
~------- --~----------------------~

•
..

:

•

PRELIMINARY TECHNICAL MANUAL

, .

•

TM

, ,

•
•

MPU MICROPROCESSOR UNIT
".•

,-

•

.. "i=llI!oi..' 'i;;;,;_~I. 3 *,- meS5
r

C",·W>b"".. - - - -- ••

NEUMULL:
ELEKTRONIK-BAUTEILE

EscnenstraBe 2 • Postfach 1252 • 8028 Taufkirchen bei MQnchen
Teleton (089) 61208-0· Telex 522106 . Telefax (089) 612 08-2ft,

- -- - - - - -- ;;..;

•

"

:

•
•

Table of Contents

Dlepter 1. Z280 Architectural Overview
•

..:. • , '

, ,

',"

"

•

•

Ll
1.2

Introduction ••
MPU Architectural

. '

• • • • •
features

•
•

•

•
•

•
• • • • • • • • • • ••
• • • • • • • • • • •

• • • • • •

• • • • • •

1-1
1-2

, ".
." ..

"

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.12

System and User Modes • • • • • • • • • • • • • • • • • • •
Address Spaces •
Data Types ••••••••••••••••••••••••

•

Addressing Modes •
Instruction Set ••••••••••••••••••••••
Exception Conditions •••••••••••••••••••
Memory Management •
Cache Memory •••••••••••••••••••••••
Refresh •
On-Chip Peripherals ••••••••••••••••••••
Multiprocessor Mode ••••••••••••••••••••
Extended Instruction facility, •••••••••••••••

• . '

1-2
1-2
1-2
1-3
1-3
1-3
1-3 '
1,..4
1-4
1-4
1-4
1-4

•

" , . ,. : .

•

: "

I

•

, , '
':,'

, '

"

, "

"

1.3 Benefits of the Architecture
.. '

• • • • • • • • • • • • • • • • • • • 1-5
, '

High Throughput •• 1-5
Integration of System functions •••••••••••••• 1-5
Operat ing System Support ••••••••••• .';. .'. • • 1-5
Code Density •••••••••• '••••••••••••• 1-5
Compiler Efficiency • • • • • • • • • • • • .'. • • • • • • 1-5

,

1.4

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5

Summary
I

• • • • • • • • • • • • • • • • • • • •

•
• • • • • • • • • • 1-6

.. " I

,

: ~ .. '

,

;~ ,-

,

'. .:

•
•

"

Dlapter 2. Address Spaces

2.1
2.2
2.3
2.4
2.5

Introduction ••..•........•............. 2-1
CPU Register file ••••••••••••••••••••••••• 2-1
CPU Control Registers ••• ' •••••••••••••••••• ,•• 2-2
Memory Address Spaces • 2-3
I/O Address Space • 2-4

•

\.

. ' ..

. I

"

•

Olapter J. CPU Control Registers .. 3
3.1
3.2

Introduction •••
System Configuration

• • • • •
Registers

• • • • • •
• • • • •

• •

• •
• •
• •

'.

•
•

• •
• •

• •
• •

•
•

• • • 3-1
• • • 3-1

• . i
;

" , ,

3.2.1
3.2.2
3.2.3
3.2.4

,

Bus Timing and Initialization Register
Bus Timing and Control Register ••••
local Address Register ••••••••
Cache Control Register ••••••••

--

• • • • •
• • • • •
• • • • •
• • • • •

• •
• •

• •
• •

• • • 3-1
• •• 3-2
• • • 3-3
• • • 3-3

I
•

, ,

\

"

I
I
I
I

- .

•

•
\.

,,

Table of Contents (Continued)

3.3 System Status Registers •••• • • • • • • • • • • •
,

• • • • • • • 3-4 3

•

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

Mast er St at us Regist er •••••••••••••••••• 3-4
Interrupt Status Register ••••••••••••••••• 3-4
Interrupt/Trap Vector Table Pointer •••••••••••• 3-5
I/O Page Register • 3-5
Trap Control Register ••••••••••••••••••• 3-5
System Stack limit Register •••••••••••••••• 3-6

"

,.

Olapter 4. Addressing Mldes and Data Types
•

4
, 4.1
4.2

Introduction •••••••
Addressing Mode Descriptions

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

4-1
4-1

,

" .. .

