

1.4 SUMMARY -

The 72280 MPU is a high-performance 16-bit micro-
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the Z80 CPU,

. the 7280 MPU architecture has been expanded to

include features such as multiple memory address
spaces, efficient handling of nested interrupts,
system and user operating modes, and support for

multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache

memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture--including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency--
greatly enhance the power and versatility of the
2280 MPU. Thus, the 72280 MPU provides both a
growth path for existing Z80-based designs and a
high-performance - processor for future
applications. |

[P8

| Chaptér 2.

Address Spaces

2.1 INTRODUCTION

The 7280 MPU supports four address spaces corre-
- sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha-
nisms wused to map the logical address into
physical locations.
are:

e CPU redister space. This consists of the
.addresses of all registers in the CPU register
file. |

® CPU control register space. This consists of
'~ the addresses of all registers in the CPU
control register file.

® Memory address gpace. This consists of the
addresses of all locations in the main memory,

e 1I/0 address space.

- addresses of all 1I/0 ports through which
peripheral devices are accessed, including
on-chip peripherals and MMU registers.

PRIMARY FILE

A ACCUMULATOR F FLAG REGISTER

-

These four address spaces

This consists of thé

2.2 CPU REGISTER SPACE

The 2280 CPU register file is illustrated in

Figure 2-1. The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time., Special exchange instructions

are provided for switching between the primary and
auxiliary registers. o |

1
~ .

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file):

@ Flag and accunulator registers (F, A, F'; A')

@ Byte/word reqisters (8, C, D, E, H, L, B', C',

D', E', H', L") . .

® Index registers (IX, IY) . . .

. Stack Pointers (SSP, USP)

Program Counter, Interrupt
Refresh register (PC, I, R)

4

~ AUXILIARY FILE

e &

register,4 and

A’ ACCUMULATOR . F' FLAG REGISTER

B GENERAL PURPOSE C GENERAL PURPOSE

8’ GENERAL PURPOSE x C’ GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE

D' GENERAL PURPOSE E' GENERAL PURPOSE

" H GENERAL PURPOSE

'L GENERAL PURPOSE

- 8 BITS >

IX INDEX REGISTER

4

IY INDEX REGISTER
)|

PC PROGRAM COUNTER

SP STACK POINTER

USER (USP) !

e 16 BITS

" H’' GENERAL PURPOSE " L' GENERAL PURPOSE

NOTE: A is the 8-bit accumulator.
HL is the 16-bit accumulator.

-]

Figure 21. Register File Organization

2-1

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction. '

The flag registers (F, F') contain eight status
flags.
of program branching, two are used to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the Z280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag reqgister and accumulator.

The byte/word registers can be accessed either as

8-bit byte registers or 16-bit word registers, -

Bits within these registers can also be accessed
individually. For 16-hit accesses, the registers
are paired B with C, D with E, and H with L. Two

sets of byte/word registers exist in the 7280 CPU,

although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange ingtruction.

The index registers IX and IY can be accessed as
16-bit registers or their upper and lower bytes
(IXH, IXL, IYH, and IYL) can be individually
accessed.

The Z280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting subroutine calls
and returns in system mode, The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program
and for generating relative addresses. The Inter-
rupt register 1is used in interrupt mode 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter-
rupt acknowledge. The Refresh register is used by
the 280 CPU to indicate the current refresh
address, but does not perform this function in the

2280 CPU; instead, it is another 8-hit register
available for the programmer.

Four can be individually used for control-

" respectively.

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accumulator registers, selecting either F, A or
F', A' whenever the instruction specifies the flag

register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the 8, C, D, E, H, L registers or the 8', C', D',
£E', H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
At any time the program can sense
the state of these control bits by special jump
instructions. The third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User Stack Pointer
register is selected whenever an instruction
gspecifies the Stack Pointer register. In
addition, the User Stack Pointer register also has
an address in the CPU control register space via a
gspecial Load Control instruction. |

2.3 CPU CONTROL REGISTER SPACE

The 2280 CPU status and control registers govern
the operation of the CPU. They are accessible

only by the privileged Load Control (LDCTL)
instruction, - | :

Control register addresses are specified by the
contents of the C register. No translation .is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization regqister, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the 1/0 Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status

" register, the Cache Control register, and the

Local Address register (Figure 2-2). The CPU

control registers are described in detail 1in
Chapter 3.

CONTROL
REGISTERS

SYSTEM STATUS
REGISTERS

Figure 2.2. CPU Control Registers

2.4 MEMORY ADDRESS SPACES

Two memory address spaces, one for system and one
for user Tode operation, are supported by the z280
MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

Each address space can be viewed as a string of
64K bytes numbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the 7280 MPU memory address spaces.
However, there are other addressable data ele-
ments: bits, 2-byte words, byte strings, and
multiple-byte EPU operands. -

The size of the data element being addressed
depends on the instruction being executed. A bit

- can be addressed by specifying a byte and a bit -

within that byte. Bits are numbered from right to
left, with the least significant bit being bit O,
as illustrated in Figure 2-3, |

Figure 2.3. Numbering of Bits within a Byte

. ..
. L3 .
., .
- -
L) .
- . .
.
.
. . .
. - T
. -
. a
. a .
. - -
. -
.
-
-
L]
-
-
.
-

- BUS TIMING AND CONTROL

BUS TIMING AND INITIALIZATION

LOCAL ADDRESS
CACHE CONTROL

MASTER STATUS

INTERRUPT STATUS

INTERRUPT/TRAP VECTOR TABLE POINTER

TRAP CONTROL

SYSTEM STACK LIMIT

-

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4, '

Note that when a word is stored in memory, the
least significant byte precedes the most

‘significant byte of the word, as in the Z80 CPU

architecture.

.The 16-bit 1logical addresses generated by a

program can be translated into 24-bit physical
addresses by the on-chip MMU. When the
translation mechanism is disabled, the 24-bit
physical address consists of the logical address
for bits Ag-Aq5 and zeros for Aq4-A23. |

60-bit floating-point (EPU instruction only) at address n:

sign,E10-4 address n
E3-0, F51-48 address n+1
F47-40 address n+2
F39-32 address n+3
F31-24 address n+4
F23-16 address n+5
F15-8 address n+6
F7-0 - address n+7
<--1byte --> ‘

80-bit floating-point (EPU instructions only) at address n:

sign,E14-8 address n

E7-0 ﬂ address n+1
F63-56 | i address n+2
F55-48 | addressn+3
F47-40 address n+4
F39-32 address n+5
F31-24 address n+6
F23-16 | addressn+7
Fi5-8 . | addressn+8
F7-0 address n+9

~ BCD digit strings (EPU instruction only) at address n:
(up to 10 bytes in length; the illustration is for the
maximum length string) | |

sign,D18 - l addressn
D17,D16 ~ address n+1
D15,D14 . address n+2
D13,D12 i ' address n+3
D11,D10 address n+4
D9,08 address n+5
D7,06 address n+6
D5,04 address n+7
D3,D2 addressn+8
D1,00 |

address n+9

16-bit word at address n:

address n
address n+1

least significant byte
most significant byte

32-bit integer (EPU instruction only) at address n:

B31-24 (most significant byte) address n
B23-16 address n+1
B15-8 ‘ I address n+ 2
B7-0 (least significant byte) address n+3
< 1 byte ----eeeeeemeee >

64-bit integer (EPU instruction only) at address n:

B63-56 (most significant byte) | addressn
B55-48 S | address n+1
B47-40 address n+2
B39-32 address n+3
B31-24 . . addressn+4
B23-16 address n+5
B15-8 address n+6
B7-0 (least significant byte) “address n +7
< 1 byte >

32-bit floating-point (EPU instruction only) at address n:

sign,E7-1 address n
E£0,F22-16 address n+1 3
F15-8 address n+2 -
F7-0 - addressn+3 * *

| <-1 byte - > j IR

Figure 24. Formats of Multiple-Byte Data Elements in Memory |

2.5 1/0 ADDRESS SPACE

1/0 addresses are generated only by 1/0
instructions. The B8-bit logical port address
specified in the instruction appears on ADg-ADy;
this is concatenated with the contents of the A

register on lines Ag-Ayg for Direct addressing.

mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. The contents of the 1I/0 Page
register are appended to this address on lines
A1g-A23- Thus, the 24-bit 1/0 port address

external bus.

consists of the B8-bit address specified in the

instruction, the contents of the A or B register,

and the contents of the 1/0 Page register.

An 1/0 read or write is always one transaction,
regardless of the bus size and the type of 1/0

instruction, On-chip peripherals with word
registers are always accessed with word
instructions,

regardless of the size of the -

Chapter 3.

CPU Control Registers

3.1 INTRODUCTION

Several CPU control and status registers ﬂspei:if‘y'

the operating mode of the Z280 MPU. There are two
types of CPU —control registers: system
~configuration registers and system status regis-
ters. The system configuration registers contain

information about the physical configuration of

the Z280-based system, such as bus timing infor-
~mation. Typically, -the system configuration
registers are loaded once during system initial-
ization and are not altered during subsequent

operations. The system status registers contain
information that may change during system
operation, such as the current 1/0 page. Access

to the CPU control registers is restricted to

system mode operation only, using the privileged
Load Control (LDCTL) instruction. Resets ini-
tialize the control registers so that a Z80 object
program will execute successfully on the Z280
MPU. (280 programs do not affect these registers,
since the Load Control instruction is not part of
the 780 CPU's instruction set.) Unused bits in

these registers should always be loaded with
zeros. |

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8-bit system configuration regis-
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Local
Address register, and the Cache Control register.

3.2.1 Bus Timing and Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for
bus timing, the duration of bus transactions to
the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap

modes. Figure 3-1 illustrates the bit fields in
this register. |

+

7 0

Figure 31. Bus Timing and Initialization Register

o

Clock Scaling (CS) Field.
governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initialized during a reset operation, as

described below, and cannot be modified
software,

This 2-bit field

via

R

/

Table 3-1. CS Field of Bus Timing and initialization Register

CS Fileld

Bus Clock Frequency

00 . Busclock frequency equals 12 CPU clock frequency

(one bus clock cycle for every two CPU clock cycles)

01 Busclock frequency equals CPU clock frequency
- (one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals /4 CPU clock frequency
| -~ (one bus clock cycle for every four CPU clock .
cycles) | | . r |

1. Reserved . L7

~
v

Low Memory Wait Insertion (LM) Field. This 2-bit
field specifies the number of automatic wait

" gtates to insert in memory transactions to the

lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2. Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

Table 3-2. LM Field of Bus Timing and Initialization Register

Number of Walt States for
LM Field Lower 8M Bytes of Memory
00 0
01 o
10 . 2

\

Multiprocessor Configuration Enable (MP) Bit.
This 1-bit field enables the multiprocessor mode
of operation, wherein the Z280 MPU is connected to
both a local and a global bus. Transactions to

321

M bl o TamE Rt Ak A e

m mmrrm A b T T —————— e P

(PO USRS ———— R

e eemert s wma s ar

addresses on the global bus require a special bus
request and acknowledgement before the bus trans-
action can occur., (See Chapter 10 for details

 concerning this mode of operation.) Setting this

bit to 1 enables the multiprocessor mode, and

" clearing this bit to 0 disables this mode.

Bootstrap Mode Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper-
ation, memory is automatically initialized via the
UART after the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; execution
then begins from memory location 0. (See Chapter
9 for further details.) Setting this bit to 1

enables the bootstrap mode and clearing this bit

to 0 disables this mode. The BS bit can be set to

-1 only during a reset operation, as described

below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this

- register is read.

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1.

The Bus Timing and Initialization register can be

initialized with either of two methods during a
reset operation. If the MPU's WAIT input is not
asserted during reset, this register is auto-
matically initialized to all zeros, thereby
specifying a bus clock frequency of one-half the
internal CPU clock, no automatic wait states
during transactions to the 1lower 8M bytes of
memory, and disabling of the multiprocessor and
bootstrap modes. If the WAIT input is asserted
during reset, the Bus Timing and Initialization
register is set to the contents of the ADg-ADy bus
lines, as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
fields can be written using the LDCTL instruction,

3.2.2 Bus Timing and Control Register

The 8-bit Bus Timing and Control register deter-
mines the timing of bus transactions to the upper
8M bytes of memory and to all 1/0 devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

Figure 3-2. Bus Timing and Control Register

3-2

-

I/0 Wait Insertion (I1/0) Field. This 2-bit field

~gpecifies the number of automatic wait states (in

addition to the one wait state always present
during I/0 transactions) to be inserted during
each 1/0 read or write transaction, as per Table
3-3. The specified number of wait states is also

‘&dded to the vector read portion of an interrupt

acknowledge cycle.

Table 3-3. 1/0 Field of Bus Timing and Control Register

. Number of Wait States
1/0 Field forl/O
00 - 0
A E R I
11 | 3

High Memory Wait Insertion (HM) Field. This 2-bit
field specifies the number of automatic wait

' states to be inserted during memory transactions

to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

Table 3-4. HM Field of Bus Timing and Control Register

L Number of Walit States for
HM Field Upper 8M Bytes of Memory
o0 . 0
01 o) x L 1
10 . | 2
11 ‘ ' 3

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be ingerted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)
or between the assertion of MT and the assertion

of TORQ (for the Z80 Bus). The value of the DC
field determines if any additional clocks are to

be added between the Address Strobe and Data
Strobe (or M1 and TORQ) assertions.

Table 3-5. DC Fleld of Bus Timing and Control Register

Number of Wait States for
DC Field Interrupt Acknowledge
00 , ' -0
oo - . 1
10 L2
1 3

The contents of the Bus

Timing and Control

register govern the number of automatic wait-

states to be inserted during various bus trans-

actions. Additional wait states can be added to
any bus transaction via control of the WAT]
input.

The Bus Timing and Control register is set to 30H by a
reset. Bits &4 and 5 should always be written with O,

When this register is read, bits 4 and 5 may return a
1.

3.2.3 Local Address Register S

The 8-bit Local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and
Initialization register), the contents of the
Local Address register have no effect on MPU
operation,

If multiprocessor mode is enabled, the MPU auto-
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the
physical memory address during memory trans-
actions. The 4-bit match field specifies which
bits of the physical memory address are of
interest; for those bit positions specified in
the match field, if all the corresponding address
bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions, then the global
bus 1is requested, and the transaction cannot
proceed until the global bus acknowledge signal is
asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)

The format of the Local Address register is
illustrated in Figure 3-3.

7 ' ()}

Figure 3-3. Local Address Register

Base bit (B,): For each ME, that is set to 1, the
corresponding value of B, must match the value of
address bit A, in order for the local bus to be

used; otherwise, the transaction requires the use
of the global bus.

Match Enable bit (ME,): If ME_, is set to 1, then
the corresponding physical address bit A, is
compared to base bit B, to determine if the
address requires the use of the global bus. If
ME,, is a zero, then any values for A, and B,
produce a match, signifying a local bus access.
If every ME, is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset.

3.2.4 Cache Controloﬂbgister

The 8-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter 8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contaiﬁs five control

bits, as described below. The format for this
register is shown in Figure 3-4,

7 0

| 1] o fmapwel o o] o

Figure 3-4. Cache Control Register

.
-
L}

Memory/Cache (M/T) Bit. While this bit is set to
1, the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a cache.

Cache Instruction Disable (I) Bit. While this bit
and the M/C bit are cleared to 0, the on-chip
memory 1s used as a cache during instruction
fetches. While this bit is set to 1, instruction
fetches do not use the cache. If the M/C bit is a
1, the state of this bit is ignored.

Cache Data Disable (D) Bit. While this bit and
the M/C bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

instruction and data fetches by clearing both the
1 and D bits.) If the M/C bit is a 1, the state
of this bit is ignored. -

Low Memory Burst Capability (LMB) Bit. This 1-bit

field specifies whether burst-mode memory
transactions will occur during memory transactions
to the lower B8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to O
disables burst mode transactions.

High Memory Burst Capability (HMB) 8it. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the wupper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1). Setting this bit to 1 enables

| burst-mode transactions; clearing this bit to 0 -

disables bupst-mode transactions.

The Cache Control register is set to a 204
- {hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches

only and disabling burst mode transactions. Bits

0, 1, and 2 of this register are not used.

3.3 SYSTEM STATUS REGISTERS

There are six system status registers in the 7280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, 1/0
Page register, Trap Control register, and System
Stack Limit register.

3.3.1 Master Status Register o o

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program, lypically, the MSR changes when a new
programming task is dispatched; - it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is shown
in Figure 3-5. .

Figure 35. Master Status Register

- gperation;

~ the single-step operating mode.

. . ' ' ¥ ') ' . .
. . .) * .
15 0
1

User/System (U/5) Bit. While this bit is cleared .
to 0, the 2280 MPU is in the system mode of
while set to 1, the MPU is in the user
mode of operation, The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged

instructions can be executed only while in system
mode. |

Breakpoint-on-Halt Enable (BH) B8it. While this
bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally. '

Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access: Violation, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.) - : a o

Single-Step (SS) Bit. This bit is the enable for
While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled. S o -

Interrupt Request Enable (E,) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The 7280
MPU's interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit E, is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while E, is cleared to O,

interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 15 of
the MSR always should be written with zeros.

3.3.2 Interrupt Status Register

\

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

- described in Chapter 6.
~ of the 24-bit physical address are assumed to be

enable bits are writeable; all other bits in this
register are read-only status bits.

the Interrupt Status register are shown in Figure
3-60 . ‘

15 | o | 0

Figure 3-6. Interrupt Status Register

-™

Interrupt Vector Enable (I,) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While I, is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while I, is
cleared to 0, that interrupt is not vectored.

These bits are ignored when not in interrupt mode
3.

Interrupt Mode (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this field' denoting interrupt

mode n. This field can be changed by executing
the IM instruction.

Interrupt Request Pending (IP,) Bits. When bit
IP, is a 1, an interrupt request from a source at
level n is pending. |

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. B8its 7, 10, and
11 of this register are not used.

S

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most significant bits of the

physical memory address of the start of the |
The Interrupt/Trap .

Interrupt/Trap Vector Table,
Vector Table is a memory area that holds the

values that are 1loaded into the Master Status . .

register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
The twelve low-order bits

all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7). '

mmmmmmmmmmmnnnn

Flgure 3-7 InterruptlTrap Vector Table Pointer

The fields in -

~ 3-8).

The contents of the Interrupt/Trap Vector Table
Pointer are unaffected by a reset and are

undefined after power-up. When this regleter is
read, bits 3,2,1 and 0 may return a 1.

3. 3 4 1/0 Page Reglster R ey

The 8-b1t 1/0 Page register determlnee the upper
eight bits of the 24-bit peripheral address output
during execution of an I/0 transaction (Figure

1/0 pages FEH and FFH are reserved for
on-chip perlpherel addresses. ‘

T 1)) I
Figure 3-8 : /0 Page Register
The' contente‘ of’ £He. I/d Paee:

register are
cleared to all zeros by a reset.. |

3.3.5 Trap Control Register

The 8-bit Trap Control register contains the
enables for the maskable traps. =~ Figure 3-9
illustrates the format of this register.

? | | 0 o
" Figure 3.9. Trap Control Register |
. | RONEE
Inhibit User I/0 (I) Bit. This bit determines
whether or not 1/0 instructions are privileged

instructions. While this bit is set to 1, all I/0
instructions are treated as privileged
instructions, and an attempt to execute an 1/0

instruction while in wuser mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, 1/0 instructions can be successfully
executed in user mode. I/0 instructions can

always be executed in system mode, regardless of
the state of this bit.

EPU Enable (E) Bit. This bit indicates whether or .
not an Extended Processor Unit (EPU) is available
in the system for execution of extended in-
structions. If this bit is cleared to O,
indicating that no EPUs are present, the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
is set to 1, the CPU performs whatever data
transfers are indicated by the extended in-
struction opcode, and assumes that the EPU is
present to execute the instruction. |

3-5

m e e L i e ——— 1

e System Stack Overflow Warning (S) Bit. This is 3.3.6 System Stack Limit Register
;* the enable bit for the System Stack Overflow .
;1 Warning trap. While it is set to 1, Stack The 16-bit System Stack Limit register determines
sqg Overflow Warning traps can occur during a stack when a System Stack Overflow Warning trap is to be
ld*:‘ access while in system mode, as determined by the generated. Pushes onto the system-mode stack
l"!,l contents of the Stack Limit register. While this cause the 12 most significant bits of the logical
' bit is cleared to 0, Stack Overflow Warning traps address of the System Stack Pointer to be compared
are disabled. This bit is automatically cleared @ to the 12 most significant bits of this register;
when a System Stack Overflow Warning trap is a System Stack Overflow Warning trap is generated
generated. - | B if they match. The low-order four bits of this
-) S | register must be zeros (Figure 3-10), This
The Trap Control register is cleared to all zeros- register has no effect on MPU operation if the
by a reset, indicating that I/0 instructions are System Stack Overflow Warning enable bit in the
not privileged, EPUs are not present in the Trap Control register is cleared to 0.
system, and Stack Overflow Warning traps are
disabled. Bits 3 through 7 of this register are - 15

b

not used. , N N R N N I EI K K K

: : Figure 3-10. Systerﬁ Stack Limit Register "

t

. C . The contents of the System'Stack Limit register
| are cleared to zeros by a reset.

[
-

4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon, For 2280 CPU instructions,
operands can reside in CPU registers, memory
locations, or 1/0 ports.
designate the location of the operands for an
instruction are called addressing modes. The 72280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.

A wide variety of data types can be accessed using
these addressing modes. '

4.2 ADDRESSING MODE DESCRIPTIONS .

The following pages contain descriptions of the
addressing modes for the 72280 CPU. Each
description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing mode, and
gives an example of an instruction using that
mode, illustrating the assembly language format
for the addressing mode. The examples wusing
memory addresses use logical memory addresses; if
the MMU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction
processes data taken from one of the B8-bit
registers A, B, C, DO, E, H, L, IXH, IXL, IYH, IYL,
or one of the 16-bit registers BC, DE, HL, 1X, 1Y,
SP, or one of the special byte registers I or R.

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

The methods used to

4.2.2 Immediate (IM)

Chapter4. .
Addressing Modes and Data Types

INSTRUCTION REGISTER

OPERATION | REGISTER OPERAND

- THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register address
space. The register length (byte or word) is
specified by the instruction opcode. '

Example of R wmode:

LD BC,HL sload the contents of HL into BC

Before instruction execution: After instruction execution:

BC: |A688 | . BC:
HL: |9 A 2 0 " HU

9 A2 0
9 A2 0

A

When the Immediate addressing mode is used, the
data processed is in the instruction.

The Immediate addressing mode 1s the only mode
that does not indicate a register or memory
address as the source operand.

INSTRUCTION

OPERATION
'OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

.
b T

Because an immediate operand is part of the
instruction, it is always located in the program

memory address space. Immediate mode is often
used to initialize registers. = | |

Example of IM mode:

LD A,55H s load hex 55 into the accumulator

Before instruction execution: After instruction execution:

A: 67| A s 5| ,

EEER

e,

HLN

il

4.2.3 Indirect Register (IR)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the HL register
for memory accesses or the C register for I/0 and
control register space accesses. For the Load
Byte instruction, BC and DE can also be used in
addition to HL.

\ B DATA MEMORY,

: /0 PORT, OR
INSTRUCTION REGISTER CONTROL REGISTER

OPERATION | REGISTER m OPERAND

THE OPERAND VALUE 1S THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending on the instruction, the operand
specified by IR mode is located in either the 1/0
address space (I/0 instructions), control register
space (Load Control instruction), or data memory

- address space (all other instructions).

The Indirect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed. |

Example of IR mode:

LD A,(HL)
- . saddressed by the contents of HL

Before instruction execution: After instruction execution:

4-2

sload the accumulator with the data

4.2.4 Direct Address (DA)

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or 1/0 port address is in the instruction.

INSTRUCTION
DATA MEMORY
OR 1/0 PORT

OPERATION
ADDRESS OPERAND
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Depending on the instruction, the operand
specified by DA mode is either in the 1/0 address
space (1/0 instructions) or in the data memory
address space (all other instructions). |

This mode is also wused by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Prugram Counter.)

Example of DA mode:

sload BC with the data in

LD BC,(5SE22H)
' saddress 5t22

Before instruction execution: After instruction execution:

sc: [6 7 8 o] sc: [0 3 0 1

Data memory:

L]

5E22: .

A: 0 F T .. A: 0 B sE23:

HL |1 70cCc] -~ - Hu |1 700C |

Data memory: . ,
‘{...

.

m

4.2.5 Indexed (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
IY.

The indexed address is computed by adding the

twos-complement "index" contained in the H., IX or
IY register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the

particular element index must be computed by the
program. |

address specified in the instruction to a
INSTRUCTION REGISTER '
. DATA ~
OPERATION | REGISTER . MEMORY

ADDRESS

OPERAND “..'

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS ISTHE ~ ~ "

Operands specified by X mode are always in the
data memory address space.

Ekanple of X mode:
LD A,(IX + 231AH) sload into the accumulator
sthe contents of the memory

s location whose address
sis 231AH + the value in IX

Address calculation:

231A
+01FE
2518

4.2.6 Short Index (SX)

When the Short Index addressing mode is used, the
data processed is at the location whose address is

the contents of IX or 1Y offset by an 8-bit signed .

displacement in the instruction. (Note that this
addressing mode was called "Indexed" in the Z80
CPU literature.) ' '

-

INSTRUCTION

OPERATION REGISTER
DISPLACEMENT

REGISTER

~ e }—C

ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Before instruction execution: After instruction execution:

A |2 3 | A

’
IX: 0 1 F E ' IX: |0 1 F E
Data memory:

2518; 3 D]

The short indexed address is computed by adding
the 8-bit twos-complement signed displacement

gspecified in the instruction to the contents of

the IX or 1Y register,
instruction,

also specified by the
Short Index addressing allows random

access to tables or other complex data structures .

where the address of the base of the table is
known, but the particular element index must be
computed by the program,

DATA :
MEMORY L v

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE ADDRESS IN THE INSTRUCTION, :
OFFSET BY THE CONTENTS OF THE REGISTER. , ‘ ¥

Operands specified by SX mode are always in the
data memory address space,

Example of SX mode:

¢+load into the accumulator the
scontents of the memory location
swhose address is one less than
sthe contents of IX

LD A,(IX - 1)

Before instruc_tion execution: After instruction execution:

" A 0 1 ' A: 3 Dl

X |2 0 3 Al X |2 0o 3 A
i

Data memory:

2039: |3 D

4-3

'

et
. +
4, «
5 !
» '
!§ gt
i

: OPERATION
DISPLACEMENT

Address calculation: FF encoding in the instruc-

tion is sign-extended before
the address calculation.