" ,

•

4.2.1
4.2.2.
4.2.3
'4.2.4

,4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

,,.
Register (R, RX) ••••••••••••••••••••• 4-1
Immed.iate (1M) •••••••••••••••••••••• 4-1
Indirect Register (IR) •••••••••••••••••• 4-2
Direct Address (DA) • • • • • • • • • • • • • • • • • • •• 4-2
Indexed (X) •• 4-3
Short Index (SX) ••••••••••••••••••••• 4-3
Relative Address (RA) •••••••• : •••••••••• 4-4
Stack Pointer Relative (SR) •••••••••••••••• 4-5
Base Index (BX) ; • 4-5

I

,

4.3 Data Types • 4-6

. .

Olapter 5. Instruction Set 5
,, 5.1

5.2
Introduction ••
Processor Flags

• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

• • •

• • •

• •
• •

• • • • • •

• • • • • •

5-1
5-1

,
,

•
'.

.~.,

5.2.1
5.2.2
5.2.3
5.2.4

,5.2.5
5.2.6
5.2.7

Carry flag (C) • 5-1
Add/Subtract flag (N) •••••••••••••••••• 5-1
Parity/Overflow flag (P/V) •••••••••••••••• 5-2
Half-Carry flag (H) ••••••••••••••••••• 5-2
Zero flag (Z) •••••••••••••••••••••• 5-2

•
Sign flag (S) •••••••••••••••••••••• 5-2
Condition Codes ••••••••••••••••••••• 5-2

, ,

"

•

, .
• • • •

• • • • •
• • • • •

Instruction Execution and Exceptions •••••

5-3
5-3

5-3
, ,

•

• • •

• • • •
• • • •

• •
• •

•

• • •

Instruction Execution and Interrupts
Instruction Execution and Traps ••

5.3.1
5.3.2

5.3, .

..
\

., "

•
•

• •

IV •

.,

,

•

.'

• ,

, .

• ,

~ , ..

•

. ,

5.4 Instruction Set Functional Groups • • • • • • • • • • • • • • • • 5-4 5

"

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10

8-bit load Group •••••••••••••••••••• 5-4"
16-bit load and Exchange Group •••••••••••••• 5-5·
Block Transfer and Search Group • • • • • • • • • • • • • 5-5
8-bit Arithmetic and Logic Group ••••••••••••• 5-6
16-bit Arithmetic Group • • • • • • • • • • • • • • • •• 5-6

.'
Bit Manipulation, Rotate and Shift Group ••••••••• 5-7
Program Control Group •••••••••••••••••• 5-7
Input/Output Instruction Group •••••••••••••• 5-9
CPU Control Group ••••••••••••••••• ••• 5-9
Extended Instruction Group •••••••••••••••• 5-10

,

I .

•

i

.'

• •

. .

•

5.5
5.6

Notation and Binary Encoding
Instruction Set •••• ••

• • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • •
• • • •

5-10
5-13

Olepter 6. Interrupts and Traps

;

..
..

,

6
6.1

'6.2
Introduction
Interrupts

•

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •

• •

• •
• • • • • • •

• • • • • • •

6-1
6-1

•

'.

6.2.1
6.2.2
6.2.3
6.2.4

Interrupt Mode 0
Interrupt t-bde 1
Interrupt Mode 2
interrupt t-bde 3

• •
• •
• •

,

• •

6-2
6-2
6-2
6-3

"

,

i

•

•

,

6.3 1raps • • • • • • •
'.

• • • • • • •
•,

• • • • • • • • • • • • • • • • • 6-4

6.3.1
6.3.2

) .6. 3. 3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8

Extended Instruction Trap • • • • • • • • • • • • • • ••• 6-4,
Privileged Instruction Trap •••••••••••••••• 6-4
System Call Trap ••••••••••••••••••••• 6-5
Access Violation Trap ••••••••••••••••••• 6-5
System Stack Overflow Warning Trap ••••• • • • •••• 6-5
Division Exception Trap •••••••••••••••••• 6-5'
Single-Step Trap • 6-5
Breakpoint-on-Halt Trap • • • • • • • • • • • • • • • • • • 6-6

•

.'