203A
+FFFF
2039

4.2.7 Program Counter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an

8- or 16-bit displacement given in the
instruction,

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction, For extended
instructions, the address used to calculate the
displacement is the address of the template.

INSTRUCTION | PC
PROGRAM
ADDRESS MEMORY

. THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
- WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

~ An opefand specified by RA mode is always in the

program memory address space.

The Program Counter Relative Addressing mode is
used by certain program control instructions to
gpecify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and

for Loads that access constants in the program .

address space.

Fxample of RA mode: A ’

" LD A,<LABEL> = ;load the accumulator with the

scontents of the memory location
swhose address is LABEL

LD A,<$ + 6>

OPERAND

This format implies that the assembler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this
example can also be written in the following
manner :

sload the accumulator with the
scontents of the memory location

_ swhose address is six more than
sthe address of the start of this
;LD instruction

t

or

LD A,(PC + 2) ;load the accumulator with the
scontents of the memory location
swhose address is two more than
sthe current PC, which now points
sto the next instruction

Because the Program Counter is advanced to point
to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction is +2,

]
H

Before instruction execution;: After instruction execution:

A |2 3] N A |7 el

PC: |0 2 0 2 pc [0 2 0 6]

Program memory: ’
N
0202: F D
0203 |7 8 g |
‘ '——-—# instruction
0204 0 2 .
0205: [o ol . |
0206: 1 8
0207: 0 1
. LABEL: 0208: 7 6)
A
Address calculation: | _ ;

0206
¢ 2
0208

., ~ubA s

. 4\ , ‘& '

gy Wl T)
L‘mw-

m

4.2.8 Stack Pointer Relative (SR) S Example of SR mode: = . SR

For the Stack Pointer Relative addressing mode, LD A,(SP +2) "~ 3load into the accumulator
the data processed is at the 1location whose T : sthe contents of the memory
address is the contents of the Stack Pointer » : o ' s location whose address is
offset by a 16-bit displacement in the R stwo more than the contents
instruction. - - ' S I sof SP .

The instruction specifies a twos-complement Before instruction execution: After instruction execution:
displacement that is added to the contents of the ey

Stack Pointer register to form the address. An A m : | | A IF 3

operand specified by SR mode is always in the data s ls 2 0 ol " i SP" 812 0 OJ R
memory address space. e < —_
* Data memory: R
* " INSTRUCTION sP . S
INSTRUCTION P M
MEMORY Top of stack . 8200: "{A B|
. s201: [0 1 ‘ |
_ o | : | 8202: F 3
The SR addressing mode is used to specify data | | | 8203 2 8
items to be found in the stack such as parameters : | o1
passed to subroutines. The System Stack Pointer o g
or User Stack Pointer is selected depending on the Address calculation:
state of the User/System bit in the Master Status - - B
register. - | - g | - . B200
, 8202 =
- 8.2.9 Base Index (BX)
For the Base Index addressing ’mo'de‘, ‘the data .-‘contents of HL, IX, or 1Y, offset by the contents
processed is at the location whose address is the of another of these three registers. . S |
Kl
INSTRUCTION | " REGISTERS o MEMORY

ADDRESS
DISPLACEMENT

THE OPERAND VALVE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

OPERAND

OPERATION] REGISTER 1 | REGISTER2

This mode allows access to memory locations whose - Before instruction execution: After instruction execution:

physical addresses are computed at run time and ‘ _ . v o R . i
are not fully known at assembly time. An operand A B C | A JA 2 o o |
gspecified by BX mode is always in the data memory HL: |1 5 o0 2 | ‘HL: |1 5 o0 2 '
address space. I X: |F F FE X iF FF FI | o g
. - 4
Example of BX mode:
| - , Data memory:
LD A,(HL + IX) ;load into the accumulator the
' scontents of the memory location 1500:
swhose address is the sum of the
scontents of the HL and IX " Address calculation:
sregister '
1502
+FFFE ' : ‘
1500 - | ‘

4-5

o rm e ————— e il

R, P e
- Mt bkt oy g et
- W AR TR e

,,,,

1o,

[H
*
et !
HEE
;;!’l':
i’,;lsl.
PR
t :_:!:=
s
ot
IR
-':-!:l
e
gl
e s
LR
i
.;|t y
R E T
;:‘;;:-‘!
. 1.
ri:
;fi_.'r
et}
R
S,
[P
gt
r-':I:!.
LT PR
ENEE
Pt
o
iy
. -
'10
.
:.‘.;
i

R e - —— i =
e e mey me Ptk S
S e e ek i e e

'~ operate on words in registers or memory;

4.3 DATA TYPES

Many data types are supported by the 7280 MPU
architecture; that is, many data types have a
hardware representation in a 7280 MPU system and
instructions that directly apply to them. The
2280 MPU supports operations on bytes, words,
bits, BCD diqits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and 1/0 address spaces. The 8-bit load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values. |

Operations on l:wo;-byte words are also supported.
Sixteen-bit load and arithmetic instructions
words
can be treated as signed or unsigned numeric
values. I/0 reads and writes can be B8-bit or
16-bit operations. Sixteen-bit logical memory

addresses can be held and manipulated in 16-bit -

registers,

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte

‘registers or byte memory locations can be tested,

set, or cleared.

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accumulator
and Rotate Digit instructions. BCD digits are -
gstored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in-
struction is used after a binary addition or
subtraction of BCD numbers. The Rotate Digit
instructions are used to shift BCD digit strings
in memory.

Strings of up to 65,536 bytes can be manipulated
by the 2280 CPU's block move, block search, and
block I/0 instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings
of bytes in memory to locate a particdlap value.

The block I/0 instructions allow strings of bytes -
or words to be transferred between memory and a
peripheral device. R

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Retufn, Push, and Pop.
A special stack write warning feature aids in the

~allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction.

.
. '. .” . . .‘ . . . r .

5.1 INTRODUCTION

The 2280 CPU's instruction set is a superset of
the Z80's; the Z280 CPU is opcode compatible with
the Z80 CPU. Thus, a Z80 program can be executed
on a 12280 MPU without modification. The
instruction set is divided into ten groups by
function:

8-bit load
16-bit load and exchange
Block transfer and search
8-bit arithmetic and logical
16-bit arithmetic |
Rotate, shift, and bit manipulation
Program control
Input/0Output
- CPU control |
~Extended instructions

This chapter describes the instruction set of the

- 2280 CPUs., First, flags and condition codes are
- discussed in relation to . the instruction set.,

Then, interruptibility of instructions is

- discussed and traps are described. The last part
- of this chapter is a detailed description of each

instruction, listed in alphabetic order by
mnemonic., This section is intended to be used as
a reference for 7280 MPU programmers. The entry
for each instruction contains a complete
description of the instruction, including

- addressing modes, assembly lanquage mnemonics,

instruction opcode formats, and simple examples
illustrating the use of the instruction.

5.2 PROCESSOR FLAGS

The Flag register contains six bité of status

information that are set or cleared by CPU

- operations (Figure 5-1). Four of these bits are

testable (C, P/V, Z, and S) for wuse with
conditional jump, call, or return instructions.

.. Two flags are not testable (H, N) and are used for

binary-coded decimal (BCD) arithmetic.

7 9.
- Llzfefn]ofen]e

Figure 51. Flag Register

Chapter 5.
- Instruction Set:

~correctly,
" struction for further information.

The flags provide a 1link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and
subroutine Return instructions; these instructions
are referred to as conditional instructions. .

5.2.1 Carry Flag (C)

The Carry flag is.set or cleared depending on the |

operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to

1. The Carry flag is cleared to 0 by an add that

does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for . extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the

precision of the result., Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set .

to 1 if a carry occurs when adding BCD quantities.

For the rotate instructions, the Carry flag is

~used as a link between the least significant and

most significant bits for any register or memory
location. During shift instructions, the Carry

- flag contains the last value shifted out of any

register or memory location.
structions the Carry flag is cleared. The Carry

flag can also be set and complemented with
explicit instructions.

' 5.2.2 Add/Subtract Flag (N)

- The Add/Subtract flag is used for BCD arithmetic.

Since the algorithm for correcting BCD operations
is different for addition and subtraction, this
flag is used to record whether an add or subtract

-was last executed, allowing a subsequent Decimal

Adjust Accumulator instruction to perform

See the discussion of the DAA in-

o=1

For logical in- N

pee ey Aoyt = [yreen

LA
- i o>

¢
t 3
i
¥

.

'l'.
R

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending
on the operation being performed. '

For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on

. twos-complement numbers has exceeded the largest

number, or is less than the smallest number, that
can be represented using twos-complement
notation, This overflow condition can be
determined by examining the sign bits of the
operands and the result.

The P/V flag is also used with logical operations

and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are counted. If the total is odd, odd parity (P =
0) is flagged. 1f the total is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing

~ the byte counter results in a zero value, the flag

is cleared to 0, otherwise the flag is set to 1.

During the Load Accumulator with I or R register
instructions, the P/V flag is loaded with the

- contents of the Interrupt A enable bit in the

Master Status register.

When iﬁputting a byte to a register from an I/0
device addressed by the C register, the flag is

- adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to

0 depending on the carry and borrow status between
. bits 3 and 4 of an 8-bit arithmetic operation and

between bits 11 and 12 of a 16-bit arithmetic
operation, This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BCD data. L |

5.2.5 Zero Flag (Z) ’

The Zero flag (Z) is set to 1 if the result
generated by the execution of certain instructions
is a zero.

For arithmetic and logical operatibns, the Zero
flag is set to 1 if the result is zero. If the

result is not zero, the Zero flag is cleared to 0.

" most significant bit,

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location
pointed to by the contents of the register pair
HL.,

When testing a bit in a register or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit is a 0, and
vice-versa). - '

- For the block 1/0 instructions, if the result of

decrementing B is zero, the Zero flag is set to 1;
otherwise, it is cleared to 0. Also for byte

~inputs to registers from 1/0 devices addressed by

the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the 72280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is identified by a zero in the
A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an 1/0 device addressed
by the C register to a CPU register, the Sign flag
indicates either positive (S = 0) or negative (S =

1) data.

For the Test and Set instruction, the Sign bit is"
set to 1 if the tested bit is 1, otherwise it is

cleared to O.

5.2.7 Condition Codes .
The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con-
ditional instructions. The operation of these in-
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into .
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

Jewe o

Table 5-1. Condition Codes

. Flag Binary
Mnemonic Meaning Setting Code
Condition Codes for Jump, Call, and Return Instructions
NZ Not Zero Z=0 000
Z Zero Z=1 001
NC No Carry C=0 010
C | Carry C=1 . 011
NV No Overflow V=20 100
- PO Parity Odd V=20 100
v Overfow V=1 101
PE Parity Even V=1 101
NS No Sign S=0 110
P Plus S=0 110
S Sign S =1 111
M Minus S =1 111

Condition Codes for Jump Relative Instruction

NZ ~ Not Zero Z=0 - 100
Z . Zero | Z=1 101
NC . No Carry C=0 110

- execut ion,

L~ "t

c Carry C=1 111

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

" Two types of exception conditions, interrupts and

traps, can alter the normal flow of program
Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the CPU by

o particular conditions that occur during

instruction execution. Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and
the exception conditions. |

i

" 5.3.1 Instruction Execution and Interrupts

" When the CPU receives an interrupt request, and it

is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are designed to be inter-
ruptible so as to minimize the length of time it

f' takes the CPU to respond to an interrupt. If an
- interrupt request is received during a block move,
 block search, or block I/0 instruction, the in-

struction is suspended after the current iter-

) ation. The address of the instruction itself,

rather than the address of the following in-

.. struction, is saved on the system stack, so that
- the same instruction is executed again when the
'* interrupt handler executes an interrupt return

N
]

-

instruction,

counter and the registers that index into the
block operands are such that, after each iter-
ation, when the 1instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers.

5.3.2 Instruction Execution and Traps -

Traps are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Ingstruction, System Stack Overflow Warning,

Single Step and Breakpoint-on-Halt are nonmask-
able.

The 2280 MPU supports eight kinds of traps:

Division Exception

- Extended Instruction
Privileged Instruction
System Call . .
Access Violation (page fault and write protect)
System Stack Overflow Warning - - % ..

" Single Step . ' S
Breakpoint-on-Halt

The Division Exception trap occurs when executing

- a divide instruction if either the divisor is zero
or the result cannot be represented in the

destination (overflow).

The Extended Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture 1is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the Z280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
2280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions

can be emulated by software that is invoked by the

Extended Instruction trap. For systems with an
8-bit data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use

1/0 instructions to access the EPU. The

information saved on the system stack during this

‘trap is designed to facilitate the B8-bit I1/0 .
. interface to an EPU by providing address

calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an 1/0
interface trap handler.

The contents of the repetition

i ot RTINS R AR

-y

- e Y N o T

-1 P
r AL e i) i
LAYl i RTINS NSRS A

N
A
'if;,-_:
N R
pricies
IS
i H 4
R
1t
p1aal
] I
Yigeme
crbE
'f;fl
:il-':

:

it The Privileged Instruction trap' serves to protect = The Breakpoint-on-Halt trap occurs whenever the
; - the integrity of a system from erroneous or Halt instruction is encountered and the
r | unauthorized actions of wuser mode processes, = Breakpoint-on-Halt control bit in the Master
Certain - instructions, - called privileged = Status reqister is set to 1. This facilitates
* ~ instructions, can be executed only in system software debugging of programs. o

* " mode, - An attempt to execute one of these |

¥ - instructions in user mode causes a Privileged | - :

Al Instruction trap. - - S.4 INSTRUCTION SET FUNCTIONAL GROUPS

Hie | The System Call instruction always causes a trap. This section presents an overview of the 2280
| - This instruction is used to transfer control to instruction set, arranged by functional groups.
,fi | - system mode software in a controlled way, (See Section 5.5 for an explanation of the

ﬁ 2: typically to request operating system services, - notation used in Tables 5-2 through 5-11,)

gﬁjif D The Access Violation trap occurs whenever the 7280 ' - o L
i?ﬁﬁf - - MPU's on-chip MMU detects an illegal memory - 5.4.1 8-Bit Load Group T e e
g’ - access. Access Violation traps cause instructions | S

(i © to be aborted. When Access Violation traps occur, ~ This group of instructions (Table 5-2) includes
| | the logical address of the instruction is pushed load instructions for transferring data between
onto the system stack along with the Master Status = byte registers, transferring data between a byte

*;, | register; part of the logical address that caused register and memory, and loading immediate data
i '~ the page fault is latched in the MMU to indicate into byte registers or memory. All addressing
u | which page frame caused the fault; and the CPU ~modes are supported for loading between the
: | registers are unmodified, i.e., their contents are accumulator and memory or for loading immediate
,{ “ L | the same as just before the instruction execution - values into memory. Loads between other registers
At - began, (For block move, block search, or block and memory use the IR and SX addressing modes. An
. b . 1/0 instructions, the registers are the same as exchange instruction is available for swapping the

{
:ffﬁ; L just before the iteration in which the page fault . contents of the accumulator with another register
gg o - . occurred.) o o S - - or with memory. - | | |

i [~ "The System Stack Overflow Warning trap arises The LDUD and LDUP instructions are available for
J T - when pushing information onto the system stack 1loading to or from the user-mode memory address

1;1' ~causes the Stack Pointer to reference a specified space while executing in system mode. The CPU
s.*” 16-byte area of memory. Use of this facility = flags are used to indicate if the transfer was -
l', | protects the system from system stack overflow - successfully completed. LDUD and LDUP are
”l‘ii | . errors. - o L R privileged instructions. The other instructions
iii:l' | | : o ' | - in this group do not affect the flags_, nor can
i | The Single Step trap occurs with the execution of their execution cause exception conditions. |
Eﬁﬁ? | -~ each instruction, provided the Single-Step control 5 SRR C ' . .

}'s,' | ' bit in the Master Status register is set to 1. VR

1‘!,‘ This facilitates software debugging of programs.

ll:) . | ~ Table 5-2. 8-Bit Load Group Instructions

it | | - Addressing Modes Available -

s

' InstructionName - * ~ Format ~ \R RX IM IR DA X SX RA SR BX

bt ExchangeHL - . - EXHL . . B o
. . - Load Accumulator . - LDAsc - . e e e o e o o« o SR o
B LDdstA e e ‘e e e e e e e
i S Load Immediate LD dst,n e e e o e . © e e

gl - Exchange Accumulator ** .~ EXAsc 0 e e . ‘e e 8 e & o °

. lLoadRegister(Byte) - ' .. LDRsc AU S
. | ' - . LDdstR e e
- LoadinUserDataSpace =~~~ - = LDUDAsrc
P % . LDUDGSstA
e Load in User Program Space - . LDUP Asrc
- . . LDUP dst,A

bt nt T ma YT
L LT e X
Tra ot v N
L ok
- L A
T, Wt

PreTEo T b v I .

o
iy

5.4.2 16-Bit Load and Exchange Group . reqgisters and memory and immediate loads of
S e R e e .. registers or memory. The Load Address instruction 5?
This group of load and exchange instructions facilitutes the loading of the address registers ,
(Table 5-3) allows words of data (two bytes equal with a calculated address. The Push and Pop stack i
one word) to be transferred between registers and instructions are also included in this group. :
memory. The exchange instructions allow for None of these instructions affect the CPU flags, ‘1
switching between the primary and alternate except for EX AF, AF', The Push instruction can i
reqgister files, exchanging the contents of two. cause a System Stack Overflow Warning trap; ’
16-bit registers, or exchanging the contents of an otherwise, no exceptions can arise from the
addressing register with the top word on the execution of these instructions. o
stack, The 16-bit loads include transfers between L B
Table 5-3. 16-Bit Load and Exchange Group Instructions A
o | . | P Addressing Modes Available
Instruction Name R Format "R IM IR DA X SX RA SR BX i
4
Exchange HL with Addressing Register EX DE,HL | | . ii
- Exchange Addressing Register with Top of Stack ..~ EX (SP),XX i
* Exchange Accumulator/Flag with Alternate Bank - EXAFRAF
' Exchange ByteWord Registers with Alternate Bank = EXX .~ R . |
o " Load Addressing Register - LD XX,src | e e o . e e @ il
| - - 0 WDdstXX - . T e e e & e
' Load Register Word) - - LDRRsrc .. - e & o - | 8
o . DAtRR . e e e i
Load ImmediateWord ~ -~ * - LDdsthn e .
- Load Stack Pointer - : R -~ -~ LDSPsrc . * e e e e)
S - " LD dstSP - * ¢ e o Y *
" Load Address R o - LDAXX,src e . "‘
- Pop . T POPdst e e e e e
. Push 7 PUSHsc e e e e S o
*Restricted to an addressing register (HL, IX, or Y).
- 3.4.3 Block Transfer and Search Group . . interruptible; this is essential since the }
. ! | | . o repetition count can be as high as 65,536. The i
This group of instructions (Table 5-4) supports instruction can be interrupted after any | a
block transfer and string search functions. Using iteration, in which case the address of the -
these instructions, a block of up to 65,536 bytes instruction itself, rather than the next one, is - iy
can be moved in memory or a byte string can be saved on the system stack; the contents of the “
searched until a given value is found. All the operand pointer registers, as well as the ,;}
operations can proceed through the data in either repetition counter, ace such that the instruction
direction. Furthermore, the operations can be can simply be reissued after returning from the N
repeated automatically while decrementing a length interrupt without any visible difference in the
counter until it reaches zero, or they can operate instruction execution. | | | | ;;
on one storage unit per execution with the length . | . | §3
counter decremented by one and the source and - Table 5-4. Block Transfer and Search Gi'oup a
destination pointer registers properly adjusted. -
The latter form is useful for implementing more = Instruction Name -~ - . . - Format
(.:omplex .operat.ion..s in software b.y‘adding other . Compare and Decrement | CPD | ‘
instructions within a loop containing the block \
instructions. - - Compare, Decrement and ‘Repga; -+ CPDR N
o | - o - Compa_re and Increment = - o cpPl . | ;
Various 2280 MPU registers are dedicated to ~ _omPareincrementand Repeat - . CPIR'
.specific functions for these instructions: the BC -~ Load and Decrement | y LoD ,1
register for a counter, the DE and HL registers " Load, Decrementand Repeat = =~ LDDR . ,_ 1?
for memory pointers, and the accumulator for - Load and Increment - LU 11}
holding the byte value being sought. The repeti- - - Load, incrementand Repeat -~~~ LDIR - 1,;
tive forms of - these instructions are - ‘ o - g

LY

5.4.4 8-8Bit Arithwetic and Logic Group

- This group of instructions (Table 5-5) performs

8-bit arithmetic and logical operations.
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a reqgister,
immediate data in the instruction itself, or from

The Add,

memory. All memory addressing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack Pointer

Relative, Indexed, and Base Index.

multiplies, which return the 16-bit result to the
HL register, these instructions return the

computed cresult to the accumulator. Both signed

Except for the

from:

and unsigned division are provided. All memory

addressing modes except Indirect Register can be
used to specify the divisor.

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressing modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
8-bit input from the accumulator and returns its
16-bit result to the HL register.

All these instructions except Extend Sign set the

CPU flags according to the computed result. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

i

Addressing Modes Available

Instruction Name Format R RX M IR DA X S8SX RA SR BX

~ Add With Carry (Byte) ADC A,src . . ® ® o o o o o o
Add (Byte) ADD A,src ° ® e o * o o)) .
And - AND A,src ° . o o ° ® ® ° o o
Compare (Byte) CP A,src ® ® °] ® e ‘o o) o
Complement Accumulator CPLA ' |
Decimal Adjust Accumulator DAA A
Decrement (Byte) DEC dst . ° ° o . N .
Divide (Byte) " DIV Asrc X3 ® ° ® ° ° ® °
Divide Unsigned (Byte) DIVU A src ° L L ° o . o ° o
Extend Sign (Byte) ~ EXTSA |
increment (Byte) . INC dst ° ° . . . o . ‘
Multiply (Byte) MULT A,src . ° o o °))
Multiply Unsigned (Byte) MULTU A,src °. ® L o o . o o)
Negate Accumulator - NEG A
Or . - ' . OR A,src ® ® ° Y ° ° ° ° o °
Subtract With Carry (Byte) SBC A,src ° L o o o
Subtract (Byte) SUB A,src o o ° ° ° ° ° ° ° °
Exclusive OR XOR A, src N ° |

5.4.5 16-Bit Arithmetic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations.
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result 1s returned to the addressing register.
The 16-bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Indirect Register, Dicrect Address or PC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices

into tables or arrays in memory.

The Add, Add with

The remaining 16-bit instructions provide general
arithmetic capability using the HL registec as one
of the input operands. The word Add, Subtract,
Compare, and signed and wunsigned Multiply
ingstructions take one input operand from the HL
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit result of a multiply is returned
to the DE and HL registers, with the DE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and HL registers (the DE
register containing the most significant bits) and
a 16-bit divisor from a reqgister, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

w

5~6

Y

.
e e ——————————————————————————— e e e e
16-bit quotient is returned to the HL register and
the 16-bit remainder 1is returned to the Ot
register. The Extend Sign instruction takes the
contents of "the HL cegister and delivers the
32-bit result to the DE and HL registers, with the
DE reqister containing the most siqnificant bits
of the result. The Negate HL instruction negates

the contents of the HL register.

Except for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CPU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions. ‘

Table 5-6. 16-Bit Arithmetic Operation Instructions

Addressing Modes Available

Instruction Name Format - : R M IR DA X RA
Add With Carry (Word) - ADC XX,src .

Add (Word) ADD XX,src LR L

Add Accumulator to Addressing Register ADD XX,A =) AR R)

Add Word ADDW HL,src e o . @

Compare (Word) CPW HL,src ° L o °
Decrement (Word) DECW dst ° e o .o °
Divide (Word) DIV DEHL,src ° ° ° e o
Divide Unsigned (Word) - DIVU DEHL,src - e o . e e s
Extend Sign (Word) EXTS HL | B L, ;
Increment (Word) INCW dst . - '3 ° ® °
Multiply (Word) MULT HL src e . | .
Multiply Unsigned (Word) MULTU HL,src) ° e .o o
Negate HL NEG HL | | OV
Subtract With Carry (Word) SBCXXsc - ey
Subtract (Word) SUBW HL,src o ¢ o e e _ . e

A el .
5.4.6 Bit Manipulation, Rotate and Shift Group

Instructions in this Qrodp (Table 5-7) test, set,

" and reset bits within bytes and rotate and shift
byte data one bit position. Bits to be
manipulated are specified by a field within the
instruction. Rotation can optionally concatenate
the Carry flag to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. All these
instructions except Set Bit and Reset Bit set the
CPU flags according to the calculated result; the
operand can be a register or a memory location
gspecified by the Indirect Register or Short
Index addressing modes.

The RLD and RRD instructions are provided for
“manipulating strings of BCD digits; these rotate
-4-bit quantities in memory specified by the
indirect register. The low-order four bits of the
accumulator are used as a link between rotations
of successive bytes.

None of these instructions generate exceptions.

e, T T T T UT SRR R

- and thereby control program flow.

5.4.7 Program Control Group
. , ’

This group . (Table 5-8) consists of the
instructions that affect the Program Counter (PC)
The CPU
registers and memory are not altered except for
the Stack Pointer and the stack, which play a -
significant role in procedures and interrupts.
(An exception is Decrement and Jump if Non-Zero
[DINZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions specifically designed to set and
complement the Carry flag,

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new

location if the processor flags satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction, Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact -to improve
code compactness and efficiency.

A special ‘Jump instruction tests whether the
primary or auxiliary register file is being used
and branches if the auxiliary file is in use. In

oo S

5-7

L]
. .
L
. ".
S 1}
. ' *
1 h
Piacga f
"h Y
. e .. .
_!;- * oy
AN
o -
-] N 1
o
i L)

+h
i !
i
1y
st
b LRSS B
"51']
cHaits b
S He

Table 5-7. Bit Manipulation, Rotate and Shift Group

Instruction Name

Formai

Addressing Modes Available
R IR SX

Bit Test

Reset Bit

Rotate Left

Rotate Left Accumulator
Rotate Left Circular

BIT dst
RES dst
RL dst
RLA
RLC dst

Rotate Left Circular (Accumulator)
Rotate Left Digit ‘ ‘
Rotate Right o
Rotate Right Accumulator

Rotate Right Circular

RLCA
RLD

RR dst
RRA
RRC dst

Rotate Right Circular (Accumulator)
Rotate Right Digit

Set Bit

Shift Left Arithmetic

Shift Right Arithmetic

Shift Right Logical

Test and Set

RRCA
RRD
SET dst
SLA dst
SRA dst
SRL dst
TSET dst

L

systéms that reserve the auxiliary register file
for interrupt handlers only {(via a software
convention), this instruction can be used to
decide whether registers must be saved.,

Call and Restart are used for calling subroutines;

“the current contents of the PC are pushed onto the

processor stack and the effective address

indicated by the instruction is loaded into the .

PC. The use of a procedure address stack in this
manner allows straightforward implementation of
nested and recursive procedures. Call, Jump, and

Jump Relative can be unconditional or based on the
setting of a CPU flag.

4

Jump and Call instructions are available with the

-~ Indirect Register and PC Relative Address modes in
" addition to the Direct Address mode. These can be

useful for implementing complex control structures
such as dispatch tables., When using Direct
Address mode Ffor a Jump or Call, the operand is
used as an immediate value that is loaded into the
PC to specify the address of the next instruction
to be executed. |

The conditional Return instruction is a companion
to the Call instruction; if the
specified in the instruction is satisfied, 1t
loads the PC from the stack and pops the stack.

Table 5-8. Program Control Group Instructions

condition

Instruction Name Format

Addressing Modes Available
IR DA RA

Call - |
Complement Carry Flag CCF
‘Decrement and Jump if Non-Zero
Jump on Auxiliary Accumulator/Flag
Jump on Auxiliary Register File in Use

JAF dst
JAR dst

CALL cc,dst

DJNZ dst

Jump . - ' | JP cc,dst
JR cc,dst

Jump Relative
Return | "RET cc
Restart | | | RST p
System Call U - o SC nn
Set Carry Flag | R . SCF

5-8

m.

A special instruction, Decrement and Jump if
Non-Zero (DINZ), implements the control part of

the basic Pascal FOR loop in a one-word

instruction.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current program status
is pushed onto the system stack, and a new program

status is loaded from a dedicated part of memory.

5.4.8 Input/Output Instruction Group

This group (Table 5-9) consists of instructions

for transferring a byte, a word, or a string of -

bytes or words between peripheral devices and the

CPU registers or memory. Byte I/0 port addresses -

transfer bytes on ADg-AD7 only. Thus in a 16-bit
data bus environment, B8-bit peripherals must be
connected to bus lines ADg-AD7. In an 8-bit data
bus environment, word I/0 instructions to external
peripherals should not be used; however, on-chip
peripherals can still be accessed by word 1/0
instructions.

The instructions for transferring a single byte

(IN, OUT) can transfer data between any 8-bit CPU.

reqgister or memory address specified in the

instruction and the peripheral port specified by

the contents of the C register. The 1IN
instruction sets the CPU flags according to the
input data; however, special cases of these
instructions, restricted to using the CPU

accumulator and Direct Address mode, do not affect

- the CPU flags. Another variant tests an input
port specified by the contents of the C register
and sets the CPU flags without modifying CPU
registers or memory. . | fo

The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
register and the peripheral port specified by the
contents of the C register. For word 1/0, the
contents of H appear on ADg-AD7 and the contents
of L appear as ADg-ADq5. These instructions do
not affect the CPU flags. | s

The remaining instructions in this qroup form a
powerful and complete complement of instructions
for transferring blocks of data between I/0 ports
and memory. The operation of these instructions
is very similar to that of the block move instruc-
tions described earlier, with the exception that
one operand is always an 1/0 port whose address
remains unchanged while the address of the other
operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

- repeating forms of these instructions are inter-

ruptible.

I/0 instructions are not privileged if the Inhibit
User I/0 bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that I/0 service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control and status
registers are ~accessed using the 1/0
instructions. The contents of the I1/0 Page

~ register are output on ADy3-AD1g with the 1/0 port

address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/0 and no external bus
transaction is generated. 1/0 devices can be
protected from unrestricted access by using the
1/0 Page register to select among I/0 peripherals.

Table 5-9. Input/Output Instruction Group Instructions

Instruction Name S - - Format

Input ~ IN dst,(C)
Input Accumulator | " INA(N)
Input HL . 3 | INW HL,(C)
Input and Decrement (Byte) - IND

Input and Decrement (Word) - o INDW .
Input, Decrement and Repeat (Byte) . INDR
Input, Decrement and Repeat (Word) INDRW

Input and Increment (Byte) | " INI

Input and Increment (Word) - INIW

Input, Increment and Repeat (Byte) - = INIR

Input, Increment and Repeat Word) .. INIRW :
Output | OUT(@)src
Output Accumulator | - G 0UT().A
Output HL .. OUTW(C)HL
Output and Decrement (Byte) -~ OUTD
Output and Decrement (Word) OuUTDW
Output, Decrement and Repeat (Byte) OTDR
Output, Decrement and Repeat (Word) OTDRW
Output and Increment (Byte) | outt - - .
Output and Increment (Word) . OTIRW
Output, Increment and Repeat (Byte) OTIR .
Output, Increment and Repeat (Word) OTIRW

Test Input ' | - TSTI (C)

5.4.9 CPU Control Group

The instructions in this group (Table 5-10) act
upon the CPU control and status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable

~ Interrupt (RETN) and Return from Interrupt (RETI)

5-9

Hohe bt R RO A S e E

£l

v b i el

3 e P A gerreie 5t 22

v b T i

- A .

At U L Pl WNEEY. L -

LW L

VE A

-tE . W Fa s e

T ——— A ——
ey

,,,,,,

are used in interrupt modes 0, 1, and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask register, or to signal a reset to
78400 Family peripherals. The Return from
Interrupt Long (RETIL) instruction pops a 4-byte

program status from the System stack, and is used
“in interrupt mode 3 and trap processing.

Two of these instructions are not privileged: No
Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 5-10. CPU Control Group

Instruction Name | . Format
Disable Interrupt DI mask
Enable Interrupt . ' | El mask
Halt HALT
Interrupt Mode Select . M p

Load Accumulator From | or R Register -~ LD Asrc
Load | or R Register From Accumulator - LD dstA
Load Control | o LDCTL dst,src
No Operation - NOP - |
Purge Cache | - PCACHE
Return From interrupt ’ RETI

Return From Interrupt Long g | RETIL

Return From Nonmaskable interrupt RETN

5.4.10 Extended Instruction Group

The 2280 MPU architecture contains a power ful

. mechanism for extending the basic instruction set

through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended instructions using this facility. The
extended instructions (Table 5-11) are intended

- for use on a 16-bit data bus; thus, this facility

is available only on the Z-BUS configuration of

There are four types of extended instructions in
the 2280 MPU instruction set: EPU internal
operations, data transfers from an EPU to memory,
data transfers from memory to an EPU, and data
transfers between an EPU and the CPU's
accumulator. The extended instructions that
access memory can use any of the six basic memory
addressing modes (Indexed, Base Index, PC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between the EPU and
CPU accumulator are useful when the program must
branch based on conditions gqenerated by an EPU
operation. |

5-10

A 4-byte long "template" is embedded in each of

~ the extended instruction opcodes. These templates

determine the operation to be performed in the EPU
itself, The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CPU activities are described.
The operation of the EPU is implied, but the full
specification of the instruction template depends
on the implementation of the EPU, and is beyond
the scope of this manual. Fields in the template
that are ignored by the CPU are indicated by

. asterisks, and would typically contain opcodes

that determine any operation to be performed by
the EPU in addition to the data transfers
specified by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple-EPU system, '

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPU's Trap Control register. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. If this bit is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extended instruction trap whenever an
extended instruction is encountered; this allows a

trap service routine to emulate the desired -

operation in software. - K

Table 5-11. Extended lhstructions

Instruction Name | Format
Load EPU From Memory EPUM src
Load Memory From EPU , MEPU dst
Load Accumulator From EPU | - EPUF
EPU internal Operation - EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the 72280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary

~encoding for register fields within instruction's

operation codes (opcodes).

The description of each instruction begins on 3

new page. The instruction mnemonic and name is
printed in bold letters at the top of each page to
enable the reader to easily locate a desired

W

description. The assembly languaqge syntax is then
given in a single generic form that covers all the
variants of the instruction, along with 8 list of
applicable addressing modes. This is followed by
~a description of the operation performed by the
instruction, a listing of all the flags that are
affected by the instruction, @ listing of ex-
ception conditions that may be caused by execution
of the instruction, illustrations of the opcodes
for all veriants of the instruction, and a simple
example of the use of the instruction.

The following notation
descriptions of the instructions:

(addr) A direct address

¢addr> An address to be encoded usmg relative
addressing -
b A 3-bit field spe01fy1ng the p031t10n of “.
| 8 bit within a byte
8X Base Index addressing mode .
ce A condition code specifying whether a
flag is set to 1 or cleared to O
d An 8-bit signed displacement
DA - Direct Address addressing mode -
dd A 16-bit signed displacement |
disp The displacement calculated from the
. address in relstive addressing
dst ; Dest ination location or contents
IM Immediaste addressing mode |
IR Indirect Register addressing mode
MSR . The Master Status register
n - 8-bit immediate dats
- nn 16-bit immediate dats
P An interrupt mode
PC The Program Counter |
PS The program status registers (the Program .

| " Counter and Master Status register)
R A . single B8-bit register of the set

(A,B,C,D,E,H,L); also, R1 and R2 are used.

when two different registers are
specified in the same instruction. (Note
that the R register itself is accessed by
8 single instruction and violstes thls
~ convention.)

R! The corresponding 8-bit or
such as A’ »

RA - PC Relative Address addressing mode

RR A 16-bit register of the set (BC,DE,

HL,SP); also, RRA and RRB sre used when
two different reqgisters are spec1f1ed in
the same instruction

RX A single byte in the IX or IY registers; -

that is, a register in the set (IXH,IXL,
IYH,IYL); also, RXA and RXB sre used when
two different registers are specified in
the same instruction . |
SP The current Stack Pointer in use
SR Stack Pointer Relative addressing mode

is used throughout the |

16-bit
register in the alternate register file,

src Source location or contents

SX - Short Index addressing mode

uspP The User Stack Pointer

X . Indexed addressing mode |
XX One of the 16-bit addressing registefs

HL, IX, or IY; also XXA and XXB are used
when two different registers are sgpeci-
fied in the same instruction

XY One of the 16-bit index registers IX or
| IY _

In the binary encoding of the'instruction, lower
case is used for the correspondlng encod;ng of the
assembler syntax,

- Brackets ([and]) are used in the assembly

language syntax to indicate an optional field.
for example, the 16-bit addition instruction for
adding word data to ‘the HL reglster is described

| as:

L3
-

~ ADDW [HL, Jsre

This format mesns the instruction can be written‘
as:
ADDW HL,src
or Lo ‘
ADDW sbc o f '

| Asslgnment of a value is 1ndlcated by the symbol ,

"Cem for example,
dst <-- dst + src

indicates thsat the sodrce data is added to thel
destination data and the result is stored in the

dest inat ion locatlon.

The notation "addr(n)" is used to refer to bit "n"

" of a given location, for example, dst(7).

- The register field in the binary encoding of an

instruction opcode is encoded as shown in Table
5-12.

. Table 5-12. Encoding of 8-Bit Registers in
Instruction Opcodes

Register Encoding

111
. 000
001

- 010
C 011

100
101

FIMOO®>

The remainder of this chapter consists of the
individual descriptions of each 7280 MPU
instruction, ‘ ' ‘

5-11

s AR _ﬁ. ulﬂa- ot .AM wy u%mruxa oy Lv.-g- ﬁ-m Yoy - -1.‘-« . . * + » - ﬁ

[T
. .
* . * * .
. * + - .
L] . .
. . . .
. N -
. - . . - . - . s
- . . B
. . .
. . . - - - - .
. s . .
* . - . . . ¥
M - . - - ¢
- . - * . . - -
: :
. Y . :
. * L ' . . * . ' . " :
“a N - .
L * - . -t - -
.
. * - . - . . - . . - . - . -
- - . . L] -
* ’ L. . v oL s . . - .
) - - . * - - g, . Ll * . .
. * - v * - . + . - . - 3
- . - u - e - . N
) n . ' .t m
. . . - - . \ ..
. - = . - . . N - . - -
- - . - * 4
. + N R » "
N [1
. . N N . o
. .-, L] E
* * . . M .
= - . . - - - . . N - . . . N .
. . . . X v :
. . - . . 1
+ . . . + . . . X . H
. . = - . + N . * . . - . . N
. . :
. - * N . -
. . .
. . . . - . . - . .
.
* * * - + - . . N - . N
* * - + . - * . - . . . »
* - . . - - . * . . L4 . - -
. N * . . . - - +
. [. . . X -, ,
. [N * . B -
- . e * » . . . * . *
. - . N -
* " - . * . - L3 . . 3
! e + . N - * ™
- - - L . = - . . -
* . * - - - - - - . -
. L * - - L} -
' o T : “ .
* 3 "
- \ ., - . . . B . ’
* - . L3 - . » . . »
. - R . .
N "
- - . ’ . - * . - N . * - ’ . + . . M .
: - N * - r
- . . . [- - .
- . . . - .
. - . . -
. N - . .
. . .
1 -
' » .
. . . . B
- b * - - L
L b . . - -
. . I3 . . N . . .
. - . . . N P
N . * K - - .
* * - . * " =
+ - - * - * * * * - .t
. + . LI - . *
* . M . - N
M . ' 3 . -
* *
. . - -
.
. - - ‘ Ll
* . * . . - -
. . * . - .
. . - . . R R -
N . - * . . .
Ll . . * (t . . . LN . M
Ll - . - .
.. . . .
. L3 . . . +
. : . . - .
. . . .
. - *
) * - . .
f
. . . ”
. v
. * * . -
] - . - . . - , N .
- v . b . - . . * * * v * J b ' .
. i - . . ; .
. . .
. . . N . . . - . - .
- P) * - * .
+ . -E * + - - M
- * . . -
* B -~ *. - - * . . T . .
. . . . " .
. . . } . . R
t . . " N . B L] . - - .
. B
. t . N
* o N . * - . .
N . . - = . . .
- - - A . . -
- L} . - . - . + - . N .. = -
L] T L - - - . -
.
.
. s . - . N
L . - - . + * - - . . -
B N . . - : " . . . -
* . . .
) * . o - N M M * . .
- l
. . * -
' . . .
. . . . M
. . . . R 'w . » .
. " N . N + -
* :
- . N . - .
. - . . - . - .
4
. 4 -
‘ . .) . :) - - :
. . . _ - . . + . b
+* * * - + - 0
- * . ' - - * N s * r
. . - . " . . - - " .
+ * . - * - L . *
. - - . - . L . . * .
. . o .) . i
+ Rl » - -
. f - N * - ., - o .
. . . - T . M - . . * - .
v + + - Ll
. . . . + - N + . . R .
- - - - .
* - . - * " . . *
. N
- - . - - . - . * *
h * - e, . . . M -
. . * . . . - T . . M -
.
* * * - * . * -
. . .
. '
’ - - - " .
! + . . . -—
- * + L - * " * . . i
.
L
: * - - - - . *
. . - - . . - .
. T - * -)
+ .0 - -~
. . PTaar . . . - N
. - . , .
- . . . M . . .
* L]
-
. . . P . .
* . 4 N b .
5 + M -
I 7 . N . A . .
. * . . .
. . - A | -, . . " om . - .
- - . + + .
. . - ' . : . ’
. . 4 . .
' " * . A, . .
- - - 4 -) . - - .
* * v N . . a
. - . .
* * M ' . . 3 . - . . f . +
B . . ' .
.
' . . - f * e
T - - . - L]
. . - . .
. 4 - - - + - . -
. R f . .
- - * - - L4 * . ,
. . . s .
) i . . . ' . X
. . R . “ . ‘ N .
* . . . + . -
- . - . -
+ . .\ . .
. :
. N * . . . M -
. R .
' ’ - t . . . - . .
* Ll
) . LI . . .
.
. % +)
. . . .
. . - -
. N 3y . - + . .
* - - ~
. . - . . - -
- ' + . - . "
. ., . . v .) .
. " * . . 3 - .
N . . . : . B . : -t ‘ . '
. . . -+ By .
N "= - * . .
. - .
* M + .t . . .
. . . ‘ '
+ b B * . * -
. . -,
. ’) . [. .
s . - . -
. s . ;
' - . . -
. . - N . . - . -
T * . * -
* * - - * +
. -
. 4 . R
.
) . . . - N . . - .. .
- l‘
. ’ L] . .
- 4 * g - . . - . . e
* . . .
. . . . ; .
¥ . . .
- .
+ . * . -
.
. . N + . . .
. . . .
- . . N
" - - - o *
. .
* -
. . . .
* - . - .. L
. .
. . .
: ' - - - - El - n(l - - - . " »oq'ﬁ - 9||-> .
™~ . e PR g T g e e eeek i s B T i e 22
— v — - | e mm e et w2 = o rmimEzeE mms e X e e T s SR . , . . o, 2 5 [T L I Lo - rves o a5 L L o i bet e, DTy v o o TR s e
H o e s e S e TR S I iR S SAETIT T S B S0 E S fereae cem e e T IS ST S BRI D $ IR — i : : 5 ! T CAL i h s e o R et T a i e s et e I Al T e s
Sl Dot R R A Mg B~ AR ETT o ML e e R X X L8 RS A e T s T, - . : g e ; R Y : TRERETE T femnt e e CRRITHATEL e s B R I TR A
S i~ il oo kg S R S Tk P ey Rl ppers A T T, s et T o S R A Y WL SR T AR L S LR e R - T
T R i N o T YW . == e i N L AT R L e ey T TELT S =T .. nTum
N P il i S R A S~ £ Y - = A R AT SR . . A
z = el e IR T 2 Ll S L LT o o1 B o ST I L T T W e AR el WY R o e i BTy i ch e B semmm m amt D TTLEE T e
T e R S i =gy T m L e e T e © N e s i e Bin Tt e TRt e R e e Bl ST Tl B DRI L S A el YRR TS LI e em sr—
et e T L N N im e T L - = wE oo Ity ol Ly 3 i et e R el v TERETT L =, - jam fupiiat o e a4 w e - e = Amaa mm s we = b e w
: FETEL Eal i vl nlu....HJ..n. Ty R X e et B P e e e D L g = e L AT S T I T A e e T LI

ADC

Add with Carry (Byte)

ADC [A]src ’ src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A<A + src + C
The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected Twos-
complement addition is performed. - - |
Flags: S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sugn and
- the result is of the opposite sign; cleared otherwise
N: Cleared -
C:. Set if there is a carry from the most sugnmcant bit of the result cleared otherwise
Exceptions: None
Addressing - | . . |
’ Mode Syntax - Instruction Format
. R: ADC AR . 10{001| r
RX: ADC ARX ‘ 11{o11]101|| 10001 | rx | |
IM: ADC An y - [11]o01]110 n R
" IR: ADC A(HL) ~ [10]o01]110 e | | |
DA: ADC A, (addr) o 11[011]101}{ 10{001 [111] | addr{low) | | addr(high)
) S ADC A,(XX +dd) . [11]111]101]| 10]|001 | xx d(low) d(high)
SX: ADC A,(XY + d) | 11|{o11[101{[10[001[110 d
RA: ADC A<addr> - 11/111]101} | 10|001[000]| | disp(iow) | | disp(high)
SR: ADC A(SP + dd) 11{011{101|]| 10]001|000|| d(low) dhigh)
BX: ADC A,(XXA + XXB) 11]011 101 || 10|001 | bx '
" Fleld Encodings:. o: Ofor X, 1 for IY
- rx: 100 for high byte, 101 for low byte -
xx: . 001 for(IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
. Example: ADC A,(HL) | |
Before instruction execution: After instruction execution:
AF:| 4 8 | soxxhowmt | AR:[6 1 | - 00x1x000
HL: 2 4 | 5 4 | HL 2 4 5 4
" Data memory:. | 'Data memory:.
2454:| 1 8 | . 2454: 1 8 |

5-13

.;'i":.
e ADC
e
HEr
]
I
|

4 Add With Carry (Word)

A A A

oot

B ADC dst,src . dst = HL

| « src = BC, DE, HL, SP
e ' or

i dst = IX

e src = BC, DE, IX, SP

fi ' - . or

e L dst Y '
i . src = BC, DE, IY, SP

- T
AN, -
L

i - Operation: dst < dst + src + C

Ry . The source operand together with the Carry flag is added to the destination and the sum

R . is stored in the destination. The contents of the source are unaffected Twos-complement -
s . o addition is performed. .

i - Flags: S: Set if the result is negative; cleared otherwise

g Z: Set if the result is zero; cleared otherwise

' _ H: Set if there is a carry from bit 11 of the result; cleared otherwise : -

Eiy | . V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
i o result is of the opposite sign; cleared otherwise

ki - N: Cleared .

s - C: Set if there is a carry from the most significant bit of the result; cleared otherwise.

g Exceptions: None
| } !
{

sl

o {;I: |

i Addressing

f'i'; 1 Mode Syntax ‘ Instruction Format

it ',2}3‘

Rt ADC HL,RR 11/101{101}{ 01] r |010

i) A o | ADC XY,RR S 11]911]/101] { 11{101{101| |01} rr | 010

R
HA Field Encodings: ®: oforix, tforly
Al L w: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

- an

" i Example: ADC HL,BC /

AL | Before instruction execution: After instruction execution:
i . . :

. - o sxxhxvni - | | F: B | 00x0x001 |
B! ~ BC: 0 8 BC: 3 | 0 8 |
‘ 3

me
oW

- N

i A
Tt
Pk
SN S

HL: 3 8 HL: . & 1 |
sty

.{’.

{ i'::l -

SRR

-
At —
ol

-14

| . ' | - ADD

Add Accumulator to Addressing Register

ADD dst,A . dst = HL, IX, IY
- Operation: dst<dst + A o | R S i

| The contents of the accumulator are added to the contents of the destination and the 1
| | result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign- -
extended to 16 bits; twos-complement addition is performed.

VI Ry

| Flags: S: Set if the result is negative; cleared otherwise . . o
Z: Set if the result is zero; cleared otherwise | |)

H: Set if there is a carry from bit 11 of the result; cleared otherwise \ i
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the *ﬂ
result is of the opposute sign from the operands; cleared otherwise . S|

N: Cleared | . &
C: Set if there is a carry from the most significant bit of the result; cleared otherwise S

Exceptions: None . | g

Addressing - . __
Mode Syntax Instruction Format - | 3]

L

ADD HLA 11]101]101] [01]101]01 | | |
ADD XYA - [11]e11]101|{11{101]101][01[101] 101 ' e gl
| |

Field Encoding: ®: OforliX, 1forlY o - C i

Example: ADD HLA - | g
Before instruction execution: After instruction execution: | ' 25
AF: o E 2 szxhxvne AF: E 2 00x1x001
HE [2 3 8 4 H: [2 8 6 _6
Computation: accumulator is sign-extended.)

| FFE2 | | - | | f:
/ +2384 | Ly
2366 | -

5-15

A ALEITE ‘
] *
B : H
s e
131 PO
. Ji it - (T
i MY L P N '
i LAY B L
i ! At
R [
fahioh el
kb i. =la-:
H .

[Add(Byte)

I . ; '
yz %g{;;!}hiifj!f | ~ ADD [Asre | src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

i Operation: A< A + src

e | The source operand is added to the accumulator and the sum is stored in the ac-

il ||* ‘ cumulator. The contents of the source are unaffected. Twos-complement addition is

i . performed. -
R E I . : : ’
vy .

~ Flags: . S: Set if the result is negative; cleared otherwise
S Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V. Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
- the result is of the opposite sngn cleared otherwise -
N: Cleared

C: Set if there is a carry from the most significant bit of the result; cleared otherwise

"~ Exceptions: None

Addressing , | _ | :
| Mode Syntax | Instruction Format
gl - R~ ADD AR S T - P
RX: - 'ADD ARX ~ [1Jen1[101][70
M ADD An [11]000 110
R ADD A(HL) . 'T10[000 110
DA: ADD A (addr) - 11{011[101}] 10
X2 ADD AXX +dd) - [[i11[101][70
SX: ‘_ ADD A(XY + d) - [11]e11]101][10
RA: ADD A<addr> - [11]111]101][10
SR: - ADD A(SP + dd) ~[11]o11]101]] 10
BX: f ADD A,(XX)_G_\ + XXB) 11Jo11]101][10

2| |8
.

111 | | addr(low) addr(high)
XX d(low) d(high)
110 d o
000|| disp(low) disp(high) |
000] [d(low) dhigh | -
bx - |

,}3
|

SIEIBIEIEIE

SR Fleld Encodings: 0 for IX, 1 for IY
- 100 for high byte, 101 for low byte -
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

: 001 _for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + [Y)

REXRe

Example: ADD A,(HL)

P a3 . - ‘ . . .
it - ~ Before instruction execution:: * After instruction execution:

T ' AR [a4 8 sxhxwnc | - AF:[6 0 | 00x1x000 |
e o He[2 4 5 4 H: [2 4 | 6 4 |

i

S o ‘ Data memory: - | Data memory:

oA : "
N | ~ 2454: 1 8 2454; 1 8
RIS J) » (]
[T R : .
RS ‘ .
LA : .
. : -'i . -

!

5-16

"ADD

Add (Word)

~ Operation:

ADD dst,src dst = HL
src = BC, DE, HL, SP
' or
dst = IX
src = BC, DE, IX, SP
or
dst = IY R)
src = BC, DE, lY, SP

~dst <= dst + src

The soUrcé operand is added to the destination ‘and the sum is stored in the destination.
The contents of the source are unaffected. Twos-complement addition is performed.