•

-6.4 Interrupt and Trap Handling • 6-6
,

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Interrupt Acknowledge • • • • • • • • • • • • • • • • • • • 6-6
Status Saving ••••••••••••••••• ~ ••••• 6-7
Loading New Program Status •••• • • • • • • • • • • • • 6-7
Executing the Service Routine ••••••••••••••• 6-9
Returning from a Service Routine ••••••••••••• 6-9

• • • • • • • • • • • •

6.5
6.6

•,

Interrupt/Trap Vector
The Fatal Condition •

,

Table • • • • • • • • • • • • • • •
• • • • • •

,

• • • • • 6-9
• • • • • 6-11

v

•

•

Table of Contents (Continued)

Olapter 7. Me.ory Manag_entit

\

7
7.1
7.2
7.3
7.4

Int roduct ion •••••••••••••••••••••• • • • • • 7-1
MMU Architecture ••••••••••••••••••••••••• 7-1
Page Description Registers •••••••••••••••••••• 7-2
Address Translation •••••••••••••••••••••••• 7-3

I

•

7.4.1
7.4.2

Address Translation without Program/Data Separation •••• 7-3
Address Translation~ith Program/Data Separation ••••• 7-4

7.5
7.6

MMU Control Registers ••••••
Accessing Page Descriptor Registers

• • • • •
• • • • •

• • • • • • • • • • •
• • • • • • • • • • •

7-5
7-6

•

• •
•. . .,.

,
, .

\

7.6.1
7.6.2
7.6.3

Descriptor Select
Block Move Port •
Invalidation Port

Port • • • • • • • • • • • • • • • • • • 7-6
7-6
7-6 . .

7.7 Instruction Aborts • 7-7

.,

Olapter 8. On-Olip Me.ory 8
8.1
8.2
8.3

Introduction ••
Cache Memory Mode
fixed-Address Mode

\• • • • • • • • • • • • ••• • • • • • • • • • • •
• •

• •

8-1
8-1
8-4

. I

Olapter 9. On-Olip Peripherals

.' •. , •

9

,

• 9.1
9.2
9.3
9.4

Int roduct ion •••••• 9-1
Clock Oscillator ••••••••••••••••••••• •••• 9-1
Refresh Controller •••••••••••••••••••••••• 9-1
Counter/Timers •••••••••••••••••••••••••• 9-2,

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

Counter/Timer Operat ing Modes ••••••••• I•••••• 9-3
Gates and Triggers •••••••••••••••••••• 9-3
Terminal Count Condition ••••••••••••••••• 9-4
Counter/Timer Registers •••••••••••••••••• 9-4
Linking Counter/Timers •••••••••••••••••• 9-7
Counter/Timer Sequence of Events ••••••••••••• 9-7

,

9.5 DMA Channels • 9-9

. ,

•

f

'.

•

. ,

Vi

9.5.1
9.5.2
9.5.3
9.5.4·
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9

Types of DMA Operations •••••••••••••••••• 9-10
OMA Transfer Modes ••••••••••••••••••• ~ 9-10
End-of-Process •••••••••••••••••••••• 9-11
Priority Resolution •••••••••••••••••••• 9-12
DMA LinkIng •••••••••••••••••••••••• 9-12
DMA Registers ••••••••••••••••••••••• 9-13
DMA Sequence of Events •••••••••••••••••• 9-15
DMA Programming: Linked DMAs ••••••••••••••• 9-16
DMA Programning: OMAs Linked to UART ••••••••••• 9-17

•

r

: '"

, •
,

.'. ..
, .

" .
"

,

",. /
" . ".

".
','

, ,

", .. .'

"

"

, ',

9.6 UART • 9-17 9
" ,

',.

Transmitter Operation ••••••••••••••••••• 9-17
Receiver Operation •••••••••••••••••••• 9-18
UART Registers •••••••••••••••••••••• 9-18.
UART Operation •••••••••••••••••••••• 9-21

9.6.1
9.6.2

, '

9.6.3
9.6.4

• •
, I'

•

•
,

•

. '

. "

,
" ,

.' . ". . .
" .

, '

. '-,:.,
- '

"

9.7 UART Bootstrapping Option •••••• • • • • • • • • • • • • • • • 9-21 " '
.'' ... ',. '

o.8pter 10. Multiprocessor Configurations
. ' , ', . .

10 , '

• • • ••• • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

Slave Processors • • • • • • • • • • • , .

•

•

,::', ~.

"

, ,

•
"

'...,

\

\, .

'.. "
"\ ..

•

, '

. '. .
'..

.'

,10-1
10-1

10-2

10-2,
10-2'
10-4

, .
• •

• • •
• • • •
• • •

• • • • • • • • • •

• • • •• •• •
• • • • • • • • •

Global Bus

, ..
The Local Address Register
Bus Request Protocols ••
Examples of the Use of the

Tightly 'Coupled Multiple Processors

10.3.1
10.3.2
10.3.3

Introduction ••••••••••••

, ,
, ,

10.1
10.2
10.3

, '

\ "

• • • • • • • • • • •
Processing Architecture

Loosely Coupled Multiple CPUs
Coprocessors and the Extended

10.4
10.5

10.5.1
10.5.2

Extended
Extended

•,

Instructions ••••••••
Instruction Execution Sequence

• • • • • • •
• • • • • •

• • • • • • • • • •

• • • • • • • • •

10-6
10-6

10-6
10-7

'. ..