Flags:

S: Unaffected

Z: Unaffected |

H: Set if there is a carry from bit 11 of the result; cleared otherw:se |
V: Unaffected

N: Cleared

C: Set if there is a carry from the most significant bit of the result; cleared otherwuse

Exceptions:

Addressing
Mode .

\

None

Syntax - ~_ Instruction Format

ADD HLRR oo mjoo1|
ADD XYRR . 11Je11]101] [00 [w [001

Fleld Encodings:

Example

®: Ofor X, 1forlY -
r: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

ADD HL,BC

Before instruction execution | After instruction execution

F szxhxvne F szx0xv01

BC 0 8 BC 2 3 O 8
HL 3 8 HL 1 3 4 0

nN
-~ Il

5-17

L T LT, = Ry i e T 4
s e

Jt
Sfh -
!
4
‘.'
4
&
1

8

1l

%iﬁ“; i

il t *t;
t'i]k

=

.y

oy

STLSLIIE
P o

-ADDW '

Fleld Encodings: ¢:

Add Word

ADDW [HL,]src src = R, IM, DA, X, RA

Operation: HL < HL + src

The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.

Flags: -~ 8: Set if the result is negative; cleared otherwise . .

~Z: Set if the result is zero; cleared otherwise S
H: Set if there is a carry from bit 11 of the result; cleared otherwuse

V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposute sign; cleared otherwnse
N: Cleared

C: Set if there is a carry from the most sugnmcant bit of the result cleared-otherwise

Exceptions: None

~ Addressing

Mode - Syntax Instruction Format

"R .- ADDW HLRR - [q1[101]101] (11 w110

B o ADDW HLXY ~{1t|e11]101]]| 11]101{ 101 || 11| 100} 110

M - ADDW HLnn 11{111{101| 11/101{ 101 {{ 11]110] 110 | | n(low byte) | | n(high byte)

DA: ~ ADDW HL(add) [31Jon1[01][11]101]701] [11]010]110] [addriow)] [addrihigh}
| - ADDW HL,(XY + dd) | 11{111]101]] 11]101{ 101]| 11| xy [110]|| d(low) _d(high)

)
RA: ADDW HL,<addr> - [11Jo11]101] [11]101]101][11]110]110] ["dispflow) | [dispthigh)] -
IR: ADDW HL,(HL) [[11]oti Jro1] [#1]761 [301] [F1]o00]Ti0 T s

0 for IX, 1 for IY - -
mwe 000 for BC, 010 for DE 100for HL, 110 for SP
Xy: 000 for (IX + dd), 010 for (Y + dd)

Example: ADDW HL,DE

Before instruction execution After instruction execution

FP - szxhxvnc F:
DE: [1 DE:
HL: HL:

10x0x000
10

wd
=

p -~
-l ©
>l
k| @

N
(/)

5-18

e N R W s LT AP Sl

BV FOPSE N E

b AN, 51+, i 2

SR iy it s BRIt L et Ny T S

AND
- AND

AND [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
~ Operation: A< AAND src
A logical AND dperation is performed between the corresbonding bits of the source -
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s otherwnse a 0
bit is stored. The contents of the source are unaffected. A S
Flags: ~ St Set if the most significant bit of the result is set; cleared otherwuse
. Z: Set if all bits of the result are zero; cleared otherW|se
H: Set = |
P: Set if the parlty iS even; cleared otherwuse |
N: Cleared - A
C: Cleared
Exceptions: None \
Addressing . 3 o I
Mode Syntax = .~ -~ Instruction Format |
R AND AR © ool e] -
- RX: ~ AND ARX . - [11]e11{101][10]100] mx
S IME AND An - [11]100][110 n
| R: ~ ANDAHL . . - - [1o[700[110]. o
DA: ' AND Afadd) 11]011]101] [10[100[111] [addriiow)] [addrmhigh)
X: CAND AQX +dd) - [11]111]101] [10]100] xx | [dttow)]| [deigh)
) & AND AXY +d [1i]ei1]101] [10]100] 110 d S
 RA: AND A<addr> - | ~ [11/111]101][10]100]{000] | disp(low) | | disp(high)
SR: AND A(SP + dd) - [11]011]101][10{100/000] | d(low) d(high)
BX: AND AQXXA + XXB) - [11]o11]101][10]100] bx I
- Field Encodings: o: 0forIX, 1 for IY -)
o I | rx: 100 for high byte, 101 for low byte .~ -
xx: 001 for (X + dd), 010 for (IY + dd), 011 for (HL + dd)
| bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)
. Example: AND A(HL) - e
| Before instruction execution: After instruction execution: -
AF: 4 8 szxhxpne AF:[-0 8 | 00x1x000
) HL: 2 4 5 4 HL: 2 4 5 4
Datamemory: ~ Datamemory:
2454: 18 | o 2e5a 1 8 |

||||||

[S T PP
[ey)

oy e T
LT,

- e e giam
Cmt aar Tl ma e ow w4
i E e i A+ min by sk nmmh e m b b om

LTy
—

ik Fh-hr R
e T B
. PR

gl
LT T,

.. oI

T

PP e
pa-luieeadt

Ol iim e

DT WY

BIT

Bit Test

BIT b,dst | dst =

Operation: Z < NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if

the specified bit is zero, otherwise the Zero flag is cleared to 0. The contents of the

destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc-
-+ - tion; this field contains the binary encoding for the bit number to be tested. The bit

number must be between 0 and 7.

R, IR, SX

Flags: . S: Unaffected
N o Z

: Set .
: Unaffected
N: Cleared
C: Unaffected

: Set if the specmed bit is zero; cleared otherwuse

Exceptions: None

Addressing

Mode f Syntax | - Instruction Format

Rt -~ - BIT bR . . 11/ 001|011

IR - . BITbMHL . 11[001] 011

SX: . BIT byXY + d) | 11]e11]101

110

Field Encoding: ®: OforlX, 1forlY

Example: -~ BIT 1A

(‘k

Before.instruction execution

After instruction execution

AF: 00010110 szxhxpnc

00010110

5-20

sOx1xp0c

ik

. Opei'ation:

CALL

Call

CALL [ccjdst dst = IR, DA, RA

If the cc is satisfied then; SP <« SP — 2
(SP) < PC
PC < dst

A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code *‘cc’ specified in the instruction; an uncondi-
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return lnstruotlon (RET) can be used to return to the original |
program. ‘

Each of the Zero, Carry; Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

When using DA mode wuth the CALL mstructlon the operand is not enclosed in paren-

theses. ;-

' Flags:

No flags affected
Exceptions: System Stack Overflow Warning
'* . Addressing | | ' -
Mode Syntax . Instruction Format
IR: CALL cc,(HL) 11 011 101][11 cc 100 | |
. CALL (HL) . 11 011_101[11 001 101 . .. | “unconditional call”
DA: CALL ccaddr = [11 cc 100|[addr(low) |[addrthigh) | -
CALL addr ~ [11 001 101][addr(iow) [addrmighy | “unconditional call”
-~ RA: CALL cc<addr> [11 111 101][11 cc 100][disptiow)][disp(high)]
| CALL <addr> 11 111 101 | 11 001 101]| disp{low) || disp(high) “unconditional call”
" Fleld Encoding: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
. . | . 110for Por NS, 111 forMor S
" Example: CALL 2520H |
e Before instruction execution: ~ After instruction execution: |
PC: 1 6 3 0 | PC:| 2 5§ 2 0
SP: F F 2 6 | SP:| F F 2 4
Data memory: . | - Datamemory:
FF24:[0 0 . FFa:[8 3
FF25:] 0 0 | FF25: | 1 6

T Ly - -

CCF

Complement Carry Flag
o CCtF - -
Operation: C<«< NOTC

The Carry flag is inverted.

Flags: S: Unaffected
. - & Unaffected

H: The previous state of the Carry flag
P: Unaffected

("~ N: Cleared . | - - ,
C: Set if the Carry flag was clear before the operation; cleared otherwise
Exceptions: None
Addressing | — | 4
Mode Syntax Instruction Format | '
CCF | | 00 [111]111
Example: CCF o '
~ Before instruction executidn: - Afterinstruction execution:
F: sz2xhxvn0 - X F: sz2x0xvO01

CP

-~ Compare (Byte)

CP [A Jsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A — src
The source operand is compared with the accumuiator and the flags are set according-
ly. The contents of the accumulator and the source are unaffected Twos- complement
subtraction is performed. '
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise - o
H: Set if there is a borrow from bit 4 of the result; cleared otherwnse |
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and
the result is the same sign as the source; cleared otherwise
N: Set - '
C: Set if there is a borrow from the most sugnmcant bit of the result; cleared otherwise
Exceptions: None
Addressing
- Mode Syntax - . Instruction Format
R: CP AR | 10{ 111} «
RX: CP ARX 11]®11{101 || 10{111] rx
IM: CP An - 11]111]110 n
IR: CP A,(HL) 10} 111|110
DA: CP A,(addr) 11]011]101}| 10]111|111|| addr(low) || addr(high)
X: CP A,(XX +dd) | 11{111[101]] 10[111] xx d(low) d(high)
SX: CP AXY + d) 11]{o11}101]] 10{111{110 d L
RA: CP A<addr> 11]111[101|| 10{111]000|| disp(low) || disp{high)
SR: CP A(SP + dd) | 11{011[101|| 10{111]000 d(low) d(high)
BX: CP AOKA + XXB) 11}011{101|| 10{111] bx

_ Field Encodings:

Example:

¢: 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

XX 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)

CP A,(HL)

Before instruction execution: After instruction execution:

AF:[4 8 shxyne | AR 4 8 | ooxox010 |
HL: 2 4 5 4 HL: 2 4 | 5 4 ,
Data memory: Data memory:

2454:| 1 & | 2454:| 1 8 |

5-23

H AR
LIS Er I
‘:i‘ll‘.!' . ~
IR TR
:i].‘_l‘iu !
. I:nf’h'
Al K L.
3 g i
:':'.';'-;li:. . .
AR TN
:i‘:{;:'.'l)
it atd :
R
TR ;i .j -
'i.l & t
“.a{!:'; ' !E
ol ey
_" !..,':':.- t
A
AR .
SURS:

Compare and Decrement

: 1

YL NN

b, H, o

g

PR B *

hgtan oh T ————————
I +

iy M

. oo .
I . + N
BiF g e, , CPD : - . ‘ : t
i”':':;‘;:l“ . . - .
el
t B * . ’

i Operation: ~ A-(HU)
i - HL < HL — 1
L - ' BC «<-BC - 1

"+
b
R ' i- H R . . R
o g .' 1 .
I DU _

iiiivii!;%i: A P ~ This instruction is used for searching strings of byte data. The byte of data at the loca-
e - tion addressed by the HL register is compared with the contents of the accumulator and
'“ - | the Sign and Zero flags are set to reflect the result of the comparison. The contents of
i ~ - the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
e | performed. Next the HL register is decremented by one, thus moving the pointer to the

ik o o -~ previous element in the stnng The BC register, used as a counter is then decremented
- -~ by one. o

o “-"-“".“"’ L

i Flags: .~ 8t Set if the result is negative; cleared otherwise -
el . - Z: Set if the result is zero, indicating that the contents of the accumulator and the
ik | L memory byte are equal; cleared otherwise -
. o | H: Set if there is a borrow from bit 4 of the result; cleared otherwise

it | -~ V. Setif the result of decrementing BC is not equal to zero; cleared otherwnse
e | N: Set - o
i A C: Unaffected

i , Exceptions: None

i . - Addressing . -
it Mode Syntax = Instruction Format

: .
’il, - ' CPD 11]101]101] [10[101] 001
wwﬁ - | |

i Example:
-‘s;'i;*i! i »

B - Beforeinstructionexecution:. . - Afterinstruction execution:

Po i
-‘;‘i&‘ . ‘

el :
i . AF:[3 B
:i:“; .‘|!: s »
P »

L

i :) : .
:‘: .1'. .

Wl .
"l::ii'if .
| BC:| 0 0
ar .

szxhxvnc
1 5
0O 1

AF: 3 B 01x0x01c
HL: 1 4
BC: 0 0 0 O

N
b
N

—
-
-

e -
.
. * *
.
.
.
N
. -
.
- 3
* -
[. E]
. -
N .
. A
.. - . -
- .
. .
-
- - :
. .
-
. .
- . .
. +
.
. .
L] T -
-
. .
- . T
. - .
.
-
. .
L . » -
-
. . .
.
-
+
. +
L -
. .
.
- L]
-
. . \
. .
. - .
.
-
.
L]
.
* -
L]
- -
. . . -
.
. .
- .
+ - . -
]
[- .

i
(AR I
| R PET]
"4 :
I
.....
P H
R
$oih
i I
.!'l -

e i ‘ ~ Datamemory: ' . Datamemory

- o 1215:| '8 B | - 1218:| 3 B |

1.

L 'y
it K
P | i:i .z‘
e T ! #;
[bt
ek n,‘ ,
AT =
e]
::;i' T)
g |
ik -
'{.l'a‘ :

H l'l‘ o‘l
i1 RERe
rl_-hl- 1
Tt 8
tay
ey I
v
| ST
R
E‘.’:"i' i,
,5!:: : }'t .
+ 1 4. -
Lt -h
KIS Sl
'1: . :“; !‘
¢ I o

i i
E i :-! "u!‘.
Aetie e L
ST - Syl
i
Boea s A
QT .

.’!i»,]l .
i1
Foue yy
by
L] .y
[-';:.
Oyt ‘:‘
1ed -
EN o
) 5-24%
":; !;=

:;l.‘l

T
Wiy i

CPDR

Cdmpare, Decrement and Repeat

CPDR
Operation: . Repeat until BC = 0 or match: A - (HL)
HL < HL - 1
BC < BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the

accumulator and the memory bytes are unaffected. Twos-complement subtraction is per-
formed. .

After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de-
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

This instruction can be interrupted after each execution of the basic operation. The Pro-

gram Counter value of the start of this instruction is saved before the interrupt request |s
accepted, so that the instruction can be properly resumed.

Flags: -~ 8: Set if the last result is negative; cleared otherwise
| & Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set

C: Unaffected

Exceptions: None

Addressing .

' Mode Syntax Instruction Format
CPDR | 11101101 | 10{111] 001

Example: CPDR
Before instruction execution: After instruction execution:
AF: F 3 l szxhxvnc { AF: F 3 ' 01xOxit1c
HL: | o+ 1 | 1 8 | HL| 11] 15
BC:| 0 0 07 | BC:| o0 | o 4
Data memory: ~ Datamemory:
1116: F 3 , ' 1116: F 3 |
Mz | 00 | M| oo |
118 | 5 2 | | 118: { 5 2 |

5-25

P]

r e — . e

- T e TS T T T S e e - . - .
.- - b — - o maw =

= LI (- - - L
- - . v - e em mme IS T PR .
. - - =l Do - S TR I 2T, - -
. - . [a— * - - - - T - - =y
T e VT T - st T e i ity At} D iy, 5 e i L R T T T ——— -

- AR R e AT v 8
— ~——- -

-

- e v e e . ..
. . - - - e .
—— % PRI | TR kT eths e R T - - - - - ry
f s e . el . - i .

-. - - - - - IR o+ - -

PO O L A R el - xS i - [y
- -
C e am ey Sl m L om W =

i e
v o R

F odmge temm o m rwa nagly — MR = ST
.

CPI

Compare and Increment

CPI

Operation: A - (HL)
" HL<HL + 1
BC+<BC - 1

This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and i
- the Sign and Zero flags are set to reflect the result of the comparison. The contents of

the accumulator and the memory bytes are unaffected Twos -complement subtraction is
performed. - - - -

-Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented by one.

Flags: = S: Setif the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the -
memory byte are equal; cleared otherwise -
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
‘ | ~ V: Set if the result of decrementing BC is not equal to zero, cleared otherwise
" . N: Set
C: Unaffected

Exceptions: = None | ‘, I . -

Addressing | B |
Mode Syntax , . Instruction Format

CPlI ’ 11{101| 1011] 10!100| 001

Example: - CPI | | | | .

Before instruction execution: - After instruction execution:

AF: 3 B
HL:
BC:{ - 0 O

AF: 3 B 01x0x01c
HL: 1 6
BC: 0 0 0

szxhxvnc
1 &
o 1

b
N

b
N

Data memory . - Datamemory

Y

1215:| 3 B | . - 1215:] @ B

5-26

CPIR

Compare, Increment and Repeat

CPIR
~ Operation: Repeat until BC = 0 or match: A - (HL) S S,
g . HL< HL + 1 S - _
BC<BC - 1 |
ThIS instruction Is used for searchmg strmgs of byte data. The by'(es of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected Twos-complement subtraction is
performed. | » |)
After each comparison, the HL register is incremented by one, thus moving the pointer
to the next element in the string. The BC register, used as a counter, is then de-
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. if the contents of the BC register are .-
zero at the start of this instruction, a string length of 65,536 bytes is indicated. |
This instruction can be interrupted after each execution of the basic operation. The Pro-
- gram Counter value of the start of this instruction is saved before the interrupt request is
) accepted, so that the instruction can be properly resumed.
Flags: S: Set if the last result is negative, cleared otherwise - -
v | Z: Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise | o
H: Set if there is a borrow from bit 4 of the last result; cleared otherwnse SR
V: Set if the result of decrementing BC IS not equal to zero cleared otherwnse
N: Set o
C: Unaffected
Exceptions: None .
Addressing | | 2 '
. .- Mode Syntax . . Instruction Format
CPIR ~ [11]101]101][10]110] 001
Example: CPIR
| | Before instruction execution: | After instruction execution: |
AF: F 3 I szxhxvnec] AF: #¢ 3 - 01x0x11c
HE| 11 | 1 8 | HL| 19 1 B
BG:| 00 | o7 | BC:| 0 0 0 4
Data memory: , » Data memory:
1118: 2 5 | I 1118: 2 5
119:| 0 0 - ‘ 1119: | 0 O
11A:| F 3 o | 111A: F 3

‘ ' 5-27

o ——— -

R Py e ‘-‘-S.!.‘-‘-"—.-:."'«‘:..." .:_

5 oy

i, 't
§¥ i
i

P
- i
aa—

e rmap

s e

2 cosee

CPL

Complement Accumulator | _ :

CPL [A]

Operation: A < NOT A

The contents of the accumulator are complemented (ones complement) all 1 bits are
changed to 0 and vice-versa.

Unaffected
Unaffected
H: Set -
V: Unaffected
: Set
: Unaffected

Flags: I -
- o y 4

Exceptions: None

Addressing | t L :
Mode | Syntax o Instruction Format

CPL A 00/101|111

I3
ﬁ
.
. .

Example: -~ CPLA “_;

Before instruction execution: . - After instruction execution:

.~ 'AFr[28 | sxhxvnc | AF[D 7 | szxixvic |

¥
a
"f
3
w
By
s

i

CPW

o Compere (Word)

CPW [HL,]src | - src = R, IM, DA, X, RA

B Operation: HL — src

" The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected Twos complement subtraction’is
performed. - .

.‘.?-. .

- Flags: S: Set if the result is negative; cleared otherwise
R Z: Set if the result is zero; cleared otherwise | -
H: Set if there is a borrow from bit 12 of the result; cleared otherwuse , -
V: Set if arithmetic overflow occurs, that is, if the operands are of dlfferent S|gns and the
- result is the same sign as the source; cleared otherwuse L | y
N: Set | -
C: Setif thereis a borrow from the most sugmflcant bit of the result cleared otherwuse Lo

Exceptions: - None

- Addressing | | B | | S
- Mode - Syntax | - Instruction Format e L -
R CPW HL,RR 11]101]101) [11] m [111]
~ CPW HLXY | 11{e11]101] [11{101 101 11|1oo|111‘ |
IM: CPWHLMM 11]111[101] [11[101[101 | [11[110]111] [n(low byte) | [nthigh byte)
.~ "DA: CPW HL(addr) - - [a 011101} | 11]101 [101] [11]010]111] [addr(ow) | [addr(nigh
| X -~ CPW HL,(XY + dd) 11]111]101| [11{101|101]| 11000 111 d(low) d(high)
RA: | CPW HL<addr> 11/011|101| | 11|101|101||11{110|111|| disp(low) || disp(high)
R: | CPW HL(HL) \ W0 [701] [01 |01 | [T [000 [+1 |

Field Encodings: o: 0OforiX 1forly -
Lo rr: 000 for BC, 010 for DE, 100 for HL 110f0rSP BT

Example: CPW HL,DE S |
‘ | - Before inetruction execution: - | . After instruction exeeuti'on: |
o - sxavne | F: [1oxoxo010
DE:{ 0 0 | 10 { DbEEl 00 | 10
- HL: A 1 [2 3 | ~ HL: A 1 | 2 3

. R . -
. - » .
it .
! a
.
. + .
.-
' .
. .
'
' . . .
- .
- [
.
. . +
. . . .
. .
+ .
. -
-
: +
-
N +
. -
L
! "
- Ll
. . -
. . -
. . . .
. . - L. . .
. ! .
. . . R -, . -+
. . . X

5-29

Decimal Adjust Accumuiator

DAA
Operation: - A < Decimal Adjust A
The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD ADC, INC) or subtractlon (SUB, SBC
DEC, NEG) e
) Operation of DAA Instruction
3 * HexValuein ~ Hex Valuein Number |
. C Before Upper Digit HBefore LowerDigit Added CAfter H After
Operation DAA (Bits 7-4) - DAA (Bits 3-0) toByte DAA DAA
0 09 0 09 00 0 0
; 0 0-8 0 A-F 06 0 1
- ADD 0 - 09 1 0-3 - 06 0 . 0
- ADC -0 A-F -0 - 0-9 60 1 0
- INC 0 9-F -0 A-F 66 - 1 1
(N = 0) 0 A-F 1 0-3 - 66 . 1 -0
| 1 . 02 - 0 09 60 1 0 .
1. 0-2 0 A-F 66 1 1.
1 0-3 1 0-3 . 66 1 -0
SuB 0 09 0 09 .- 00 0 0
SBC 0 . 0-8 1 6F . . FA 0 -1
DEC 1. 7-F 0 0-9 .. A0 1 0o
NEG 1 6-F 1 6-F 9A 1 1
(N = 1) y o . R B
o The operatnon IS undeflned if the accumulator was not the result of a binary addition or sub-
- traction of BCD digits. - '
Flags: S: Set if the most significant bit of the result is set; cleared otherwise
. . &: Setif the result is zero; cleared otherwnse
H: Seetableabove
P: Set if the parity of the result is even; cleared otherwnse
N: Not affected
| C: Seetable above
'Excepﬁons: None |
- Addressing . T
| Mode Syntax - Instruction Format
DAA . [oo]100 11}

- 5-30

r) -
F
o

lExanupkn

DAA

Before instruction execution:

AF:

szx0xp01

-
C -
.
.

AF

4}

After instruction execution:

8 8

r

00x0x001

5-31

re

3R e B . I = B

faa}

It

o '

I8 ;'ll- M

ii: i [.
) I

. g d 34 'i.
IR S AN _

) i\

Decrement (Byte)

bl ' . DEC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX

TR e
i aialifer

Opération: dst < dst — 1

| ,, o The destination operand is decremented by one and the result is stored in the destina-
| | tion. Twos-complement subtraction is performed.

Flags: | S: Set if the result is negative; cleared otherwise ’.

. | - & Set if the result is zero; cleared otherwise

: o H: Set if there is a borrow from bit 4 of the result; cleared otherwise

| ~ V: Set if arithmetic overflow occurs, that is, if the destination was 80y; cleared otherwise
N: Set - | | S -

C: Unaffected

deopkl '
i !.e:!f,;f; ‘ Exceptions: None

i Addressing | - .
| Mode Syntax Instruction Format
3 | R: -~ DECR ' - [o0] ¥ 101 ‘ | i
¢ Rt DEC RX . []e11]108 101 |
|

S
R

o IR: DEC (HL) . 00| 110} 101
i DA ' DEC (addr) 11[011] 101
| 3 DEC (XX +dd 11[111] 101
- 8X: " DEC (XY + d) 11]e11]101
T RA: . DEC <addr> | 11{111] 101
*'u ' - SR: DEC (SP + dd) -~ [11]o11]101
| BX: DEC XA + XXB) 11{011]101}]

111101]| addr(low) || addr(high)
xx | 101 d(low) d(high)

110} 101 d |
101|| disp{low) || disp(high)
000] 101 d(low) d(high)
bx | 101

g|[2][2][2][s] 8
g

¢ O for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

XX < 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Fileld Encodings:

ey

it Example: = DEC (HL)

SR - - Before instruction execution: | After instruction execution:

gty . "F: - ' szxhxvne] : F:_ | | 10X0x01c
.; | HL: 2 4 | 5 4 1 HL 2 4 5 4

T - - Datamemory: | | .- Datamemory:

L
4 L4
[
i H -
berr !
;' .)
R TN I
HE
A d s .
o LA L~
' | T l-i‘l

:
!
ol '
A 5-32

DEC[W)]

- Decrement (Word)
DEC[W] dst - | dst = R
or
DECW dst | dst = IR, DA, X, RA
Operation: dst < dst — 1 | ‘
The destination operand is decremented by one. Twos-complement‘ subtraction is
performed. - . , ~ .
Flags: | No flags affected
Exceptions: None
{;}; Addressing |
g Mode Syntax Instruction Format
2 R - DECW RR 0o] wr Jo11
DECW XY 11}e11| 101}] 00|101] 011 |
IR: DECW (HL) 11/011] 101} | 00{001] 011
DA: . DECW (addr) - 11/011{101){00{011] 011 | { addr(low) || addr(high)
X: DECW (XY + dd) 11]111) 101} (00| xy {011 | d(low) d(high)
RA: DECW <addr> 11{011/101{ [00{111[011 || disp(low) || disp(high)

Field Encodings: ¢: 0OforiX 1forlY
. r: 001 for BC, 011 for DE, 101 for HL, 111 for SP
Xy : 001 for (IX + dd), 011 for (IY + dd)

Example: - DECW HL

Before instruction execution: After instruction execution: -

HL: 2 3 0 8 HL: 2 3 0 7

5-33

DI

Disable Interrupt
DI mask - - Mask = Hex value between 0 and 7FH
Operation: If mask(i) = 1 then MSR() < O

The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
- unaffected. If no mask is present then all interrupts are disabled.

Any combination of interrupt enables in the MSR can be specn‘led The seven blts in the

- mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
- mask bit i corresponding to MSR bit i. | .

Flags: ' No flags affected
Exceptions: Privileged Instruction | T
Addressing | - - - s
Mode Syntax -+ Instruction Format
Di S 11]110{ 011 c
DI mask - .- 11]101]101] [01]110[111]] mask

" Mask = byte speclfymg whrch mterrupts to drsab e: mask(i) corresponds to mterrupt source |,
mask(7) must be zero. |

Example: . DI 23H | |
o Beforeinstructionexecution: -~~~ Afterinstruction execution:
MSR:| 0 © 7 F ~ MSR:|_0 0 5§ C |

5-34

Operation:

- R Dwtde(Byte)

DIV [HL]Jsrc ~ src = R, RX, IM, DA, X, SX, RA, SR, BX

A<HL = src
L < remainder -

- The contents of the HL register (dividend) are divided by the source operand (divisor) and
- the quotient is stored in the accumulator; the remainder is stored in the L register. The
~ contents of the source and the H register are unaffected. Both operands are treated as

signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend. -

There are three possible outcomes of the DIV tnstructton dependrng on the division and
the resulting quotlent -

CASE 1: If the quotient is within the range —27 t0 27—1 mclusuve then the quotrent iS

left in the accumulator, the Overflow flag is cleared to 0, and the Stgn and Zero flags are
set according to the value of the quotient. |

CASE 2: If the divisor is zero, the accumulator remains Unchanged the Zero and

Overflow flags are set to 1 and the Slgn flag iS cleared to 0. Then the Drvrsron Exceptlon
trap is taken. , . .

. CASE 3: If the quotient IS outside the range —27 to 27— 1, the accumulator remains un-
- changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.

Then the Division Exceptlon trap is taken

S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwuse K
Z: Set if the quotient or drwsor rs Zero; cleared othenmse
H: Unaffected -

- V: Set if the divisor is zero or if the computed quotlent Iles out3|de the range from 27 .

to 27— 1:; cleared otherwuse
N: Unaffected
C: Unaffected

Exceptions:

Division Exception
Addressing o | |
Mode - Syntax . Instruction Format
R: DIV HLR S 11]101]101|[11| r | 100
RX: DIV HL,RX | [11]911]101[] 11]101] 101 | | 11| x | 100
IM: DIV HL,n | 11[111]101]{ 11]101] 101 | {11][111]100 n
- DA DIV HL,(addr) ' 11]011}101[11]101] 101] [11]111]100| [addr(low) || addr(high)
X DIV HL,(XX + dd) 11} 111101]] 11]101{ 101 | [11] xx [100 d(low) d(high)
8X: DIV HL(XY + d) - T11]et1]101]]11]1017101][11[110] 100 d |
RA: DIV HL<addr> 11]111]101|{ 11]101]101]{11]/000] 100 || disp(low) || disp(high)
SR: DIV HL,(SP + dd) 11Jo11]101][11]101]101][11]o00]100] [d(low) d(high)
BX: DIV HL,(XXA + XXB) | 11]o11]101]} 11]101]101][11] bx [100
IR: DIV HLHL . [1]101] 101] [#4] 100 100

'

5-35

W e g WL LT

X ET T LR REr Rt S T s S LT

. . oy ety Lt Ly -y
" . SR o T e VTR gt T YA g b S 4 RS
. e . A R, o ,.‘J“\-....{._.Vﬂniw.u.iga St i v + ot e] i .
A T AR Sy PR M L lalr ot RO Sr e al & fony Akl Y] . L] -

. 3 PTIRT , HE, T, - L
. - . e Ty PAEGAUA T T e AT N SR RTINS e
e e e A ..‘Ti...._.jr:.......taar....‘..huu!v}j‘s_...a!- EE L ..1.1 t\Ap!lt T 7 ..J..J..) ik . PRl r

i

-,
’
-

00xhx0Onc
F
F

1
F

C:
L:

After instruction execution
AF 0
H F

F
F

szxhxvne

-

001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

100 for high byte, 101 for low byte

O foriX, 1 for lY

AF:
C:
HL:

DIV HL,C
| ‘Before instruction ex_ecution
5
F

¢
rx
XX
bx

Field Ehcodings

Example
5-36

)

L]
-
i
-
[l
T o . - R e, H D e
A e & TRAL § PVt o g x e -
ER . ST
. e
-t St .
LAt e Vel ey s T R i Sems -y = T e el
T.S N - - ...-.—I. N T e g < - T T PRI L oy EaML LS b By R
et - S k. o b ¢ B 7 b - i e RS+ 4 ~ :
e T e et ek e T n e . I . Sp——— E e
i mm e hs w_ weprera efioe e e

g —rai S

Sl e T

A SR, T S T T T R el el

e

DIVU

Divide Unsigned (Byte)

- DIVU [HL,]src | | src = R, RX, IM, DA, X, SX, RA, SR, BX
Operation: A< HL = src 3
| ‘ L < remainder
The contents of the HL register (dividend) are divided by the source operand (divisor) and
~ the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not affected Both operands are treated as
unsigned, binary integers. | | | | |
There are three possible outcomes of the DIVU tnstructton dependrng on the division .~ -
and the resulting quotient: |
CASE 1: If the quotient is less than 28, then the quotient is left in the accumulator, the
Overfiow and Sign flags are cleared to 0 and the Zero flag is set according to the value
of the quotient. S | | |
CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag iS cleared to 0. Then the Dwrsron Exceptton
trap is taken. | .
CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un-
changed, the Overfiow flag is set to 1, and the Sign and Zero flags are cleared to O.
Then the Division Exception trap is taken -
Flags: S: Cleared B
- Z: Set if the quotient or dtwsor IS zero; cleared otherwise
H: Unaffected . | |
V: Set if the divisor is zero or if the computed quottent IS greater than or equal to
28: cleared otherwise
" N: Unaffected
C: Unaffected
Exceptions: Division Exception
Addressing : | |
Mode Syntax Instruction Format
R: . DIVU HL,R 111101}101 || 11} ¢ | 101
RX: DIVU HL,RX - [1]e11]101][11]101]101] [11] rx [101
IM: DIiVU HL,n _' 11]111]101] [11]101]101] [11]111] 101 n _
DA DIVU HL(add) - []o11]101] [11]101 101] [11]111]101] ["addrtow)][addrnign)
X DIVU HL,(XX + dd) 11]111]101 | [11{101]101 | {11] xx {101 d(low) d(high)
SX: DIVU HL(XY + d) - {11]o11]101 [11]101 {101 | |11{110] 101 d |
RA: . DIVU HL<addr> - 11|111}101 (| 11]101[101 | [11]000|101 || disp(low) || disp(high)
" SR: DIVU HL,(SP + dd) ~ [11]o11]101][11]101]101] [11]000 [101 d(low) d(high)
BX: DIVU HL(XXA + XXB) ' [11]or1T1o1][11]101]701 | [11] bx [101
IR: DIVU HLHL) " [11]101 Jro1] [11]110 [r01 |

5-37

Field Encodings: o®: oforix 1forly | |
SRR T T | ¢ 100 for high byte, 101 for low byte \ '
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd) |
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: DIVU HLC
Before instruction execution: ' . - After instruction execution:]
AF: 5 5 | szxhxvne AF: 8 0 00xhxOnc
C: | 0 2 C: 0 2 |
He |- 0 1 | 0 1 H: | 0 1 0 1
:
; :
¥) N

- DIVUW
Divide Unsigned (Word)
DIVUW [DEHL,]src Src = R,‘ IM, DA, X, RA

Operation: HL < DEHL + src
DE < remainder

The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotient is stored in
the HL register and the remainder in the DE register. The contents of the source are
unaffected. Both operands are treated as unsigned, binary integers. |

There are three possible outcomes of the DIVUW instruction, depending on thé division
and the resulting quotient: -

CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to 0. and
the Zero flag is set according to the value of the quotient. ' '

CASE 2: If the divisor is zero, the DE and HL registers remain uncHanged, the Zero and

Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken. , ’

CASE 3. If the qubtient is greater than 216 — 1, then the DE and HL registers remain un-

changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to 0.
Then the Division Exception trap is taken.

Flags: S: Cleared
. Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected - . - .
V: Set if the divisor is zero or if the computed quotient is greater than or equal to 216:
cleared otherwise | | ' ' '
- Nt Unaffected
C: Unaffected

Exceptions: Division Exception
Addressing | - |
Mode Syntax - | Instruction Format
R -~ DIVUW DEHL,RR - [11]101]101 || 11] rr [O11
DIVUW DEHL,XY 11/#11{ 101} 11{101| 101 || 11{101] 011
IM: DIVUW DEHL,nn | 11]111[101 | 11]101{ 101 | | 11]111] 011 n(low) nthigh) |
DA: DIVUW DEHL,(addr) - (11]011[101]] 11]101] 101 || 11]011] 011 || addr{low) | ["addr{high)
X: DIVUW DEHL(XY + dd) [11]111]101][11]101[101 [[11] xy [011][disp(iow) disp(high)
RA: DIVUW DEHL, <addr> 11011] 101 11{101[101 | {11111 011 || disp(low) | [disp(high)
IR: DIVUW DEHL(HL) 1 Jow | 101] [11 [101 [707] [Joo1 | on o

Fleld Encodings: o: oforix 1forly

r: 001 for BC, 011 for DE, 101 for HL, 111 for SP
Xy : 001 for (IX + dd), 011 for (IY + dd)

5-39

. .
- a
H R ,
. .
1
* .
- -
-~
.
- .
N .
K
[
N .
.
.
* .
- . .
. . R
.
. - . N
-
-
4 .
.
.
b4
-
-
-
.
-
-
N .
[
. .
.
-
M . .
L}
. +
.
.

~

5-40

DIVW

" Divide (Word)

Field Encodings: .

DIVW [DEHL, Jsrc . src = R, IM, DA, X, RA
Oper'atlo'n: o HL < DEHL + src
- DE < remainder
The contents of the DE and HL registers (with the DE register containing the most signifi-
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source-are unaffected. Both operands are
treated as signed, twos-complement integers and division is performed SO that the re-
mainder is of the same sign as the dividend.
There are three possible outcomes of the DIVW mstructton dependmg on the division
and the resulting quotlent ‘ -
CASE 1: If the quotient is within the range — 215 to 215 — 1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.
CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
. Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the DIVISIOFI Exception
trap is taken. |
CASE 3: If the quotient is outside the range — 215 to 215— 1, the DE and HL registers re-
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
0. Then the Division Exception trap is taken.
Flags: S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwnse
| Z: Set if the quotient or divisor is zero; cleared otherwuse ;
H: Unaffected
V: Set if the divisor is zero or if the computed quotient lies outsnde the range from 215
to 215— 1; cleared otherwuse .
N: Unaffected
C: Unaffected
Exceptions: Division Exception
Addressing | - |
Mode Syntax ' Instruction Format
R: DIVW DEHL,RR | 11/ 101} 101{] 11| o 010
DIVW DEHLXY - [1fen1[101][11]101]701] [11[101] 010
IM: DIVW DEHL,nn 11]111] 101]| 11{101[101{{ 11]111] 010 n(low) n(high)
DA: DIVW DEHL,(addr) 11{011|101}{ 11{101{101{]| 11|011]010|| addr(iow) || addr(high)
X DIVW DEHL,(XY + dd) 11] 111} 101 | 11{101] 101 {11 xy [010]| (low) d(high)
‘RA: DIVW DEHL<addr> [11Je11]101][11]101]101] [11]111]010] [displow) | [disp(high)
IR: DIVW DEHL,(HL) . |atfon 101][11{101 {101 || 11]o01]0t0 |
o: O foriX, 1 ‘for Y

" 001 for BC, 011 for DE, 101 for HL, 111 for SP
Xy : 001 for (IX + dd), 011 for (IY + dd)

5-41

Example: -

| Before instruction execution:

- DE

5-42

DIVW DEHL,6

After instruction execution:

F: sxhxme | F
: I 00 DE:

Q@
Q1O
N
N
09
oo

HL: HL:

Nt

b
.‘" :
!'_’_".
s
B
P
iy
=
E
¥
=
v
.
Py
S
h
3
3

nI

DJNZ

Decrement énd Jump if Non-Zero

DJNZ dst - . dst = RA

| Opératioh:' . B<B-1 -
- ‘|fB¢0thenPC<-dst

The B register is decrem'en;"ed by one. If the result is non-zero, then the destination ad-
dress is calculated and then loaded into the Program Counter (PC). Control then passes
to the instruction whose address is pointed to by the PC. When the B register reaches

zero, control falls through to the instruction followmg DJNZ. This mstructlon provudes a
- simple method of loop control. - :

The destination address is calculated using Relatlve addressmg The dlsplacement in the

- instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction. The 8-bit displacement is treated as a signed, twos-complement
integer. Thus the branching range from the location of this instructionis - 126to + 129

- bytes.
Flags: Noflags affected
Exceptions: None
Addressing - - .
. Mode Syntax - Instruction Format -
RA: - DJNZ addr - - . 100]/010§000 disp
. Example: ~ DJNZ 1050H
' Before instruction execution: ~ Afterinstruction executio‘n:
B: 12 | B | 11
PC:| 10 7 6 | PC:| 10 | 60

5-43

“El

~ Enable Interrupt
El mask Mask = Hex value between 0 and 7F4
Operation: |f fnask(i) = 1 then MSR(i) < 1

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl-
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected.
Note that during the execution of this instruction and the following instruction, all

maskable interrupts (whether previously enabled or not) are automatlcally disabled for
the duration of these two instructions. -

Any combination of interrupt enables in the MSR can be specified. The seven bnts in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

Flags: No flags affected
Exceptions: Privileged Instruction
Addressing |
Mode ~ Syntax Instruction Format
El . 0 []]ors
| - El mask | 11]101]101]}[01]111]111][mask -
Mask = byte specnfymg which interrupts to dlsabe mask(i) corresponds to mterrupt source i;

- - . mask(7) must be zero. - ’
Example: El 49H
| o Before instruction execution: | - After instruction execution:

- MSR: 0 0 0 0 | ~ MSR: 00 | 49 |

5-44

EX

Exchange Accumulator/FIag with Alternate Bank

EX AFAF’
Operdtion: AF < AF’

The control bit mapbing the accumulafé;' and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectlvely exchanglng the accumulator and flag
registers between the two banks. E L

Flags: | Loaded from F’

~ Exceptions: None

Addressing - . B '
. Mode . Syntax - . Instruction Format

EX AF.AF’ | 001001/ 000

Example: EX AF.AF’

Before mstructlon execution: o - After instruction execution

AF 2 3 F 31 AF 1 0B O ’
AF’ 1 0 B 0 AF’ 2 3 F 3 |

EX

- Exchange Addressing Register with Top of Stack

EX (SP)dst ' dst = HL, IX IY .
Operationn @ (SP).< dst

The coﬁnteﬁts of the destination regisier are exchanged with the contenté of the top of
stack. That is, the low-order byte contained in the register is exchanged with the con-
tents of the memory address specified by the Stack Pointer (SP), and the high-order byte

of the register is exchanged with the contents of the next highest memory address
(SP + 1). | | - S

Flags: No flags affected

'Exceptions: . None
Addressing . N - R
- Mode | Syntax = "~ Instruction Format

EX (SP)HL - . [a1]100]o11 |
- v
EX (SP),XY - - “[11]e11]101 | [11]100]| 011

Field Encoding: @: Ofor X, 1 for IY
Example: = .~ EX (SP),HL

Before instruction execution: After instruction execution:

HL:
SP:

1 9 3 o HL: B 3 2 A
2 0 0 | SP: 8 2 00

2
8

’ S \

Datamemory: . Data memory:

8200 2 A | - 8200: 9 3
8201 B 3 8201 2 1

EX

Exchange Hand L
EX H,L
Operation: H< L
The contents of the H and L registers are exchanged.
Elags: No flags affected
Exceptions: ~ None
Addressing
- Mode Syntax Instruction Format
EX H,L 11[101{101 || 11]101[111
Example: EX H,L
Before instruction execution: After instruction execution:
_ HL: 1 2 3 4 HL: 3 4 1 2

OGRS AR M SN ARG, - S A Rl ¢

5-47

EX

Exchange Hand L
B EX H,L
Operation: H<L
The contents of the H and L registers are exchanged.
Flags: No flags affected
Exceptions: © ~ None
Addressing
Mode Syntax Instruction Format
EX HL 11]101/101 [11[101]111
Example: EX H,L
Before instruction execution: After instruction execution:
HL: 1 2 3 4 HL: 3 4 1 2

S — E—

EX

Exchange HL with Addressing Register

EX src,HL src = DE, IX 1Y

Operation: src < HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
EX DE,HL - 11} 101 {011
EX XY,HL 11|®11[101 ({11 (101|011
Field Encoding: ®: OforiX, 1forty
Example: EX DE,HL
Before instruction execution: After instruction execution:
DE: 8 2 E O DE: 3 8 F F
HL: 3 8 F F | HL: 8 2 E O
548

EX

Exchange with Accumulator

EX Asrc src = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: src <> A ‘

The contents of the accumulator are exchanged with the‘ contents of the source.

Flags: No flags affected
Exceptions: . None
Addressing .
Mode Syntax Instruction Format
R: EX AR 11{101| 101]{ 00| r | 111
RX: . BEXARX [11]e11{101]] 11]101{101]] 00} rx [111
IR: EX A(HL) {11101} 101{] 00|110] 111
DA: EX A,(addr) 11{0t1{101}| 11{101}j101}| 00|111]111|| addr(low) || addr(high)
) & EX AKX + dd) 11{111]101{| 11}101]{101|]| 00| xx | 111 d(low) d(high)
SX: EX AXY + d) 11|11} 101{| 11|101|101 |} 00|110| 111 d
RA: EX A <addr> 11]111{101|]| 11]101|101 || 00[000{111{| disp(low) disp(high)
SR: EX A(SP + dd) 11{011|101{| 11|101]101|}{00{000|111 d(low) d (high)
BX EX A (XA + XXB) 11{011]{101|| 11|101|101]|{ 00| bx | 111

Field Encodings: ®: OforiX 1forlY

rx: 100 for high byte, 101 for low byte
XX : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: EX AB
- Before instruction execution: After instruction execution:
A: 0 3 A: 8 2
B: 8 2 B: 0 3

WD R

EXTS

Extend Sign (Byte)
EXTS [A] '
Operation: L < A

If A(7) = 0, then H < 00 else H < FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the

accumulator are unaffected. This instruction is useful for conversion of short signed
operands to longer signed operands.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
EXTS A 11{101| 101 || 011|100} 100
Example: EXTS A
Before instruction execution: After instruction execution:
A: 8 2 A: 8 2 |
HL: | 5 5 5 5 H: | F F 8 2 |

EXTS

Extend Sign (Word)
- EXTS HL
Operation: If H(7) = O, then DE < 0000 else DE < FFFF
The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the result is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of
signed operands to larger signed operands.
Flags: No flags affected
Exceptions: None
Addressing
Mode . Syntax . Instruction Format
EXTS HL 11/101| 101 || 01} 101] 100
Example: EXTS HL
Before instruction execution: After instruction execution:
DE: 0 3 2 F | DE: F F F F
HL: E F 3 0 HL: E F 3 0

EXX

Exchange Byte/Word Registers with Alternate Bank

EXX
Operation: BC < BC’
DE < DE’
HL < HL’
The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, D, E, H, and L
registers between the two banks.
Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
EXX 11|011{ 001
Example: EXX
Before instruction execution: After instruction execution:
BC: 2 3 A O BC: 3 8 0 F
DE: 1 6 5 3 DE: E 2 0 0
HL: 2 4 F F HL.: 1 F A 3
BC" 3 8 0 F BC" 2 3 A O
DE" E 2 00 DE" 1 6 5 3
HL" 1 F A 3 HL" 2 4 F F

.- Ll
& - w'%:ﬂ

HALT

HALT
HALT
Operation: CPU Halts
The CPU operation is suspended until an interrupt or reset request is received. This in-
struction is used to synchronize the Z280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc-
tion following HALT is executed. While halted, memory refresh cycles still occur, and bus
requests are honored.
For the Z80 Bus configuration of the Z280 MPU, the HALT signal is asserted when the
Halt instruction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the halt instruction is executed.
If the Breakpoint-on-Halt control bit in the Master Status register issetto 1, the Halt
" instruction is not executed, and Breakpoint-on-Halt trap is taken instead.
Flags: No flags affected
Exceptions: Breakpoint, Privileged Instruction
Addressing
Mode Syntax ' Instruction Format
HALT 01/110} 110

IVi

Interrupt Mode Select

Operation:

IM p

Interrupt Mode < p

The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip-

tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.

Flags: No flags affected
Exceptions: Privileged Instruction
Addressing
Mode Syntax Instruction Format
IM p

P
o encoding
0
1
2
3

Example: IM 3

Before instruction execution:

. Interrupt Status register:- + -

p=201273

After instruction execution:

Interrupt Status register: - -

ks |

il

IN

input
IN dst,(C) dst = R, RX, DA, X, RA, SR, BX
Operation: dst < (C)
The byte of data from the selected peripheral is loaded into the destination. During the 1/0O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Ag-A45 and the
contents of the I/0O Page reqister are placed on address lines A5-As3. The byte of data from
the peripheral is then loaded into the destination.
Flags: S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero, cleared otherwise
H: Cleared
V: Set if the input data has even parity; cleared otherwise
N: Cleared S
C: Unaffected
Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format
R: IN R,(C) 11{101{101|| 01} r {000
RX: IN RX,(C) 11|o11{ 101]| 11]101[101 || 01| rx | 000
DA: IN (addr),(C) 11]011[101|[11101101 [{01|111] 000 || addr(low) |{ addr(high)
X: IN (XX + dd),(C) 11}{111§101]| 11]101{ 101 |[01] xx | 000 d(low) d(high)
RA: IN <addr>,(C) 11{111|101{}11{101{101 ||01]{000| 000 || disp(low) disp(high)
SR: IN (SP + dd),(C) 11{011[101{{ 11}{101[101 | |01|000| 000 d(low) d(high)
BX: IN (XXA + XXB),(C) 11/011{101|[11|101| 101 | [01| bx | 000

Field Encodings:

¢: OforIX, 1 forly

rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + [X), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: IN L,(C)
Before instruction execution: After instruction execution:
F: szxhxvnc l F: ' 00x0x00c
BC:| 1 6 5 0 | BC:| 1 6 | 5 0
HL: 0 0 2 3 | HL 0 0 | 7 6
I/O Page register:
1 1

Byte 76 available at /O port 1116504

5-55

IN

Input Accumulator
IN A(n)
Operation: A < (n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
|/O transaction, the 8-bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accumulator are placed on address lines

Ag—A1s and the contents of the I/O Page register are placed on address lines A1g—Aos.
The byte of data from the selected port is written into the accumulator.

Flags: No flags affected
Exceptions: .. Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format

IN A(n) 11{011] 011 n
Example: IN A, (66H)

Before instruction execution: After instruction execution:

A: 4 2 | , Al F D |
l/0 Page register:
1 1

Byte FDy available at I/O port 114266}

INC

Increment (Byte)

INC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX
" .
Operation: dst <= dst + 1
The destination operand is incremented by one and the sum is stored in the destination.
. Twos-complement addition is performed. |

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
- H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 7Fy; cleared

otherwise
N: Cleared
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: INC R oo} r |100
RX: INC RX 11|11 101 || 00] rx | 100
IR: INC (HL) 00}/ 110| 100
DA: INC (addr) ~ [11Jo11]01] [00] 111]100] [addriow) | [addr(high)
X: INC (XX + dd) * 111111} 101 | | 00| xx | 100 d(low) d(high)
SX: INC (XY + d) 11|¢11|101 | {00] 110] 100 d
RA: INC <addr> 11{111{101 | [00{000{ 100 | | disp{low) disp(high)
SR: INC (SP + dd) 11011} 101 | |00]|000| 100 d(low) d(high)
BX: INC (XXA + XXB) 11[/011] 101 | | 00| bx | 100
Field Encodings: &: oforiX, 1forly - RARAERIE
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (iIX + 1Y)
Example: INC (HL)
Before instruction execution: After instruction execution:
F: szxhxvnc F: l 10x0x00c
HL: 2 4 5 4 HL: 2 4 | 5 4
Data memory: ‘ Data memory:
2454; 8 8 | 2454; 8 9 |

_ N N i e

INC[W]

Increment (Word)

O

INC[W] dst dst = R
or
INCW dst dst = IR, DA, X, RA
Operation: dst < dst + 1
The destination operand is incremented by one. Twos-complement addition Is performed.
Flags: No flags affected
Exceptions: None ~
Addressing o - C e e
Mode Syntax Instruction Format
R: INCW RR 00{ rr | 011
INCW XY 11{¢11{ 101} | 00{100{ 011
IR: INCW (HL) 11{011} 101 || 00|000{ 011
DA: INCW (addr) 11{011]101]| 00|010{011 || addr(low) || addr(high)
X: INCW (XY + dd) 11}111} 101 || 00] xy | 011 d(low) d(high)
RA: INCW <addr> | 11]o11[101]|[o00]110]011]{ dispilow) || disp(high)
Field Encodings: ®: OforiX, 1forlY
rr:’ 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (Y + dd)
Example: INCW BC
Before instruction execution: After instruction execution:
B:| 3 F | 12 | B[8 F 1 3
5-58

IND

Input and Decrement (Byte, Word)

IND
INDW

(HL) < (©)
B<B — 1
HL < AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the |/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A1s, and the contents of the
/O Page register are placed on address lines A1g—Ao3. The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z. Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax . Instruction Format
IND 11{101|101{]10|101]| 010
INDW 11|101 101 || 10{001| 010
Example: : INDW
| | Before inétrué'tion ekecution: Afterinétrﬁ&ion exe'cution:‘
F: szxhxvnc ' F: l sOxhxvic
BC:| 1 5 64 | BC:| 14 | 6 4
HE:| 5 0 0 2 | Hu| s o | 0 0
I/O Page register: Data memory:
3 3 | 50022 | @ 7 |

5003: 8 b |

Word 8D074 available at 1/O port 331564

Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

'
-
i
. B . " ‘
P . L TP T Pt= wr) g

INDR

Input, Decrement and Repeat (Byte, Word)

INDR -
INDRW
Operation: Repeat until B = 0: (HL) < (C)
B<B -1
HL <~ AUTODECREMENT HL (by one if byte, by two if word)
This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the 1/0 transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A4s, and the contents of the
110 Page register are placed on address lines A1g—Ao3. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then decremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains O at the start of the execution of this in-
struction, 256 bytes are input.
This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.
Flags: S: Unaffected
Z. Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Ekcéptibns: Privileged Instruction (|f "th’é Inhibit User 1/0 bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format B
INDR 111101101 }[10]111]|010
INDRW 11}101/101 || 10011} 010

Example:

INDR

Before instruction execution:

F: | szxhxvnc

BC: 0 3 | 4 6

HL: 5 2 | 1 8
I/O Page register:

Byte 9A, available at
/0 port 1703464,
then byte 3By available at
11O port 170246|_|,
then byte FFy available at
/O port 170146y,

After instruction execution:

F: [sixhxvic
BC: 0 0 4 6
HL: 5 2 | 1 5

Data memory:

5216: F F
5217: 3 B
5218: 9 A

INI

Input and Increment (Byte, Word)

T ————

INI
INIW

Operation: (HL) < (C)
B<B - 1
HL <= AUTOINCREMENT HL (by one if byte, by two if word)
This instruction is used for block input of strings of data. During the 1/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—-A1s, and the contents of the
I/O Page register are placed on address lines Ajg—Ao3. The byte or word of data from

~ the selected peripheral is loaded into the memory location addressed by the HL register.