'.

, .
,

.
.' . . :".f,.:

'. '. J .
, .'

, , .
"

o.8pter 11. Reset • 11-1
•,

. ,

• . ' II
•

• .
o.8pter 12. lao Bus External Interface 12

;

12.1
12.2
12.3
12.4
12.5

Introduction •
Bus Operat ions • • • • • • • • • • • • • • ., • • • •
Pin Descriptions ••••••••••••••••••
Bus Configuration and Timing ••••••••••••
Transactions ••••••••••••••••••••

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

,

• • • • • • •

12-1
12-2
12-3
12-4
12-4

•

,

\

,

, \ '

12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6

Memory Transactions ••••••••••••••••••• 12-5
•

RETl Transactions •••••••••••••••••••• 12-9
Halt and Refresh Transactions •••••••••••••• 12-9
I/O Transactions ••••••••••••••••••••• 12-10
Interrupt Acknowledge T~ansactions •••••••••••• 12-12
DMA Flyby Transactions •••••••••••••••••• 12-13

.'

12.6 Requests • • • • • • • • • • • ' ... • • • • • • • • • • • 12-14

12.6.1
12.6.2
12.6.3

Interrupt Requests •
Local Bus Requests •
Global Bus Requests

• • • • • •

• • • • • •

• • • • • •

• • • • • •
\

• • • • • •

• • • • • •

• • • • • • •
• • • • • • •

• • • • • • •

12-14.
12-15
12-15

i

••

•

Vil

,...
i .

, "

• '. .

..-

"

... . ..
, .

Table of Conlenls (Continued)

• Olapter 13• Z-8US b:ternal Interface
•

, .
13

'. I.

,

" 13.1
13.2
13.3
13.4
13.5

, .

Int roduct ion • 13-1
Bus Operations •••••••••••••••••••••••••• 13-2
Pin Descriptions ••••••••••••••••••••••••• 13-3

,

Bus Configuration and Timing ••••••••••••••••••• 13-4
Transactions ••••••••••••••••••••••••••• 13-4

. .

• ,
"

:

'.

...
. ", ..

13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6

Memory Transactions ••••••••••••••••••• 13-5
Halt and Refresh Transactions •••• • • • • • • • • • • 13-10
I/O Transactions ••••••••••••••••••••• 13-11
Interrupt Acknowledge Transactions •••••••••••• 13-13
Extended Processing Unit (EPU) Transactions ••••••• 13-14
DMA Flyby Transactions •••••••••••••••••• 13-17

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •

Interrupt Requests
Local Bus Requests
Global Bus Requests

".,

13-18

13-19
13-19
13-19

• • • •• •
••

• • • • •

~ .

• • • •• • • •
, .

• •• •• • •Requests •••

13.6.1
13.6.2
13.6.3

. ,

....
'. 13.6

. .":
. .

.. ,

."' .
, ''," .

Appendb A. Z80/Z280 to.patibility • • • • • • • • • • • • • • • • • • A-1

· ','I.-~ '" '.. .,.... Appendb B. Z280 IFU Instruction fOl'llats • • • • • • • • • • • • • • • B-1
", .

"..
.... .

Appendb C. Instructions in Alphabetic Order • • • • • • • • • • • • • C-1

Appendb D. Instruct ions in beric Order • • • • • • • • • • • • • • 0-1

•

· . f
",' ...

'. ,
. '.

•

Appendix E.
,

Instruction Tilling • • • • • • • • • • · ., • • • • • • • • E-1
..

Appendix f. to.patible Peripheral f.-ilies • • • • • • • • • • • • • • F-1
. , .

.'

. ",

.-
, '
•

, .

, ,

Glossary •
"

, . G-1 •

•

Index 1-1

, .

,
,'.

,. .
'.,

." . .

'.

• '.
. "

.'
,

, ,

•

c •

' ..
,

.
" .'

.'

· .'

'. ' •

'.

•
, ',

,'

. .

" .

Vill. ,

, ,

-, \
,

.....

•

•

•

..
•

\

"

•

"

, '

I

•

•

\
•

..

•
..

..
,

I

. .

..

,

•

•

• , '.
. .. '.

LIST OF ILLUSTRATIONS AND TABLES
. .

..

\

'.

•

'.

..'

•

..

,
"

. .

.... ..

. ." .

.. '

, .

-

..

..

.' .

. '.

,,' " .

.'

•

'.

. .
-:. I.

.. .

•

..

•

•

.. '

.'

.. .

. . .

'..

- .­..

..

Paqe
Number

• ••••••• • 5- 1 "

•••••••••• 10- 5• • • • • • • • • •

••

• • • • • • •

• • • • • • • • • • • • • • • • • • • •

•,

Processor ••••••

...

Regist er _••••••••••••• "•••••

.
Block Diagram •••••••.•••••••.••••••••••••••••••••••••••••.••·.1-1
Reg is t er File Organ i zat ion ••••••••••••••••••••••••••••••••••• 2- 1
CPU Cont rol Reg i at ers •• 2-3
Numbering of Bits Within a Byte •••••••••• ~ ••••••••••••••·••••• 2-3
Formats, Multiple-Byte Data Elements in Memory •• ~ •••••••••••• 2-4
Bus Timing and Initialization Register ••••••• ~ ••••••••• ~ ••••• 3-1
Bus Timing and Control Register •••••••••••••••••••••••••••••• 3-2
Local Address Register ••••••••••••••••••••••••••••••••••••••• J-3
Cache Cant rol Reg ist er ••••••••••• ~ •••• ~ •••••••• ~ ••••••••••••• 3~3

Master Status Register ••••••••••••••••••••••••••••••••••••••• 3-4
Interrupt Status Register •••••••••••••••••••••••••••••••••••• 3-5'
Interrupt/Trap V~ctor Table Pointer •••••••••••••••••••••••••• 3-5
I/O Page Register ..•••• -.••••••••••.••.•.••.•.•••••••••••••••• 3-5
Trap Cant roi Register •••••••••••••••••••••••• ~ •••••••••••••• • 3-5
System Stack Limit Register •••••••••••••••••••••••••••••••••• 3-6
Flag
Mode 2 Interrupt Processing •••••••••••••••••••••••••••••• '. ~ •• 6-3
Instruction Execution Sequence ••••••••••••••••••••••••••••••• 6-6
Format of Saved Status on System Stack ' " .'/
Due to a Mode 3Interrupt •••••••••••••••••••••••••••••••••••• 6-8
Page Descriptor Register ••••••••••••••••••••••••••••••••••••• 7-2'·
Address Translation Without Program/Data Separation •••••••••• 7-3
Address Translation With Program/Data Separation ••••••••••••• 7-4
MMU Master Control Register.~•••••••••••••••••••••• ~ ••••••••• 7-5
Cache Organ i zat ion ••• 8- 1
Refresh Rate Register •• 9-1

.

MPU Counter/Timer Block Diagram ••••••••••••••• ~ ••••• ·••••••••• 9-2
~

Counter Operation With Gate Only •••••••••••••• ~ •••••••••••••• 9-3
Counter Operation With Trigger Only ••••• '•••••• ·•••••••••• ·•• ~ •• 9-4
Counter Operation With Gate and Trigger •••••••••••••••••••••• 9-4
Counter/Timer Configuration Register ••••••••••••••••••••• •••• 'J-5
Counter/Timer Command/Status Register •••••• ·~~ •••••• ~ ••••••••• 9-6
Modes of Operation •••••••••••••••••.•• ~ ••••••••••••••••••••••• 9-11
DMA Master Control Register •••••••••••••••••••••••••••••••••• 9-13
Transaction Descriptor Register •••••••••••••••••••••••••••••• 9-13
Source & Destination Address Registers Format ••••••••••••••• 9-15
General Format, Asynchronous Transmission •••••••••••••••••••• 9-17
Byte Assembled by Receiver for 5-bit Character with Parity ••• 'J-18
UART Configuration Register •••••••••••••••••••••••••••••••••• 9-18
Transmitter Control/Status Register •••••••••••••••••••••••••• 9-19
Receiver Control/Status Reqister ••••••••••••••••••••••••••••• 9-20
Multiprocessor Configurations •••••••••••••••••••••••••••••••• 10-1
local Add ress Reg i st er ••••••••••••••••••••••••••••••••••••••• 10-2,
State Diagram for CPU Bus Request ProtocoL •••••••••••••••••• 10-3
Tightly Coupled Processors With Shared Global Memory ••••••••• 10-4

•
Tightly Coupled Processors Without Global Memory ••••••••••••• 10-5
Z280 MPU as an I/O

Figure
Number
1-1.
2-1.