The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. -

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected |
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INI 11101101 |{10{100] 010
INIW 11101101 || 10{000|010

Example: CINI
Before instruction execution: After instruction execution:

F: ’ szxhxvne F: (sOxhxvic
BG: | 1 5 | ¢ 4 | BC:| 14 | 64
"HL| 5 0 | 0o 2 | Hu| 5 0 | 0 3 |
|/O Page register: Data memory:
3 3 | 5002 | 7 A |

Byte 7A available at
I/0 port 331564

s AT w‘!ﬂ

.

INIR

Input, Increment and Repeat

Operation:

INIR
INIRW

Repeat until B = 0: (HL) < (C)
B«<B -1
HL < AUTOINCREMENT HL (by one if byte, by two if word)

-

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the 1/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A15, and the contents of the
|/O Page register are placed on address lines A1g—A»23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, iIs then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is

repeated. Note that if the B register contains O at the start of the execution of this in-
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program

Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

| Flags:

S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

‘ Exceptions: Privileged Instruction (if the Inhibit User /O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format
INIR 11/101]101 | (10/110}010
\ INIRW 11[101]101 {[10{010{010
I _ _

Example:

INIRW

Before instruction execution;

F: [szxhxvnc

BC:| 0 2 | 5 5

H:| 4 0 | 0 2
1/O Page register:

3 1

Word 66D7 available at
/O port 3102554
then word A8FFy available
at I/O port 3101554

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

After instruction execution:

F: [sixhxvic
BC: 00 | 5 5
H:| 4 0 | 0 6
Data memory:
4002: | D 7 |
4003: | 6 6 |
4004: | F F |
4005: | A 8 |

IN[W)

Input HL

IN[W] HL,(C)

Operation: HL < (C)
The word of data from the selected peripheral is loaded into the HL register. During the
/O transaction, the 8-bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines Ag—Aqs
and the contents of the I/O Page register are placed on address lines A1g—Ao3. Then one
word of data from the selected port is written into the HL register. For 8-bit data buses,
- the contents of L are undefined for external peripherals.
Flags: No flags affected
Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing '
Mode Syntax Instruction Format
IN HL,(C) . 111101{101 |{10[110 [111
Example: INW HL,(C)
Before instruction execution: After instruction execution:
BG:| 26 | 50 | BC: | 26 | 50
H: | 33 | 83 | HL:
I/0 Page register: "
10 |

Word 4D87, available at /O port 102650

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU s used.

JAF

Jump On Auxiliary Accumulator/Flag

JAF dst , dst = RA
Operation: If auxiliary AF then PC < dst
A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. .lf
the jJump is taken, the Program Counter is loaded with the destination address; otherwusg
the instruction following the JAF instruction is executed. This instruction emp!oys an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range —125 to + 130 bytes from the location of this instruction.
Flags: No flags affected
Exceptions: None
Addressing 3
Mode Syntax Instruction Format
RA: JAF addr 11|011|101{ [00{101{000 disp
Example: JAF 5000H
Before instruction execution: After instruction execution:
Auxiliary Accumulator/Flag in use
PC: 4 F E 6 PC: 5 0 00
5-66 B

JAR

Jump On Auxiliary Register File In Use

JAR dst dst = RA
Operation: If auxiliary file then PC < dst
A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address; otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos-
complement displacement from the Program Counter to permit jumps within the range
—125 to +130 bytes from the location of this instruction.
Flags: No flags affected
Exceptions: None
—Addressing .
Mode ~ - Syntax . Instruction Format
RA: JAR addr 11011} 101{{00{100} 000 disp
Example: JAR 42DOH
Before instruction execution: After instruction execution:

Auxiliary file in use

PC:| 4 2 | F 6 - | PC:| 4 2 D o |

’ 1 M"a“-bﬁ '

JP

Jump
JP [cc,|dst dst = IR, DA, RA
Operation: If cc is satisfied then PC < dst
A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code *““cc’’ specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per-
mits jumps within the range —32764 to +32771 bytes from the location of this instruc-
tion.
Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.
When using DA mode with the JP instruction, the operand is not enclosed in paren-
theses.
Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format B
IR: JP CC,(HL) 11}011} 101]| 11| cc | 010
JP (HL) 11{101] 001 “unconditional jump”
JP (XY) 11|o11| 101 || 11{101| 001 “unconditional jump”
DA: JP CC,addr 11| cc |010 || addr(low) || addr(high)
|) JP addr . |11]000|011}| addr(low) || addr(high) “unconditional jump”
RA: JP CC<addr> 11{111|101 |{11| cc {010 || disp(low) disp{high)
| JP <addr> 11{111{ 101 |[11]000[{011 || disp(low) disp(high) || “unconditional jump”
Field Encodings: ®: OforlX, 1forlY
cC: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 tor PO or NV, 101 for PE or V,
110 for P or NS, 111 for Mor S
Example: JP C,5000H
Before instruction execution: After instruction execution:
F: | szxhxvn1 F: { szxhxvn1
PC: 2 6 | 8 4 PC: 5 0 | 00

of a
}i-
ne

\ue
ing

iC-

np

JR

Jump Relative

JR [cc,]dst dst = RA

If the cc is satisfied then PC < dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code ‘‘cc’’ specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit

signed, twos-complement displacement from the PC to permit jumps within the range
—126 to +129 bytes from the location of this instruction.

Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

Flags: No flags affected

Exceptions: None
" Addressin

Ad:node ° Syntax Instruction Format

RA: JR CC,adadr 00! cc | 000 disp
JR addr 00/011{ 000 disp “unconditional jump”

Field Encoding: cc: 100 for NZ, 101 for Z, 110 for NC, 111 for C
Example:. JR NZ,6000H

Before instruction execution: After instruction execution:

F: [sOxhxvnc F: sOxhxvnc
PC: 5 F | D 4 PC: 6 0 00

LD

Load Accumulator

LD dst,src dst = R, RX, IR, DA, X, SX, RA, SR, BX
src = A
or
dst = A
src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: dst < src
The contents of the source are loaded into the destination. The contents of the source
are not affected. Special instructions are provided so that the BC and DE registers can
also be used in the IR addressing mode.
Flags: No flags affected
Exceptions: None
Load into Accumulator
Addressing
Mode Syntax Instruction Format
R: LD AR o1}111} r
RX: LD ARX 11|11 101 || 01{111] rx
IM: LD An 00{111| 110 "n
IR: LD A(HL) 01{111{ 110
LD A/(RR) 00| rra { 010
DA: LD A(addr) 00{111{010({ addr(low) || addr(high)
) & LD A(X + dd) | 11{111{101 || 01|111| xxa d(low) d(high)
sx: LD AXY + d) 11[e11]101][01111110 d
RA: LD A<addr> 11{111]101|{01]111]000 || disp(low) disp(high)
SR: LD A(SP + dd) 11{011|101}]|01{111]000 d(low) d(high)
BX: LD A XA + XXB) 11]011{101{|01]111] bx

Load from Accumulator

Addressing
Mode Syntax Instruction Format
R: LD RA . o1 r {111
RX LD RXA 11|o11}101{{ 01 rx |111
IR: LD (HL)A 01/110(111
LD (RR),A 00| rrb | 010
DA: LD (addr)A 00{110/010|| addr(low) || addr(high)
X LD (XX + dd)A 11/101[101 || 00{xxb|011 d(low) d(high)
SX: LD (XY + d)A 11|o11]101|{ 01[110| 111 d
RA: ... LD <add>A 11{101{101{]00(100|011 || disp(low) || disp(high)
SR: , LD (SP + dd)A 11/101|101|{ 00{000 011 d(low) d(high)
BX: LD (OXXA + XXB)A 11|101)101 (| 00} bx {011
Field Encodings: ¢: OforiX 1forly
oo 100 for high byte, 101 for low byte L
rra: 001 for BC, 011 for DE B
reb: 000 for BC, 010 for DE
xxa: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
xxb: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Examples: LD A(HL)
Before instruction execution: After instruction execution:
A |0 F # A |oB ‘
HL: 1 7 0 C HL: 17 0 C
Data memory: Data memory:
170c: [0 B | 170c: |0 B

LD

Load from | or R Register

LD Asrc src = |, R

Operation: A < src
The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

Flags: S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared . . _
V. Set when loading the accumulator if the interrupt A Enable bit is set; cleared

otherwise

N: Cleared
C: Unaffected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

LD Al 11]101]101 |[o1[010] 111
LD AR 11{101|{101 [|01|O11| 111

Example: LD AR
Before instruction execution: After instruction execution:

AR 10 | saone] AR [4 2 00x0x10¢
R | 4 2 R: 4 2

MSR: | 4 0 | 7 F MSR: | 4 0 N

LD

Load Immediate (Byte)

LD dstn dst = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: dst < n

The byte of immediate data is loaded into the destination.

Flags: No flags affected
Exceptions: - = None
Addressing -
Mode Syntax Instruction Format
R: LD R;n 0o r [110 n_ |
RX: LD RX,n 11{11{101 | {00] rx | 110 n
"R: LD HLN 7 7 [oo[110] 110 n T
DA: LD (addr),n 11]011] 101 |{00|111] 110 | | addr(low) | | addr(high) n
X: LD (XX + dd),n 11]111] 101 [00] xx J110] | d(low) d(high) n
SX: LD (XY + d),n 11]o11{ 101 | |00[110] 110 d n
RA: LD <addr>,n 11/111] 101 | {00{000] 110 | | disp(low) | | disp(high) | n
SR: LD (SP + dd),n 11/011| 101 | |00{000]|110 || d(low) d(high) n
BX: LD (XXA + XXB),n 111011} 101 | |00 | bx | 110 n

Field Encodings: ®: OforlX, 1forlY
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example: LD A55H
Before instruction execution: After instruction execution:
A: 6 7 A: 5 5

b —

LD

Load Register (Byte)
LD dst,src dst = R
src = R, RX, IM, IR, SX
or
dst = R, RX, IR, SX
src = R
Operation: dst < src

The contents of the source are Iqaded into the destination.

Flags: No flags affected
Exceptions: None
Load into Register
Addressing
Mode Syntax Instruction Format
R: LD R1,R2 01] r1 | r2
RX . LD R*,RX 11]o11{101{{01] r* |
LD RXARXB 11| 11| 101 || 01 |rxa| rxb
LD RXR* 11{®11{101][01 [rx | r*
IM: LD R,n 00| r |110 n
LD RX,n 11[{o11] 101 |[00 | x [110 n |
IR: LD R,(HL) 01| r {110
SX LD RXY + d) 11jo11[101 ({01 r [110 d

PR T T AU IV R T r

Load from Register

IR: LD (HL),R o1[110| r
SX: LD (XY + d),R 11{o11{101|{01{110] ¢ d
Field Encodings: ®: OforlIX, 1forIY

rx: 100 for high byte, 101 for low byte
rxa: 100 for high byte, 101 for low byte

rxb: 100 for high byte, 101 for low byte
rxa and rxb refer to the same index register

r*: Only registers A, B, C, D, and E can be accessed
rig2: See Table 5-12

Example: LD AB
Béfore iInstruction execution: After instruction execution:
Al 03 | Al 8 2 |
B:| 8 2 | B 8 2 |
5S-74 _“

BT I, PR AL el S o

LD

Load to | or R Register

LD dstA | - dst = |, R
Operation: dst < A
The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.
Flags: No flags affected .
Exceptions: Privileged Instruction
FAddressing _
Mode Syntax Instruction Format
LD LA . . . o - 7 111{101[101{{01]000] 111
LD RA 11{101|101 || 01{001 | 111
Example: LD LA
Betore instruction execution: After instruction execution:
Al © D Al oD |
I: 2 2 ' I 0O D J

LDA

Load Address
LDA dst,src dst = HL, IX, IY
src = DA, X, RA, SR, BX
Operation: dst < address(src)
The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address translation mechanism in the MMU
IS not used to determine if the address is valid.
Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
DA: LDA HL,(addr) 00/100{001 || addr(low) || addr(high)
LDA XY (addr) 11{»11{101 || 00[100| 001 || addr(low) addr(high)
X: LDA HL,(XX + dd) 11/101] 101 || 00| xx {010 d(low) d(high)
LDA XY, (XX + dd) 11|{o11]|101 |} 11{101]| 101 | |00] xx | 010 d(low) d(high)
RA: LDA HL <addr> 111101{101 |{00{100|010 || disp(low) disp(high)
LDA XY <addr> 11(¢11[101 || 11]|101|101 [|00]100]010 || disp(low) disp(high)
SR: LDA HL,(SP + dd) 11]101|101 || 00{000]| 010 d(low) d(high)
LDA XY, (SP + dd) 11}{o11]{101 || 11[101| 101 | |00{000| 010 d(low) d(high)
BX: LDA HL,(XXA + XXB) 11{101|101 || 00| bx | 010
LDA XY, (XXA + XXB) 11|o11]101][11{101]|101 | (00| bx {010
Field Encodings: - ¢: OforIX, 1forty =7 oo e et iem e iate. AN R b
XX : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx : 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: LDA HL,(IX + 4)
Before instruction execution: ! After instruction execution:
HL: 2 3 0 8 HL: E 3 2 8
)& E 3 2 4 IX: E 3 2 4

Address calculation:

E324
+ 4

E328

LDCTL

Load Control

LDCTL dst,src dst = (C), USP
| src = HL, IX, IY
or
dst = HL, IX, IY
src = (C), USP
Operation: dst < src
This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:
| Address
Register =~ o o oo - (Hexadecimal)
Master Status register (MSR) 00
nterrupt Status register 16
nterrupt/Trap Vector Table Pointer 06
/O Page register * 08
Bus Timing and Initialization register * FF
Bus Timing and Control register * 02
Stack Limit register 04
Trap Control register * | 10
Cache Control register * 12
|.ocal Address register * 14
* 8-bit control register
When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control register contents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.
Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.
Flags: No flags affected
Exceptions: Privileged Instruction

Addressing

Mode Syntax Instruction Format
LDCTL HL(C) 11/101}101{(01[100] 110
LDCTL XY,(C) 11[o11]101 | [11]101]101 | |01]100]110
LDCTL (C),HL 11{101]|101 || 01]101} 110
LDCTL (C). XY 11|011]101 || 11{101} 101 | {01]101 {110
LDCTL HL,USP 11{101{101|{ 10{000}{ 111
LDCTL XY,USP 11{®11]101 || 11|101|{ 101 [[10{000 [111
LDCTL USPHL 11[101]101 || 10{001| 111
LDCTL USPXY 11|o11{101 || 11[101] 101 | [10]|001 [111
Field Encoding: ®: OforIX 1forly
Example: LDCTL (C),HL
Before instruction execution: | After instruction execution:
C: o8 | C: 0 8
HL: 5§ 5 | 3 A 1 HL 5 5 3 A
I/0O Page register: I/O Page register:
00 | 3 A

LDD

Load and Decrement

LDD
Operation: (DE) < (HL)
DE < DE - 1
HL < HL — 1
BC < BC - 1
This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
- register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.
Flags: S: Unaffected -
Z: Unaffected
_H: Cleared o .
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
LDD 11{101|101]|10{101{000
Example: L.DD
Before instruction execution: After instruction execution:
F: [szxhxvne 9 F: ' szx0x00c
HL: | 9 | 1 1 CHE| 41 | 100
DE: | 2 | 2 2 | DE| 2 2 | 2 1
BC:| O | 0 7 | Bz| 00 | o6
Data memory: Data memory:
1i:| 8 8 | M11: | 8 8 |
22222 | 6 6 | 2222: | 8 8 |

LDDR

Load, Decrement and Repeat

LDDR
Operation: Repeat until BC = 0: (DE) < (HL)
DE < DE — 1
HL < HL — 1
BC < BC — 1
This instruction is used for block transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
~ pointers ensures that the source string is copied without destroying the overlapping area.
This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.
Flags: S: Unaffected
Z: Unaffected
H: Cleared
V. Cleared
N: Cleared
C: Unaffected
Exceptions: None
Addressing -
Mode Syntax Instruction Format
LDDR 11]101 [101] [10]111] 000
Example: LDDR
Before instruction execution: After instruction execution:
F: szxhxvnc 1 F: f szx0x00¢c
HL | 1 1 1 7 | HE| 171 14
DE: | 2 2 2 5 | oE| 22 | 2 2
BC:| o0 o0 0 3 BC:{ 0 0 | 0 0
Data memory: Data memory:
115 | 8 8 115: | 8 8 |
1116:| 3 6 116:| 3 6 |
1M117:| A S 17| A5 |
2223: 9 6 2223; 8 8 1
2224 1 1 2224; 3 6 |
2225: 2 6 2225: A S |

LDI

Load and Increment

LDI

Operation: (DE) < (HL)
DE <~ DE + 1
HL < HL + 1
BC «<BC - 1
This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the
pointers to the next elements in the strings. The BC register, used as a counter, is then
decremented by one.

Flags: S: Unaffected
Z: Unaffected

.. H: Cleared - e , e e ey e g A pA ots-

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

L DI 11{101{101 || 10{100|000

Example: LDI
Before instruction execution: After instruction execution:

F: P szxhxvnc - F: szx0x00c ’
HL: 1 1 1 1 HL: 11 1 2-
DE: 2 2 | 2 2 DE: 2 2 2 3
BC: 00 0 7 BC: o 0 0 6

Data memory: Data memory:
111:| 8 8 | 111: | 8 8
222:| 6 6 | 2222: | 8 8

>-81

P T

LDIR

Load, Increment and Repeat

LDIR
- i
Operation: Repeat until BC = 0: (DE) < (HL)
DE < DE + 1
HL < HL + 1
BC < BC — 1
This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
65,536 bytes are transferred. The effect of incrementing the pointers during the transfer
IS important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy-
iIng the overlapping area.
This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.
Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected
Exceptions: None %)
Addressing O
Mode - Syntax = -~ -~ " """ Instruction Format
LDIR 11{101{101 | |10]110{000

5-82

Example: LDIR

Before instruction execution: - Afterinstruction execution:
F: | szxhxvnc l F: ’ szx0x00c
HE | 1 1} 2 5 HL | 101 | 2 8
DE:| 2 2 | 10 DE: | 2 2 | 1 3
BC:| 00 | 0 3 BC:| 0 0 | 0 0
Data memory: Data memory:
1125: 5 A | 1125: 5 A |
1126: | B 0 | _1126:| B 0 |
127: | 7 8 127: | 7 6 |
2210: F F 2210: 5 A |
2211: 9 A 2211: B 0 |
______ 222 2 7 2212 7 6 |

LDUD

Load in User Data Space (Byte)

Operation:

LDUD dst,src " dst = A
src = IR or SX in user data space
- or
dst = IR or SX in user data space
src = A
dst < src

The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to translate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for data in user-mode operation is used to translate

the destination address. See Chapter 7 for an explanation of this mechanism. The con-
tents of the source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
Is successful, the Carry flag is cleared to O; if the transfer is unsuccessful, the Carry flag
IS set to 1. The other flags are unaffected if the transfer is successful. lf the transfer is
unsuccessful, the value of the Write Protect (WP) bit in the Page Descriptor register

used by the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid
bit is loaded into the V flag.

Flags:

02 <T

S: Unaffected ‘

Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

: Unaffected '

For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

unaffected otherwise

: Unaffected

: Set if the transfer is unsuccessful; cleared otherwise

Exceptions:

Privileged Instruction

Load from User Data Space

Addressing
Mode Syntax Instruction Format
IR:. LDUD A,(HL) 11]101}101 | 10]000]| 110
SX LDUD AXY + d) 11|®11|101 (| 11{101(101 |[10]000]110 d

Load into User Data Space

IR:
SX

LDUD (HL),A 11{101[101 || 10{001|110
LDUD (XY + d)A 11{e11]101 | {11]101]101 | [10]001]| 110 d

Field Encoding: ®: OforIX 1forlY

Example: LDUD A,(HL)
' Before instruction execution: After instruction execution:
AF: 0 F szxhxvne AF: 5 § szxhxvn0
HL: 8 D 0 7 HL: 8 D 0 7
User data memory: User data memory:
8D07: 5 5 8D07: § 5

LDUP

Load in User Program Space (Byte)

Operation:

- gy %":ﬂ.,'\. , o, L]

LDUP dst,src - dst = A
src = IR or SX in user program space
~ or
dst = IR or SX in user program space
src = A
dst < src

The destination is loaded with the contents of the source. In loading from the user pro-
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress-
ing mode) in user-mode operation is used to translate the source address. When loading

. -.- into the user program space from the accumulator, the memory-mapping mechanism

used in translating logical addresses for program accesses (instructions or data using
PC Relative addressing mode) in user-mode operation is used to translate the destination

address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared, if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc-
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by

the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid bit is
loaded into the V flag.

Flags:

: Unaffected

For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

: Unaffected

For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise

: Unaffected

: Set if the transfer is unsuccessful: cleared otherwise

0OZ <I NO

Exceptions:

Privileged Instruction

Load from User Program Space

Addressing
Mode Syntax Instruction Format
IR: LDUP A(HL) 11/101{101||10{010] 110
SX LDUP A(XY + d) 11]o11{101 || 11{101/101 | [{10]010] 110 d

P A,

Load into User Program Space

Addressing |
-Mode Syntax Instruction Format
IR: LDUP (HL),A 11{101{101 |{10{011| 110
SX: LDUP (XY + d)A 11|o11[101 {{11{101{ 101 | [10]011[110 d |
Field Encoding: ®: OforlX, 1forly
Example: . LDUP A,(HL)
Before instruction execution: After instruction execution:
AF: 0 F } szxhxvnc] AF: F F | szxhxvn0
HL:| 5 3 | ¢ o | HL| 5 3 | 9 0
User program memory: User program memory:
5390: | F F | 5300: | F F |

LDW

Load Immediate Word

LD[W] dst,nn dst = R
or dst = IR, DA, RA | __ -_
LDW dst,nn ‘
Operation: dst < nn
The two bytes of immediate data are loaded into the destination. For register destina-
tions, the low byte of the immediate operand is loaded into the low byte of the register
and the high byte of the operand is loaded into the high byte of the register. For memory
destinations, the low byte of the operand is loaded into the addressed location and the
high byte of the operand is loaded into the next higher memory byte (addressed location
iIncremented by one).
- Flags: ..-....... - No flags affected ..) e e
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: LDW RR,nn 00| rr |0O01 n(low) n{high)
LDW XY, nn 11{o11|101 || 00{100| 001 n(low) n(high)
IR: LDW (HL),nn 11{011}101 || 00{000| 001 n(low) n(high)
DA: LDW (addr),nn 11{011}101 || 00/010|001|| addr(low) || addr(high) n(low) n(high)
RA: LDW <addr>,nn 11{011{101 || 00{110|001{| disp(tlow) || disp(high) n(low) n(high)

Field Encodings:

r: 000 for BC, 010 for DE, 100 for HL, 110 for SP

d: 0 for IX, 1 for lY

IExampIe: - LDW (HL),3825H) L
Before instruction execution: After instruction execution:
HL: 2 3 9 1 HL: 2 3 9 1
Data memory: Data memory:
2391: |1 E 2391: | 2 5
2392: A 3 2392: 3 8

5-88)

LD[W]

Load Addressing Register

LD[W] dst,src dst = HL, IX, 1Y
| src = IM, DA, X, RA, SR, BX
or
dst = DA, X, RA, SR, BX
src = HL, IX 1Y
Operation: dst < src

.~ The contents of the source are loaded into the destination. The contents of the source
~ are unaffected. For register-to-memory transfers, the effective address of the memory

operand corresponds to the low byte of the register and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

Flags: No flags affected

Exceptions: = None

Load into Addressing Register

Addressing
Mode Syntax Instruction Format
IM: LDW HL,nn 00/ 100/ 001 n(low) n(high)
LDW XY,nn 11[o11{101 || 00| 100 | 001 n(low) n(high)
DA: LDW HL,(addr) 00{101/010 || addr(low) || addr(high)
LDW XY ,(addr) 11]011] 101} 00{101{010 || addr(low) || addr(high)
) & LDW HL,(XX + dd) 11101101 || 00| xx | 100 d(low) d(high)
LDW XY,(XX + dd) 11|o11}101 || 11{101]101 | |00 xx } 100 d(low) d(high)
RA: LDW HL<addr> 11/101]{101 |{00|100|100 || disp(low) || disp(high)
| LDW XY<addr> [11|¢11{101|}11]101{101 |{00]100}100 || disp(low) || disp(high)
SR: LDW HL,(SP + dd) 11{101{101 || 00{000 | 100 d(low) d(high)
LDW XY ,(SP + dd) 11]o11{101]| 11{101|101 | {00 |000| 100 d(low) d(high)
BX: LDW HL, 0XXA + XXB) 11}101|101 || 00| bx {100
LDW XY, 0OKA + XXB) 11{®11]101]| 11{101|101 | {00 | bx | 100

Load from Addressing Register

Addressing
Mode Syntax Instruction Format
DA: LDW (addr),HL 00/100|/ 010 || addr(low) || addr(high)
LDW (addr), XY 11{#11]/101 [00/100{ 010 || addr(low) || addr(high)
X LDW (XX + dd),HL 11/101) 101 [[00| xx | 101 d(low) d(high)
LDW (XX + dd) XY 11|11} 101 | [11}101{ 101 || 00] xx | 101 d(low)
RA: LDW <addr> HL 11{101|101 (| 00/100{ 101 || disp(low) disp(high)
LDW <addr> XY 11|11/ 101 || 11]{101{ 101 | 100|100 |101 || disp(low)
SR: LDW (SP + dd),HL 11/101} 101 || 00{000} 101 d(low) d(high)
LDW (SP + dd) XY 11{o41{101 || 11101101 | |00 (000 | 101 d(low) d(high)
BX: LDW (XXA + XXB), HL 11|101{ 101 || 00| bx | 101
LDW XA + XXB), XY 11|{o11]101][11]|101|101 [{00| bx |101
Field Encodings: ®: OforlX 1forlY
XX : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + IY), 011 for (IX + 1Y)

Example: LDW HL,(HL + IX)

Before instruction execution:

HL:

1 6§ 0 2
IX: F F F E

Data memory:
1500: A 2
1501: 0 3

Address calculation:

1502
+ FFFE

1500

After instruction execution:

HL: 0 3 2
IX: F F E
Data memory:
1500: A 2
1501: 0 3

LD[W)

Load Register Word

LD[W] dst,src

Operation: dst < src

dst
Src

dst
Src

I

BC, DE, HL, SP

IM, IR, DA, SX

or

IR, DA, SX

BC, DE, HL, SP

- The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
the effective address incremented by one corresponds to the high byte of the register.