2-2.
2-3.
2-4.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
5-1.
6-1.
6-2.
6-3.

7-1.
7-2.
7-3.
7-4.
8-1.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
'J-12.
'J-13.
9-14.
9-15.
'J-16.
10-1.

'10-2~

10-3.
10-4.
10-5.
10-6.

IX

•
, .

, '.

, ,

•

Table of Contents (Continued)

Funct ions.' • ••

",

,
•

•

\

"

.., .

i
.

•

•

•

,..,

"

"

"

•

,

...

,

, '

••• 10-6
.10-7

, ,

connected)not

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •

or

GND)

+5V

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • •

• • • • • • • •

13-1
•••••• 1 3-1

• •••••••••••••••••••••• 13-6
.13-7

• •••••••• • 13- 7
.13-8
.13-8
.13-9
.13-10

•••• 13- 11
• ••••••• •·.13- 12

• ••••••• 13- 12
,

• •••••••••••••••••••••••• 13- 13
• ••••••• 1 3- 14

• • • • 13- 15
• ••••••• 13- 16

• •••••••••••••••••••••••• 1 3- 16
.13-17
.13-18

••••••••••• 13-19

to

• • • • • • • • •

Read Transaction •••••••••••
Write Transaction ••••••••••

• • • • • •

,
•••••

tied

• • • • • •

• • •

• • • • • • •

• •

• •

OPT

•

• • • •

Timing.

Flyby Memory
Flyby Memory
Timing ••

(Input

Timing •••••••••

Tim i n 9 •••••••••• '•• • '•••••
Timing ••••••••••••••••••••

Assignments •• ~ •••••••••••• ~.

riming •••••••••••••• • '••

Timing ••• ·•••••••••••

EPU Connection ln Z280 MPU System •••••••••••••••••••••••••
CPU-EPU Instruction Execution Sequence ••••••••••••••••••••••
zao Bus Configuration (Input OPT tied to

a) Pin Funct ions •• 12 - 1
b) Pin Assignments •• 12-1

Memory Read Timing.~••• 12-5
Memory Write Timing •• 12-6
Memory Read Timing W/One External Wait State ••••••••••••••••• 12-6
Memory Write Timing W/One External Wait State ••••••••••••••• 12-7
Memory Read Timing W/One Internal Wait State ••••••••••••••••• 12-7
•

RET IRe ad Tim i n 9 ••••••••• ••"" •••••••••••••••••••••••••••••••••• 12- B
Halt Timing .••• 12-9
Memory Refresh Timing •• 12-10
I/O Read Timing •••••••••••••·' ••••••••••••••.•.•••••••••••••••• 12-11
I/O Write Timing.· •• 12-11
Interrupt Acknowledge Sequence ••••••••••••••••••••••••.••••••• 12-12
On-Chip DMA Channel Flyby Memory Read Transaction •••••••••••• 12-13
On-Chip DMA Channel Flyby Memory Write Transaction ••••••••••• 12-14
Multiprocessor Mode Timing ••••••••••••••••••••••••••••••••••• 12-15
Z-BUS Configuration

a) Pin
b) Pin

Memory Read
Memory Write
Memory Read Timing With External Wait Cycle ••••••••
Memory Write Timing With External Wait Cycle ••••••••••••••••
Memory Read Timing With Internal Walt, Cycle •••••••••••••••••
Burst Memory Read Timing ••••••••••••••••••••••••••••••••••••
Halt
Memory Refresh Timing ••••••••• ~ ••••••••••••••••••••••••••
I/O' Read Timing ••••••••••••••••••••••••••••••••••••

I/O Write Timing ••••••••••••••••••••••••••.•.••••••••
Interrupt Acknowledge
Memory to EPU
EPU Write To Memory ••••••••••••••••••••••••••••••'••••••••
EPU To CPU Timing ••••••••••••••••••••••••••••••••••••
PAUSE
On-Chip DMA Channel
On-Chip DMA Channel
Multiprocessor Mode

12-2.
12-3­
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.
12-10.
12-11­
12-12.
12-13.
12-14.
12-15.
13-1.

13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.
13-12.
13-13.
13-14.
13-15.
13-16.
13-17.
13-18.
13-19.

10-7.
10-8.
12-1.

,

, ,
, .

"

• ,.
'

•

•
•

•

x

,
•

"

..
•

'.

'.

•

, .
•

I

"

, '

,
\ ,

,
•

" ,

/

• ,

•
:

.
:

•

•

•

..•

\

,, .

•

•

•

I

•

/

,.

J,

Trap Types •• 6- 7

8-Bit Arithmetic and Logic Group ••••••••••• ~ ••••• ~ •••••••••••• 5-6
16-Bit Arithmetic Operation Instructions ••••••••••••••••••••• 5-7
Bit Manipulation, Rotate and Shift Group •••••••••••••••••••••• 5-8
Program Control Group Instructions •••••••••••••••••••••••••••• 5-8
Input/Output Instruction Group Instructions ••••••••••••••••••• 5-9
CPU Cont roi Group ••• 5- 10
Extended Instruct ions •••••••••••••••••••••••••••••• ~ •••••••••• 5-10
Encoding of 8-Bit Registers in Instruction Opcodes •••••••••••• 5-11
Grouping of Maskable Interrupt Requests ••••••••••••••••••••••• 6-1
Interrupt Modes .•••••••..•••.••••••••••••••••••••••••••••••••• 6-4

Interrupt Acknowledge Encoding for Z80 Bus Parts •••••••••••••• 6-7
Interrupt/Trap Vector Table Format •••••••••••••••••••••••••••• 6-10

• •
Page Descriptor Register Addresses •••••••••••• ; ••• ~ ••••••••••• 7-5
MMU Invalidation Port ••• 7-6
I/O Port Addresses for MMU Control Registers •••••••••••••••••• 7-6
CPU Accesses to On-Chip Memory as Cache •••• : •••••••••••••••••• 8-2
On-ChIp DMA Accesses (Both Flowthrough and Flyby) Effect
on On-Chip Memory as Cache ••••• ~ •••••••••••••••••••••••••••••• 8-3
DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location ••• 8-4
Encoding, IPA Field in CiT Configuration Register ••••••••••••• 9-5
I/O Addresses of Counter/Timer Registers •••••••••••••••••••••• 9-7
Configuration and Command/Status Registers
for Linked Counter/Timers ••••••••••••• ~ •••••••••••••••••••• ~ •• 9_8
Encoding of DAD & SAD Fields in DMA Transaction '
()escr i pt or Registe r ••• 9- 1 J

[ncodlng of Type Field In Transaction Descriptor Register ••••• 9-14
Encoding of BRP Field In Transaction Descriptor Register •••••• 9-14
Encoding of Sf Field in Transaction Descriptor Register ••••••• 9-14

•I/O Addresses of DMA Registers •••••••••••••·••••••••••••••••••• 9-15
CR Field of UART Configuration Register ••••••••••••••••••••••• 9-19
BC Field of UART, Control Register •••••••·•••••••••••••••••••••• 9-19
I/O Addresses of UARf Registers ••••••••••••••••••••••••••••••• 9-20
Reset Value of UART and DMA Registers
When Bootstrap Mode Is Selected •••••••••••••• ~ •••••••••••••••• 9-21

8-3.
9-1.
9-2.
9-3.

9-4.

9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.

Table Page
Number ' Number
3-1. CS FIeld, Bus Timing & Initialization Register •••••••••••••••• 3-1
'3-2. LM Field, Bus Timing & Initialization Register •••••••• ~ ••••••• 3-1
3-3. I/O Field of Bus Timing and Control Register ••• ~ •••••••••••••• 3-2
3-4. HM Field of Bus Timing and Control Register ••••••••••••••••••• 3-2
3-5. DC Field of Bus Timing and Control Register ••••••••••••••••••• J-2
5- 1 • Cond i t ion Codes ••••••••"••••••••••••••• '•••••••• ~ ••••••••••• ~ ~ • • 5-3
5-2. 8-Bit Load Group Instructions ••••••••••••••••••••••••••••••••• 5-4
5-3. 16-Bit Load and Exchange Group Instructions ••••••••••••••••••• 5-5
5-4. Block Transfer and Search Group ••••••••••••••••••••••••••••••• 5-5
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
6-1.
6-2.
6-3.
6-4.
6-5.
7-1.
7-2.
7-3.
8-1.
8-2.

-.