Flags: No flags affected
Exceptions: None " T Hemm s
Load into Register
Addressing
Mode Syntax Instruction Format
IM: LDW RR,nn 00| rra | 001 n(low) n(high)
IR: LDW RR,(HL) 11{101]101}| 00| rra 110
DA: LDW RR,(addr) 11|101[101|{01|rrb|011 || addr(low) || addr(high) | (except HL)
SX: LDW RR,(XY + d) 11|{®11|101 || 11|101|101 || 00|rra | 110 d
Load from Register
IR: LDW (HL),RR 11[101{101]| 00| rrb | 110
DA: | LDW (addr),RR 11{101{101 || 01|rra{ 011 || addr(low) || addr(high) | (exceptHL)
SX: LDW (XY + d),RR 11{o11{101 || 11{101{101 | {00 |rrb| 110 d

Field Encodings: rra: 000 for BC, 010 for DE, 100 for HL, 110 for SP
rrb: 001 for BC, 011 for DE, 101 for HL, 111 for SP

d: O for IX, 1 for IY

Example: LDW BC,3824H

Before instruction execution:

BC: 2 1

F 3

After instruction execution:

BC:

3 8 2 4

LD[W]

Load Stack Pointer
LD[W] dst,src dst = SP
src = HL, IX, 1Y, IM, IR, DA, SX
or
dst = IR, DA, SX
src = SP
Operation: dst < src

The contents of the source are loaded into the destination, where the source or destina-
tion is the Stack Pointer.

Flags: No flags affected

Exceptions: None

Load into Stack Pointer

Addressing

Mode Syntax Instruction Format

R: LDW SP,HL - 11{ 111|001 : ‘
LDW SP.XY 11]o11|101 || 11{111|001

IM: LDW SP,nn 00/110] 0Q1 n{low) n(high) |
IR: LDW SP,(HL) 11{101{101 (| 00{110{ 110

DA: LDW SP,(addr) 11{101|101|{01|111|011 || addr(low) || addr(high)

SX: LDW SP,(XY + d) 11jo11[101][11{101]101 }|[00[110]| 110 d

Load from Stack Pointer

IR: LDW (HL),SP 11{101{101|{00|111 110
DA: LDW (addr),SP 11{101}101}{01[110|011 || addr(low) || addr(high)
SX: LDW (XY + d),SP 11|®11]101 || 11{101]101 |{00{111|110 d
Field Encoding: ¢: OforlIX 1forly
Example: LDW SP,IX
Before instruction execution: After instruction execution:
SP: 2

D SP: F F F O
0

3 8
IX: F F F IX: F F F O

MULT

Multiply (Byte)
MULT [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: HL < A X src
The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
- to 1 to indicate that the H register is required to represent the result; if the Carry flag is
. cleared to 0O, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.
Flags: S: Set if the result is negative,; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: UnaffeCted . L . ‘ N LT Yt el A T ™
" V: Cleared | o
N: Unaffected
C: Set if the product is less than — 27 or greater than or equal to 27; cleared otherwise
Exceptions: None
Addressing
Mode Syntax . Instruction Format
R: MULT AR 11]101{101|| 11| r | 000
RX: MULT ARX 111|011 101 || 11}101{ 101 || 11| rx | 000
IM: MULT A,n | 11/111[101 (]| 11{101]|101 |{11[111] 000 n
IR: MULT A, (HL) 11/101{101 || 11/110[000
DA: MULT A, (addr) 11/011{101[{11[{101{ 101 |[11|111] 000 || addr(low) || addr(high)
X: MULT A,(XX 4+ dd) 11{111{101}]| 11}101} 101 || 11| xx | 000 d(low) d(high)
SX: MULT A(XY + d) 11|11 101 |{11|101{ 101 | [11|110] 000 d
RA: MULT A <addr> e 11{111| 101 [11|{101]101 || 11|000| 000 || disp(low) disp(high)
SR: MULT A,(SP + dd) 11}011|101 || 11}101] 101 | |11 |000}| 000 d(low) d(high)
BX: MULT A,(XXA + XXB) 11{011{101|{11{101{101 || 11| bx | 000

Field Encodings:

d: 0 for IX, 1 for IY

FX: 100 for high byte, 101 for low byte

XX : 001 for (IX + dd), 010 for (Y + dd), 011 for (HL + dd)
bx : 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example:

MULT AH
Before instruction execution: ' After instruction execution:

AF:| F E | saxhxvnc | AF: F E | 10xhx0Ono
HL: | 1 2 | 00 | Hu| F F | D C

5-953

e dptntate, Wi A

[V e Ay, W o -n

.m :‘-.h -

“Purvartinac e -

MULTU

Multiply Unsigned (Byte)

MULTU [A]src

src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: HL <= A X src
The contents of the accumulator are multiplied by the source operand and the product
IS stored in the HL register. The contents of the accumulator and the source are
unaffected. Both operands are treated as unsigned, binary integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to O, the product can be correctly represented in eight bits and the H register
merely holds zero.
Flags: ... 8: Cleared .
Z. Set if the result is zero; cleared otherwise
H:. Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 28; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: MULTU AR 11]101[101]]{ 11| r | 001
RX: MULTU A,RX 11 o114} 101 || 11]101{ 101 | | 11} rx | 001
IM: MULTU An 11111} 101][11]101]| 101 | { 11]111] 001 n
IR: MULTU A,(HL) 11]101] 101]{11]110] 001
DA: MULTU A (addr) 11[o11] 101]{11]101{ 101 | [11]111] 001 || addr(iow) || addr(high)
e, X L0 MULTU A(XX + dd) 11[111]101 |[11]101]101 | [11] xx [001 |[d(iow) d(high)
SX: MULTU AXY + d) 11]e11]101] [11]101] 101 | [11]110] 001 d
RA: MULTU A<addr> 11]111] 101 | [11[101]101 | [11]ooo] 001 | [disptiow) || disp(high)
SR: MULTU A(SP + dd) 11]011] 101] [11][101[101] [11]000] 001 | [d(low) d(high)
BX: MULTU A(XXA + XXB) 11[091] 901 | [11]101] 101 | [11] bx | 001
Field Encodings: &: OforiX, 1forlY
rx: 100 for high byte, 101 for low byte
XX : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example:

MULTU AH

Before instruction execution:

AF:

F E

szxhxvnc

]

HL:

c 2

F B

l

Aftef instruction éxecution:

AF:
HL:

F E

00xhxOn1

0 1

F C

L&
3
i
3

MULTUW

Multiply Unsigned (Word)

MULTUW [HL]src src = R, IM, DA, X, RA
Operation: DEHL < HL X src
The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as unsigned, binary integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
- to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be represented correctly in 16 bits and the DE register
merely holds zero.
Flags: S: Cleared
Z. Set if the result is zero; cleared otherwise
H: Unaffected cre et
3 V: Cleared |
N: Unaffected ‘
C: Set if the product is greater than or equal to 216; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: MULTUW HL,RR | 11{101]101|{ 11| rr | 011
MULTUW HL XY 11|o11{101 || 11{101|101 || 11{100] 011
IM: MULTUW HL,nn 11| 111101} 11{101[101 || 11]110} 011 n(iow) n(high)
DA: MULTUW HL (addr) 11/011]101|| 11{101[101|(11|010{011 || addr(low) || addr(high)
X: MULTUW HL,(XY + dd) 11111{101]| 11{101}101 | [11| xy {011 d(low) d(high)
RA: MULTUW HL ,<addr> 11[011[101]} 11[101[101 || 11{110{011 || disp(low) || disp(high)
IR: MULTUW HL,(HL) 11 {011 [101} [11 [101 | 101 {11 [00O | o1
Field Encodings: ®: Oforix, 1forlY

fr: 000 for BC, 010 for DE, 100 for HL, 110 for SP
Xy: 000 for (IX + dd), 010 for (IY + dd)

Example:

MULTUW HL,DE

Before instruction execution: After instruction execution:
F I szxhxvnc F: 00xhx0n0
DE: 0 O 0 A DE: O 0 0 O
HL: 00 3 1 HL: o 1 E A

5-95

MULTW

Multiply (Word)
MULTW [HL]src src = R, IM, DA, X, RA
Operation: DEHL < HL X src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as signed, twos-complement integers.

The initial contents of the HL rggistgr are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represenied in 16 bits and the DE register

merely holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared

N: Unaffected |
C: Set if the product is less than —215 or greater than or equal to 215; cleared

otherwise
Exceptions: None
Addressing ,
Mode Syntax Instruction Format
R: MULTW HL.RR 111101101 {|{11]| r | 010
MULTW HL.XY 11]011]101 | [11|101{101 | {11|100|010
IM: MULTW HL.nn 11|111{101{|11{101{101 |[11{110|010 n(low) n(high)
DA: MULTW HL (addr) 11/011]101 | [11(101{101 | {11|(010]|010 || addr(low) || addr(high)
S CHEMAA RS AR ¥ TS TR a Y, HL(XY + dd) = [11]111[101]]11{101]101 | [11] xy [010 d(low) d(high)
RA: MULTW HL <addr> 111011)101]111]101]101 | {11{110}010 disp (low) disp(high)
IR: MULTW HL (HL) 111011 1 101} |11 {101 | 101} | 11]000 | 010

Field Encodings: ¢: OforlX, 1forlY
rr: 000 for BC, 010 for DE, 100 for HL, 110 for SP

N 43
"

Xy : 000 for (IX + dd). 010 for (IY + dd)
Example: MULTW HL DE
| Before instruction execution: After instruction execution:
F: szhxvne | F: [ooxhxono
HL: 0 0 3 1 { Hu[0 1 | E A

5-96

NEG

Negate Accumulator

A

NEG [A]
Operation: A< —A
The contents of the accumulator are negated, that is, replaced by its twos-complement
value. Note that 80y is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.
Flags: S: Set if the result is negative, cleared otherwise ™
Z: Set if the result is zero, cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of
the result (bit 4); cleared otherwise '
V: Set if the contents of the accumulator was not 80
before the operation; cleared otherwise.
. L ‘- N: Set T T N R 1 - R A G et N T R R R TR A
C: Set if the contents of the accumulator was not 001, before the operation; cleared otherwise.
Exceptions: None
Addressing
Mode Syntax Instruction Format
NEG A 11101101 | | 01{000|100
Example: NEG A
Before instruction execution: After instruction execution:
AF: [2 8 | saxhxvnc AF: | D 8 | 1oxox010]

ce FAIRT A

5-97

A4 o

- o -"m'm.m

NEG

Negate HL

Operation:

NEG HL

HL <= — HL

The contents of the HL register are negated, that is, replaced by its twos-complement
value. Note that 8000y is replaced by itself, because in twos-complement representation

the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

Flags:

S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero; cleared otherwise

H: Set if there was a borrow from the least significant bit of the high-order four bits of
the result (bit 12), cleared otherwise

V: Set if the contents of HL was 8000y before the operation; cleared otherwise
N: Set

C: Set if the contents of HL was not 000, before the operation; cleared otherwise.

Exceptions:

None

Addressing
Mode

Syntax Instruction Format

NEG HL 11(101{101]{01{001}| 100

Example:

NEG HL

Before instruction execution: After instruction execution:

F: J szxhxvnc J F: 10x1x010
HL: 0 1 | 2 1 | HL F E D F

.“

NOP

No Operation

NOP

Operation: None
No operation.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

NOP 00{000| 000

5-99

Example: OTDR
Before instruction executton: After instruction execution:
F: szxhxvne F: sixhsvic
BC: 0 3 4 6 BC: 0 0 4 6
HL: 5 2 1 8 HL: 5 2 i 5
IO Page register: Byte 9B written to /0 port 170346,
' then byte FFy written to 1/O port 170246y,
17 1 then byte A3H written to 1/O port 170146.
Data memory:
5216: A 3
5217: F F
5218: 9 B

5~102

OTIR

Output, Increment and Repeat (Byte, Word)

Operation:

OTIR
OTIRW

Repeat untiiB = 0: (C) < (HL)
B«<B -1
HL <= AUTOINCREMENT (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—-A4s, and the contents of the
I/O Page register are placed on address lines A1g—Ao3. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then in-
cremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing B is zero,
the instruction is terminated, otherwise the output sequence is repeated. Note that if the
B register contains O at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program

Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags:

S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User /O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax Instruction Format

OTIR 11|101)101]{10]|110|011
OTIRW 11{101{101|{10{010| 011

5-103

Example: OTIRW

Before instruction execution:; After instruction execution:

F: [szxhxvnc A F: l sixhxvic
BC:| 0 2 | 4 4 BC:| 0 0 4 4
HL: 5 0 | 0 4 HL: 5 0 0 8
/0 Page register: Word 3A90p written to /O port 310244y,

then word B8674 written to /O port
3 1 | 310144y,

Data memory:
500: | 9 0 |
5005: | 3 A |
5006: 6 7
5007: B 8 |

Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

5-104

OuUT

Output
OUT (C),src src = R, RX, DA, X, RA, SR, BX
Operation: (C) < src
The byte of data from the source is loaded into the selected peripheral. During the 1/0
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Ag—Aqs, and the
contents of the I/O Page register are placed on address lines A1g—Ao3. The byte of data
. from the source is then loaded into the selected peripheral.
Flags: No flags affected
Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
-+ Mode - Syntax v ~ Instruction Format - - e TR A A
R: OouUT (O),R 11]101{101{ 01| r | 001
RX: OUT (C),RX 11|®11{101 || 11}101]101 | [01] rx {001
DA: OUT (C),(addr) 11{011[101 || 11{101| 101 | |01|111|001 || addr(low) || addr(high)
X: OUT (C),(XX + da) 11[111| 101 || 11]101{101 | |01 | xx | 001 d(low) d(high)
RA: OUT (C),<addr> 11/111/101 || 11]101|101 | |01 |000{ 001 || disp{low) || disp(high)
SR: OouUT (C)(SP + dad) 11{011{101 |{11{101|101 {|01{000| 001 d(low) d(high)
BX: OUT (C),(XXA + XXB) 11{o11]101 |{11[101]101] {01] bx | 001
Field Encodings: ®: OforiX, 1forly
rx: 100 for high byte, 101 for low byte
xx: 001 for (X + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example:

OUT (C),IXH

Before instruction execution:

|

;

BC: 16 | 5 0
X F D | 07
|/O Page register:
| 8 2 |

After instruction execution:

Byte FDy written to

/0 port 3216504

5-105

e ekl

e -

!

OuUT

Output Accumulator
OUT (n)A)
Operation: (n) < A

The contents of the accumulator are loaded into the selected peripheral. During the 1/0
transaction, the 8-bit peripheral address from the instruction is placed on the low byte of
the address bus, the contents of the accumulator are placed on address lines Ag—-Aqs,
and the contents of the /0O Page register are placed on address lines A1g—Ao3. Then the
contents of the accumulator are written into the selected port.

Flags: No flags affected
Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format

OUT (n),A 11{010|011 n
Example: OUT (55H),A

Before instruction execution: After instruction execution:

A: 4 2 Byte 42 written to
1/O port 1142554
|/O Page register:
1 1

l'r_;

5-106

OUTD

Output and Decrement (Byte, Word)

OuUTD
OUTDW

Operation: (C) < (HL)
B«<B -1
HL < AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the l/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A15, and the contents of the I/O s
Page register are placed on address lines A1g-Ao3. The byte or word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The B
register, used as a counter, is decremented by one. The HL register is decremented by one
for byte transfers or by two for word transfers, thus moving the memory pointer to the next
source for the output.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User /O bit in the Trap Control register is set to 1)
Addressing .
Mode Syntax Instruction Format
OUTD 11[101|101 | [10]{101| 011
OUTDW 11{101}101 | [10[001| 011

5-107

Example:

OQUTDW
Before instruction execution: : After instruction execution:

F. | szxhxvnc F: l sOxhxvic
BC: 15 | 6 4 | BC: 14} 6 4
HL: 50 | 0 6 | HL: 5 0 | 0 4
/O Page register: Word 8D07 written to

/0 port 3315644
3 3 |

Data memory:
5006: 0 7
5007 8 D

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-108

OUTI

Output and Increment (Byte, Word)

Operation:

OUTI
OUTIW

(C) < (HL)
B«<B -1
HL < AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the |/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A1s, and the contents of the
/O Page register are placed on address lines Aig—A»3. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then incre-

mented by one for byte transfers or by two for word transfers, thus moving the memory
pointer to the next source for the output. S TP

Flags:

S: Unaffected

Z. Set if the result of decrementing B is zero, cleared otherwise
H: Unaffected

V: Unaffected

N: Set

C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format
QUTH 11{101/101}||10{100|011
OuUTIW 11{101{101||10{000|011
Example: OUTI
Before instruction execution: After instruction execution;
F: szxhxvnc l F: ’ sOxhxvic
BC: l 6 4 BC: | 1 4 | 6 4
HL: | 5 ' 0 2 | H:| 5 0 | 0 3
/0 Page register: | Byte 7By written to
/O port 3315644
3 3 | \
Data memory:
5002: 7 B

5-109

OUT[W]

Output HL
OUT[W] (C),HL

Operation: (C) «< HL
The contents of the HL register are Ioéded into the selected peripheral. During the 1/O
transaction, the 8-bit peripheral address from the C register is placed on the low byte of
the address bus, the contents of the B register are placed on address lines Ag—-A1s, and
the contents of the l/O Page register are placed on address lines A1g—A23. Then the con-
tents of the HL register are written into the selected port. For 8-bit data buses, only the
contents of the H register are transferred during a single bus transaction.

Flags: No flags affected

| Exceptions: Priviléged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format

OUTW (C),HL 11{101|101 | [10{111] 111

Example: OUTW (C),HL
Before instruction execution: After instruction execution:

BC: 2 6 5 0 | Word84a3Ay written
HL: 3 A 8 4 to 1/0O port 1726504
IO Pageregister: . . L e e e e s
17 |

Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

5-110 .

_— —e————————

PCACHE

Purge Cache

PCACHE
Operation: All cache entries invalidated

This instruction is used to invalidate all entries in the cache.

Flags: No flags affected
Exceptions: - None
Addressing
Mode Syntax Instruction Format

PCACHE 11{101{101]| 01{100{ 101

5-111

POP
POP

POP dst dst = BC, DE, HL, AF, IX, 1Y, IR, DA, RA

Operation: dst < (SP)
SP <= SP + 2

The content of the memory location addressed by the Stack Pointer (SP) are loaded into the
destination. For register destinations, the byte at the memory location specified by the
contents of the SP is loaded into the low byte of the destination register (or Flag register for
AF) and the byte at the memory location one greater than the contents of the SP is loaded
into the high byte of the destination register. The SP is then incremented by two. If the

destination is a memory location, the destination and the top of the stack must be
non-overlapping.

. Flags: -~ No flags affected (unless dst = AF)
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: POP RR 11{ rr | 001
POP XY 11|o11| 101 (| 11[100{ 001
IR: POP (HL) 11/011]101 || 11|000 001
DA: POP (addr) 11]011{101|{ 11{010]001 || addr(low) || addr(high)
RA: POP <addr> 111011{101{{ 11{110|001 |} disp(low) disp(high)

Field Encodings: ®: OforiX, 1forty

re: 000 for BC, 010 for DE, 100 for HL, 110 for AF
Example. ~ POP BC R

Before instruction execution: After instruction execution:
BC: 2 3 0 8 BC: 0O 9 2 3
SP;: F E 3 2 SP: F E 3 4

Data memory: Data memory:

FE32: 2 3 FE32: 2 3

FE33: 0 9 FE33: 0 9

°2-112

AT

PUSH

Push

PUSH src src = BC, DE, HL, AF, IX, 1Y, IM, IR, DA, RA

Operation: SP <SP - 2
(SP) < src

The Stack Pointer (SP) is decremented by two and the source is ioaded into the location
addressed by the updated SP; the low byte of the source (or Flag register for AF) is load-
ed into the addressed memory location and the upper byte of the source is loaded into
the addressed memory location incremented by one. The contents of the source are

unaffected. If the source is a memory location, the source and the new top of the stack
must be non-overiapping.

Flags: No flags affected
Exceptions: System Stack Overflow Warning
Addressing
Mode Syntax Instruction Format
R: - PUSH RR 11| rr [101
PUSH XY 11|o11{101]]{ 11/100 | 101
IM: PUSH nn 11{111{101{|11|110 {101 n(low) n(high)
IR: PUSH (HL) 11}011|101|] 11]000 | 101
DA: PUSH (addr) 11{011}101]111]010}101 || addr(low) || addr(high)
RA: PUSH <addr> 11(011]|101||11{110{101 || disp(low) || disp(high)
Field Encodings: ®: Oforix, 1forly
rr: 000 for BC, 010 for DE, 100 for HL, 110 for AF
Example: PUSH BC
Before instruction execution: After instruction execution:
i BC: 0 9 2 3 BC: 0O 9 2 3
SP: F E 3 4 SP: F E 3 2
Data memory: Data memory:
FE32: 0O 0 FE32: 2 3
FE33: 0O O FE33: 0 9

5-113

RES

waingyifipute

Reset Bit
RES b.dst dst = R, IR, SX
Operation: dst(b) < 0
The specified bit b within the destination operand is cleared to 0. The other bits in the
destination are unaffected. The bit number b must be between 0 and 7. i
Flags: No flags affected >
Exceptions: None
Addressing
Mode Syntax -- - Instruction Format
R: RES b,R 11{001]|011|[10] b | r
IR: RES b,(HL) 11/001]|011{{10| b |110
SX: RES b,(XY + d) 11]o11{101 || 11]001]| 011 d 10| b |[110
Field Encoding: &: OforiX 1forIY
Example: RES 1,A |
Before instruction execution: After instruction execution: . N
A: 00010110 ' A: 00010100

5-114

RET [cc]

Operation: If the cc is satisfied then: PC < (SP)
| SP <SP + 2
This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry,
. Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code
“cc” encoded in the instruction; if the condition is not satisfied, the instruction following the
Return instruction is executed, otherwise a value is popped from the stack and loaded into
the Program Counter (PC), thereby specifying the location of the next instruction to be
executed. For an unconditional return, the return i1s always taken and a condition code is
not specified. | o , - -
The following figure illustrates the format of the PC on the stack for the Return instruction:
' .
SP before = PC (low) low address
PC (high) |
SP after — - high address
< 1 byte = |-
I r
Flags: No flags affected
Exceptions: None
Addressing | |
Mode Syntax Instruction Format
RET cc 11| c¢c {000
RET | 11001 {001
Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for Por NS, 111 forMor S
Example: RET NC
Before instruction execution: ’ After instruction execution:
F: szxhxvn0 I - F ﬁ szxhxvn0
PC: 2 S 2 8 PC: 1 6 3 3
s F F | 2 4 sP.[F F | 2 6
Data memory: | Data memory:
FF24: 3 3 | FF24: 3 3
FF25: 16 | FF25: 16 |

5-115

RETI

Return from Interrupt

RETI

Operation: PC <« (SP)
SP <SP + 2
This instruction is used to return to a previously executing procedure at the end of a pro-
cedure entered by an interrupt while in interrupt mode 0, 1, or 2. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC).
The following figure illustrates the format of the PC on the stack for the Return from In-
terrupt instruction:

SP before — PC (low) low address
' PC (high)
SP after = high address
<« 1 byte >
'

A special sequence of bus transactions is performed when this instruction is
encountered in order to control Z80 family peripherals; see Chapter 12.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

RETI 11{101(101 || 01|001] 101

Example: ~ RETl et e e e e e e
Before instruction execution: ' After instruction execution:

PC:| 84 | 10 | PC:| 19 | 7
sP:| F F c 6 | sp:| F F |

Data memory: | Data memory:
FFC6: 7 2 FFCS6: 7T 2 1
FFC7: 1 9 | FFCT: 10

5-116

RETIL

Return from Interrupt Long

RETIL
Operation: PS < (SP)
SP<GSP + 4
This instruction is used to return to a previously executing procedure at the end of a pro-
cedure entered by an interrupt while in interrupt mode 3 or a trap. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC)
and Master Status register (MSR). |
The following figure illustrates the format of the program status (PC and MSR) on the
system stack for the Return from Interrupt Long instruction:
SP before > | MSR (low) | low address
o MSR (high) |
PC (low)
PC (high)
SP after —> high address
< 1 byte —
Flags: No flags affected
Exceptions: Privileged Instruction
Addressing
Mode Syntax Instruction Format
RETIL 11/101|101 |{01]|010| 101
Example: RETIL
... Before instruction execution: After instruction execution: .,
Pc: | 8 4 10 | PC 19 | 7 2
s | FF | cs6 | SP: FF | CA
MSR: | © 0 | © 0 " MSR: 40 | 7TF
Data memory: Data memory:
FFCS: 7 F FFC: 7 F |
FFCT: 4 0 | FFCT: 40 |
FFC8: 7 2 FFC8: T 2 |
FFCO: 19 FFCo: | 19 |

5-117

RETN

Return from Nonmaskable Interrupt

RETN

Operation: . PC < (SP)
SP<SP + 2
MSR(0-7) < IFF(0-7)

This instruction is used to return to a previously executing procedure at the end of a pro-
cedure entered by a nonmaskable interrupt while in interrupt mode 0, 1, or 2. The con-
tents of the location addressed by the Stack Pointer (SP) are popped into the Program

Counter (PC). The previous setting of the interrupt masks in the Master Status register
are restored.

The following figure illustrates the format of the PC on the stack for the Return from Non-
- maskable Interrupt instruction: |

SP before = PC (low) low address
PC (high)
SP after = high address
‘<f‘lbyua—*
Flags: No flags affected
Exceptions: Privileged Instruction
Addressing
Mode Syntax Instruction Format
RETN 11/101]101 |} 01{000| 101
Example: RETN
Before instruction execution: After instruction execution:
PC:| 84 | 160 | PC:| 19 | 7 2
sP:| F F C 6 s:| FF | c 8
MSR: | 4 0 | 0 0 | MSR: | 40 | 7 F |
~ Shadow Interrupt register:
[7 F]
Data memory: Data memory:
FFC6: 7 2 | FFC6: 7 2 |
FFCT: | 1 9 | FFC7: | 1 9 |

5-118

RL

Rotate Left

RL dst dst = R.IR. SX

Operation: tmp < dst
dst(0) <= C
C < dst(7)
dstin + 1) < tmp(n)forn = 0to6

dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated left one bit position. Bit 7 of the destination operand is moved
to the Carry flag and the Carry flag i1s moved (o bit O of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1, cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format
R: RL R 11/001{ 011/ 00{010{ r
IR: RL (HL) 11{001|011 || 00/010| 110
SX: RL (XY + d) 11{o11}101}{{ 11|001|011 d 00{010{ 110
Field Encoding: ®: OforlIX 1forlY b
Example: RL D

Before instruction execution:

F:

szxhxpnO

D:

10001111

After instruclion execution:

F:
D:

| 00x0x101
| 00011110

5-119

RLA

Rotate Left Accumulator

; RLA

Operation: tmp < A
A(0) < C
C < A(7)
An + 1)< tmp(n)forn = 0to6

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and
- the Carry flag is moved to bit O of the destination. | o

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise
Exceptions: None
Addressing .
Mode Syntax Instruction Format
R: RLA 00010 111
Example: RLA
Before instruction execution: - © After instruction execution:
AF: 01110110 | szxhxpnt AF: | 11101101 | szx0xp00

5-120

RLC

Rotate Left Circular

RLC dst dst = R, IR, SX

Operation: tmp < dst
C < dst(7)
dst(0) < tmp(7)
dsttn + 1) < tmp(n)forn = 0to 6
«J

dst

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit O position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwnse ’

R - Z: Set if the result is zero; cleared otherwise -~ - B

H: Cleared | |
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing

Mode Syntax ~ Instruction Format
R: RLC R | “ [11]o01]011] [00]000] r
IR: RLC (HL) 11}001]011| | 00{000]| 110 | |
SX: RLC (XY + d) 11|®11[101 || 11001 011 d 00{000| 110
Field Encoding: ®: OforlIX, 1forlY
- Example: RLC B - & L R
Before instruction execution: After instruction execution:
F: szxhxpnc | F: | 00x0x101
B: 10001000 | | - B: | 00010001

5-121

RLCA

Rotate Left Circular (Accumulator)

RLCA

Operation: tmp < A
C < A7)
A(O) < tmp(7)
An + 1) < tmp(n)forn = 0to 6

=

A

The contents of the accumulator are rotated left one bit position. Bit 7 of the
accumulator is moved to the bit O position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing -
Mode Syntax Instruction Format

RLCA 00{000 {111

Example: RLCA

' " Before instruction execution: " 7 - Afterinstruction execution: =« st e

AF: 10001000 | szxhxpnc AF: | 00010001 | szxOxpO1

5-122

- RLD

Rotate Left Digit
RLD
Operation: tmp(0:3) < A(0:3)
A(0:3) < dst(4.7)
dst(4:7) < dst(0:3)
dst(0:3) < tmp(0:3)
7 a5 o] [s o
A dst |
The low digit of the accumulator is logically concatenated to the destination byte whose mem-
ory address is in the HL register. The resulting three-digit quantity is rotated to the left by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
.. upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
- the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RL instruction. ’
Flags: S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
o ~ RLD 11[101[101] [01]101] 111
Example: RLD
Before instruction execution: After instruction execution:
AF: 3 7 szxhxpnc AF: 3 0 00x0x10c
HL: 5 0 0 O HL: 5 0 0 O
Data memory: Data memory:
5000: 0 4 5000: 4 7

5-123

RR

Rotate Right
RR dst dst = R, IR, SX

Operation: tmp < dst

- dst(7) < C
C < dst(0)
dst(n) < tmp(n + 1)forn = 0to0 6
>~[7- OH
dst
-« -~ - Ihe contents of the destination operand are concatenated with the Carry flag and

together they are rotated right one bit position. Bit 0 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit O was a 1; cleared otherwise

Exceptions: None

Addressing .
Mode Syntax Instruction Format
R: RR R .| 11]001]|011 || 00[0O11] r
IR: RR (HL) 11/001 {011 || 00{011 110
e QK e s RBO(XY 4 d) o o T1q]e11]101 | [11]001] 011 ' d 00] 011 [{110] > imewsi

Field Encoding:

d: O for IX, 1 for Y

Example:

RR B

Before instruction execution: After instruction execution:
F: szxhxpn0 F: 00x0x001
B: 11011101 B: 01101110

5-124

. Flags:

RRA

Rotate Right (Accumulator) .

Operation:

RRA

tmp < dst

A7) < C

C < A(0)

An) < tmp(n + 1)forn = 0to6

e

A

The contents of the accumulator are concatenated with the Carry flag and together they

are rotated right one bit position. Bit O of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 7 of the accumulator.

. S Unaffected

b : » - - * - y i) LV "" H Ao d - I S
Tl by taby e c by “ ""“‘"‘g‘?t"““.‘ LT NS Sl S -‘: e ol Fhe L e o Ma g 18 e -;“5\!» .?"?ou-:"h g“"_.l"’ ";‘\-‘n v W

Z: Unaffected

H: Cleared

P: Unaffected

N: Cleared

C: Set if the bit rotated from bit O was a 1; cleared otherwise

Exceptions:

None

Addressing

Mode

Syntax Instruction Format

RRA 00{011| 111

Example:

~° AF: | 11100001 | szxhxpn0 | ©° AF: | 01110000 | szx0xp01

RRA

Before instruction execution: After instruction execution:

5-125

. Mg i

|
RRC

Rotate Right Circular
i
l RRC dst dst = R, IR, SX
Operation: tmp < dst
C < dst(0)
dst(7) < tmp(0)

dst(n) < tmp(n + 1)forn = 0to 6

Ll 7 — ol—L
dst

-, .. 1he contents of the deslination operand are rotated right one bit position. Bit O of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit O was a 1; cleared otherwise
Exceptions: None
1
Addressing
Mode Syntax Instruction Format
R: RRC R 11/0011011]| 00j001] r
IR: RRC (HL) 11]001{011|| 00{001 {110
SX: RRC (XY + d) 11{®11|101 (| 11/001| 011 d 00|001{110
b e e R T L Sy e L T T T T v TR Y S U S SO O
Field Encoding: ®: OforiX, 1forlY
Example: RRC A
Before instruction execution: After instruction execution:
AF: 00110001 szxhxpnc AF: 10011000 10x0x001

5-126

RRCA

Rotate Right Circular (Accumulator)

Operation:

RRCA

tmp < A

C < AO)

A(7) < temp(0)

An) < tmp(n + 1)forn = 0to6

N=S¥:

dst =

The contents of the accumulator are rotated right one bit position. Bit O of the
accumulator is moved to the bit 7 position and also replaces the Carry flag.

Flags:

QZYVINGD

Unaffected

. o o LTI PO oo ,-"o;‘_-‘:‘.t'-)‘-,?zu‘.\; v:)‘-;',“..‘!"_nt-q [PPLEIE T IR I ¥ PP '
naffecte e i e . - ot

: Cleared

Unaffected

: Cleared

Set if the bit rotated from bit O was a 1; cleared otherwise

Exceptions:

None

Addressing

Mode

Syntax Instruction Format

RRCA 00(001]111

Example:

RRCA

Before instruction execution:

After instruction execution:

AF:) 00010001 szxhxpnc ~_AF: 10001000 szx0xp01

5-127

T

RRD

Rotate Right Digit
RRD
Operation: tmp(0:3) < A(0:3)

A(0:3) < dst(0:3)
dst(0:3) < dst(4:7)
dst(4:7) < tmp(0:3)

%

A dst

-..1he low digit of the accumulator is logically concatenated to the destination byte whose mem-

ory address is in the HL register. The resulting three-digit quantity is rotated to the right by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the right a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer

digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RR instruction.

Flags:

S: Set if the accumulator is negative; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared |
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

EXCeptionS: : None T R AN e e e abe e e b s Reeeaee b ey T e e d

Addressing
Mode Syntax Instruction Format

RRD 11{101/101{{01/100{ 111

Example: RRD
Before instruction execution: After instruction execution:

AF: | 0 6 szxhxpne | AF:| 0 2 | 00x0x00c
H:| 6 o 0 0 ' H| s 0 | 0 0
Data memory: | Data memory:
5000: | 3 2 | 5000: | 6 3 |
/
5-128

noT
Restart

RST address

SP <SP — 2
(SP) < PC
PC < address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table
below. The table also indicates the encoding of the address used in the instruction en-
coding. (The address is in hexadecimal, the encoding in binary.)

\ | Address t encoding
3 | O0H 000
e _ e e e e 08y e 001 -
; 10K 010
s | 18H 011
| 1 20H 100
; 284 101
30H 110
) 384 111
Flags: No flags affected
Exceptions: None
Addressing
- Mode Syntax Instruction Format
RST address 1]t [111
_ Field Encoding: Y See table above)
_ Example: RST 18H
Before instruction execution: After instruction execution:
Pc:| a6 | 20 | PC:| 00 | 1 8
S| FF | C 4 s;.| FF | C 2
Data memory: Data memory:
FFC3: F F FFC3: 2 0 |
FFCa: F F FFCa: 4 6 |

5-129

SBC

Subtract with Carry (Byte)

SBC [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A< A —src—C
The source Operahd together with the Carry flag is subtracted from the accumulator and
the difference is stored in the accumulator. The contents of the source are not affected.
Twos-complement subtraction is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise
N: Set o
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: SBC AR 10{011| r
RX: SBC A,RX 11|o11[101]| 10{011] rx
IM: SBC An 11{011{110 n |
IR: SBC A,(HL) 10|011 110
DA: SBC A (addr) 11/011]101[{ 10{011]111 || addr(low) || addr(high)
X: SBC A (XX +dd) | 11{111]101 || 10]{ 011} xx d(low) d(high)
SX: SBC AXY + d) [11je11f101{[10[011]110 d
RA: SBC A<addr> 11[111]101|[10]011]000] [displow) || disp(high)
SR: SBC A(SP + dd) [11Jot11[101][70]o11]o00 |[ditow) dhigh |
BX: SBC A,(XXA + XXB) 11011101 || 10[011{ bx
Field Encodings: ®: OforiX, 1forty
rX: 100 for high byte, 101 for low byte
XX : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: SBC A,(HL)
Before instruction execution: After instruction execution:
AF:| 4 8 | saxhxvni AF:| 2 F | 00x1x010
HL: 2 4 5 4 HL: 2 4 | 5 4
Data memory: Data memory:
2454:| 1 8 | 2454:| 1 8 |

5-130

SBC

Subtract with Carry (Word)

SBC dst,src dst = HL

src = BC, DE, HL, SP
or

dst = IX

src = BC, DE, IX, SP
or '

dst = 1Y

src = BC, DE, 1Y, SP

Operation: dst <= dst — src — C
The source operand together with the Carry flag is subtracted from the destination and
the result is stored in the destination. The contents of the source are not affected. Twos-
complement subtraction is performed.

~ Flags: S: Set if the result is negative, cleared otherwise
| | Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, the operands are of different signs and the
result is of the same sign as the source; cleared otherwise

N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

SBC HL,RR 11}101{101|{01| rr 010
SBC XY,RR 11{®11]101} | 11{101}101 | [01{| rr | 010

Field Encodings: ®: OforiX 1forly
r: 000 for BC, 010 for DE, 100 for subtract register from itself, 110 for SP

Example: SBC HL,DE
Before instruction execution: After instruction execution:

F: [szxhxvn1 l F: f 00x0x010
DE: 00 | 1 4 | DE: 00 | 1 1
HL: | 0 1 | 0 0 | H:| o 0 | E E

5-131

SC

System Call
SC nn

Operation: SP < SP— 4
(SP) < PS
SP <SP — 2
(SP) <= nn
PS < System Call Program Status
This instruction is used for controlled access to operating system software in a manner
similar to a trap or interrupt. The current program status is pushed onto the system
stack followed by a 16-bit constant embedded in the instruction. The program status con-
sists of the Master Status register (MSR) and the updated Program Counter (PC), which

. points to the first instruction byte following the SC instruction. Next the 16-bit constant in
the System Call instruction is pushed onto the system stack. The system Stack Pointer is
always used regardless of whether system or user mode is in effect. The new program
status is loaded from the Interrupt/Trap Vector Table entry associated with the SC in-
struction. CPU control is passed to the procedure whose address is the PC value con-
tained in the new program status. '
The following figure illustrates the format of the saved program status on the system
stack: - |
SP after — n (low) low address
~ n (high) |
MSR (low)
MSR (high)
1 PC (low)
| PC (high)
SP before — high address
‘ < 1 byte — '
Flags: No flags affected
Exceptions: System Call Trap, System Stack Overflow Warning
Addressing
Mode Syntax Instruction Format

SC nn 11{101|101|| 01| 110001 n(low) n(high)

. 5.132

Example: SC 0155H

Before instruction execution: After instruction execution:
Pc:| 46 | 20 Pc:| 90 | 8 8
SP: F F cC 9 SP: F F | C 3
MSR: | 4 0 | 7 F MSR: | 0 0 | 2 3
Interrupt/Trap Vector Table Pointer: Data memory:.
. 3 8 5 2 | FFca: | 5§ |
FFCa: 0 1
. Physical memory: FFCS5: 7 F
| FFC6: | 4 0 |
 365250: | 2 3 | FFC7: | 2 0 |
365251: 0 0 | FFCS8: 4 6 |
365252: 8 8
365253: 9 0

Note: The physical memory addresses are 24-bit addresses emitted by the MMU. The data memory addresses are the
16-bit addresses from the CPU.

>-1533

SCF

Set Carry Flag

SCF
Operation: C <1

The Carry flag ié set to 1.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set
Exceptions: None
Addressing
Mode Syntax Instruction Format
SCF 00(110] 111
Example: SCF
Before instruction execution: After instruction execution:
F: szxhxvnc F: ' szx0xv01

5-134

SET

Set Bit
SET b,dst dst = R, IR, SX
Operation: dst(b) < 1
The specified bit b within the destination operand is set to 1. The other bits in the
destination are unaffected. The bit to be set is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be set. The bit number must
be between O and 7.
Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format -
R: SET b,R 11{001|011{|11| b | r
IR: SET b,(HL) 11|001}011{{11| b | 110
SX: SET b,(XY + d) 11|¢11]|101 || 11/001| 011 d 11 110

Field Encoding:

¢ O for1X, 1 forlY

Example:

SET 1,A

Before instruction execution:

A:

00010100

After instruction execution:

A:

00010110

5-135

SLA

Shift Left Arithmetic
|
SLA dst dst = R, IR, SX |
Operation: tmp < dst
C < dst(7)
dst(0) < O

dstin + 1) <= tmp(n)forn = 0to 6

e

dst

The contents of the destination operand are shifted left one bit position. Bit 7 of the

destination operand is moved to the Carry flag and zero is shifted into bit O of the
destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the resuit is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: SLA R 11/001|011 |} 00{100] r
IR: SLA (HU) 11|001|011 || 00{ 100|110
SX: SLA (XY + d) 11|¢11|101 || 11|001|011 d 00{100{ 110
Field Encoding: &: OforiX, 1forly
Example: SLA L
Before instruction execution: After instruction exeéution:
= F: | szxhxpnc F: 00x0x001
L: { 10110001 L: 01100010
5-136

SRA

Shift Right Arithmetic

SRA dst - dst = R, IR, SX

Operation: tmp < dst
C < dst(0)
dst(7) < tmp(7)
dst(n) «-tmp(n + 1)forn = 0to 6

70
dst

The contents of the destination operand are shifted right one bit position. Bit O of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

Flags: S: Set if the result is negative; cleared otherwise - -« «w- oo il o m

o 0 Z Set if the result is zero, cleared otherwise

H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format
R: SRA R 11]001{011|[00{101} r
IR: SRA (HL) 11]001]011{]{00[101{110 |
SX: SRA (XY + qd) 11{®»11{101{ | 11{001}| 011 d 00(101]110

Field Encoding: ®: OforlIX, 1forlY

Example: SRA (IX + 3)
Before instruction execution: After instruction execution:

F: szxhxpnc ‘ F: r 10x0x000
IX: 10 c 0 H IX: 10 | 0 0

Data memory: Data memory:
1003: | 10111000 1003 . | 11011100

Address calculation:

1000
+ 3

1003

2-1317

SRL *

Shift Right Logical
SRL dst dst = R, IR, SX

Operation: tmp < dst |
C < dst(0)
dst(7) < O

dst(n) < tmp(n + 1) forn = 0to 6

0—»

dst

The contents of the destination operand are shifted right one bit position. Bit O of the

v e - destination operand is moved to the Carry flag and zero is shifted into bit 7 of the

destination.

Flags: ' S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit O was 1; cleared otherwise

Exceptions: None

Addressing

Mode Syntax Instruction Format
R: SRL R 11{001|011 || 00]111] r
IR: SRL (HL) 11]001{011 || 00{111]110
SX: SRL (XY + d) 11{¢11]101 || 11]001] 011 d 00{111|110

Field Encoding: &: OforlX 1forlyY

Example: SRL B
Before instruction execution: After instruction execution:

F: szxhxpnc F: 00x0x101
B: 10001111 | B: 01000111
5-138

! ; Lo e e N T ‘('. 3 TN Ry S L " ‘ -,
L i t - 1
~“!‘nf.“n‘ﬁu‘ it g ' i_&.‘..n. v.‘— v

SUB

Subtract
SUB [A]srcC src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A< A — src
The source operand is subtracted from the accumulator and the difference is stored in
the accumulator. The contents of the source are unaffected. Twos-complement subtrac-
tion is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V. Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise
N: Set
... C: Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing . ‘
Mode Syntax Instruction Format
R: SUB AR 10/010| r
RX: SUB A RX 11[{o11[101][10{010| rx
IM: SUB An 11{010{ 110 n
IR: SuUB A (HL) 10/010}110
DA: SUB A, (addr) 11/011|101{{10{010|111 || addr(low) || addr(high)
X: SUB A,(XX + dd) 11{111{101 {{10{010]| xx d(low) d(high)
SX: SUB AXY + d) 11|911]101 |[10{010[110 ¢ |
RA: SUB A<addr> 11/111}101 || 10]{010|000 || disp(low) disp(high)
SR: SUB A,SP + dd) 11011101 |{10{010|000 d(low) d(high)
. BX: SUB A,(XXA + XXB) - [11Jo11[101 | [10]o10[bx T
Field Encodings: ®: OforlIX, 1forly ,
rx: 100 for high byte, 101 for low byte
Xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: suB A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8] szxhxvnc l ~ AF: S 0 00x0x010
HL: 2 4 | 5 4 | HL 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454:

1 8

5-139

e T AT T A TR T T

SUBW

Subtract (Word)
SUBW [HL,]src src = R, IM, DA, X, RA
Operation: HL <= HL — src

The source operand is subtracted from the HL register and the difference is stored in

the HL register. The contents of the source are unaffected. Twos-complement subtrac-
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise | “
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
o e o0 gnd the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: SUBW HL,RR 11[101[101 || 11| rr {110
SUBW HL,XY 11|o11| 101 || 11]101[101 [{11]101| 110
IM: SUBW HL,nn 11[111]101 || 11/101{101 | |11}111[110 n(low) n(high)
DA: SUBW HL, (addr) 11{011| 101 || 11]101!101 |[11|011]110|]| addr(low) || addr(high)
X: SUBW HL,(XY + dd) 11{111{101 || 11|101|101 | { 11| xy | 110 d(low) d(high)
RA: SUBW HL <addr> 11{011[101 | [11[101]|101 ||{11]{111|110]| disp(low) || disp(high)
IR: SUBW HL,(HL) 11 |of1 | 101|[11]101 | 101} |11 |00t | 110

",- Y ‘--s _‘1 Lt []

Field Encodings: ®: OforiX 1forlY .
r: 001 for BC, 011 for DE, 101 for HL, 111 for SP

Xy : 001 for (IX + dd), 011 for (IY + dd)
Example: SUBW HL,DE
Before instruction execution: After instruction execution:
F: | szxhxvnc | F: 10x0x010 |
DE: 0 0 1 0 DE: 0 0 1 0
HL: A 1 2 3 HL: A 1 1 3

5-140

TSET

Test and Set

TSET dst dst = R, IR, SX

Operation: S < dst(7)
dst < FFy
Bit 7 within the destination operand is tested, and the Sign flag is set to 1 if the specified
bit is 1, otherwise the Sign flag is cleared to 0. The contents of the destination are then
set to all 1s. For memory operands, the operand is always fetched from the external
memory, on the Z-BUS interface, the status lines indicate a Test and Set operation dur-
ing the memory read transaction.
Between the data read and subsequent write transactions, bus request is not granted.
The data is read from memory, even if it is also present in the cache.

Flags: S: Set if bit 7 is 1, cleared otherwise

e Z: Unaffected - o me et
H: Unaffected
P: Unaffected
N: Unaffected
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format
R: TSET R 11{001/011}{00|110] r
IR: TSET (HL) 11]001(011||00{110{ 110
SX: TSET (XY + d) 11|®11{101 | [11]|001]{ 011 d 00{110|110

Field Encoding: ®: OforlX 1forlY

Example: . TSET (HL)
Before instruction execution: After instruction execution:

F:. | szxhxpnc F: Ozxhxpnc
HL: 0 3 | 8 2 | HL o 3 8 2

Data memory: Data memory:
0382: 00010111 0382: 11111111

5-141

e T

TSTI

Test Input

Operation:

TSTI (C)
F < test (C)

During the I/O transaction, the peripheral address from the C register is placed on the
low byte of the address bus, the contents of the B register are placed on address lines
Ag-A1s, and the contents of the 1/0O Page register are placed on address lines A1g—A23.
The byte of data from the selected peripheral is tested and the CPU flags set according-
ly. No CPU register or memory iocation is modified. |

Flags:

_P: Set if the parity of the tested byte is even; cleared otherwise

S: Set if the tested byte is negative; cleared otherwise
Z: Set if the tested byte is zero; cleared otherwise
H: Cleared

N: Cleared
C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax Instruction Format

TST! (C) 11}101{101|01]110|000

Example:

TSTI- (C)

Before instruction execution: After instruction execution:

F:

' szxhxpnc

BC:

5

0 | 4 6

|/O Page register:

1

2

Byte 934 available at l/O 66rt 1250464.

F:

L

10x0x10c¢c

5-142

XOR

Exclusive OR

XOR [A]src . src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A <= A XOR src

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit
IS stored wherever the corresponding bits in the two operands are different; otherwise a
O bit is stored. The contents of the source are unaffected.

Flags: . S Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared - |
- C: Cleared
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: XOR AR 10/101]| r
RX: XOR A,RX 11|11 101 |} 10{101] rx
IM: XOR An 11/101| 110 n
IR: XOR A,(HL) 10{101|110
DA: XOR A,(addr) 11]011|101 | 10{101] 111 || addr(low) || addr(high)
X: XOR A,(XX + dd) 11{111{101 | 10{101] xx d(low) d(high)
SX: XOR A(XY + d) 11]o11]101 | {10|101| 110 d
RA: XOR A<addr> 11{111{101 |]{10{101{000 || disp(low) disp(high)
SR: XOR A,(SP + dd) 11/011]101 | 10{101 {000 d(low) d(high)
.BXe 0 U XOR AKXKA + XXB) - o [11]011]101 [[10[101] bx | - o ¢ me e et

Field Encodings: ®: OforiX, 1forly
rx: 100 for high byte, 101 for low byte
XX : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example: XOR A,(HL)
Before instruction execution: - After instruction execution:
AF: 4 8 | szxhxpnc AF: 5 0 00x0x100
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: | Data memory:
2454: 1 8 2454: 1 8

5-143

EXTENDED INSTRUCTION

EPU Internal Operation

Operation:

EPU < template

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed.

If the EPU Enable control bit in the Trap Control register is cleared to O, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order). Program Counter (PC) of the next instruction, Master Status

register (MSR), and template address. The format of the system stack after the trap is in-
dicated by the following figure:

1
new SP — template address (low) low address
template address (high)
MSR (low)
MSR (high)
PC (low)
PC (high)
previous SP — high address
< 1 byte —>

The format for the EPU template for this instruction is indicated in the following figure:

| {
10001110 low address
*EEE011D

*hk ok khkkhkk

****0000 high address
h < 1 byte — H

where ID is the two bit ID number specifying the EPU to process this instruction
and * indicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned.

Flags:

No flags affected

Exceptions:

Extended Instruction

Addressing
Mode

Operation . Instruction Format

EPU Internal 11[101 (101 |[10{011{ 111 || template 1 || template 2 || template 3
Operation template 4

The template is a 4-byte field.

5-144

'EXTENDED INSTRUCTION

Load Accumulator from EPU

Operation:

EPU < template
A