"

"

, ,

, ,

•
, ,

..
~ ,, '
~

Xl

,
,

,

Table of Contents (Continued)
;

':

•

,•

.~.f-l• •family ••

Bus Transactions Involved 1n Fetch of
Extended Instruction Template ••••• ~ ••••••••••••••••••••••••••• 10-8
Sequence of Transactions for Data Transfers
Between an EPU and Memory ••••••••••••••••••••••••••••••••••••• l0-9
Effect of a Reset on Z280 CPU & MMU Registers ••••••• ; ••••••••• 11-2
Effect of a Reset on Z280 On-Chip Peripheral Registers •••••••• 11-3
ST Status Line Decode ••• 13-4
Format 1 Instruction Encodings •••••••••••••••••••••••••••••••• B-2
Format 2 Instruction Encodings •••••••••••••••••••••••••••••••• B-2
Format 3 Instruction Encodings •••••••••••••••••••••••••••••••• B-2
format 4 Inst'ruction Encodlngs •••••••••••••••••••••••••••••••• B-2

, ,

Instruction Execution Times ••••••••••••••••••••••••••••••••••• E-2 I

Extended Instruction Execution Times •••••••••••••••••••••••••• E-ll
Interrupt, Trap, and Special Condition Execution Times •••••••• E-12

, , '

Instruction Fetch and Decode Timing •••••••••••••••• ; •••••••••• E-13
Data Read Timing ••••••.•••••••••••••••••••••••••••••••.•••••••• E-14
Data Write Timing ••• E-14
I/O Read and Write Timing ••••••••••••••••••••••••••••••••••••• E- 15
EPU Read and Write Timing ••••••••••••••••••••••••••••••••••••• E-15
Interrupt Acknowledge Timing •••••••••••• ~: •••••••••••••••••••• E-15
Miscellaneous Transaction Timing •••••••••••••••••••••••••••••• E-16
Z8400 Peripheral family ••••••••••••••••••••••••••••••••••••••• f-l
Z8000/Z8500 Peripheral

10-2.

10-1.

11 -1 •

11-2.
13-1.
B-1.
B-2.
B-3.
B-4.
E-1.
E-2.
E-3.
E-4.
E-5.
E-6.
E-7.
E-8.
E-~.

E-l0.
F-1.
F-2.

, '

, ,

"

j

•
, ,

,,

, ,

, ,

•

, ..

, '. , '

• "
, '

•

..

, ,

• "

. ' •

..
•, I

, '\

"

, '

" .

..
,

" J

,

,

xii

" '
" !'I 1. ,

II !,
, 1
, J

1 J

i', ', ,
d
iI, I
, 1

:'
, J

I
, i'
,1
! J
, ,
:i
,I

:'i
1, ,

, ,
, I
, J
i I,,, ',
; :, '

! '• i
;

!',

•

,

, .

,

•

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the Z280 MPU is a
binary-compatible extension of the zeo CPU
architecture. High throughput rates for the Z2eO
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to
prov ide for slower speed bus transaction timing.
A programmable refresh mechanism for dynamic RAMs
and a clock oscillator are provided on-chip.

/

1.2.1 Syst.. and User Modes

Two modes of CPU operation, system and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be
executed and all of the CPU registers can be
accessed. This mode is intended for use by
programs performing operating system functions.
In user mode, certain instructions that affect the
state of the machine cannot be executed and the
control registers in the CPU are inaccessible. In
general, user mode is intended for use by .
applications programs. This separation of CPU
resources promotes the integrity of the system,
since programs executing in user mode cannot
access those aspects of the CPU that deal with
time-dependent or system-interface events.

, , ,
., • 'I ,

The register. structure has been extended to
include separate Stack Pointer registers, one for
• system-mode stack and one for a user-mode
stack. The system-mode stack is used for sav ing
program status on the occurrence of an interrupt
or trap condition, thereby ensuring that the user
stack is free of system information. The

. isolation of the system stack from user-mode
programs further promotes system integrity.

..

1.2.2 Address Spaces
•

supplemented by four other a-bit registers (B, C,
D, E) and two other 16-bit registers (IX, IV);
the 8-bit registers can be paired for 16-bit
operation, and each 16-bit register can be treated
as two 8-bit registers. The flag register (r)

, contains information about the result of the last
operation. The A, f, B, C, 0, E, H, and L

,registers are replicated in an auxiliary bank of
registers. These auxiliary registers can be
exchanged with the primary register bank for fast
context switching •.

Several CPU control registers determine the
,operation of the Z280 MPU. for example, the
contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers
afe accessible in system-mode operation only. .'.

The Z280 CPU's logical memory address space is the
same as that of the Z80 CPU: 16-bit addresses are
used to reference up to 64K bytes' of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
t+1U. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the Z280 CPU can have up to four

. ~

memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The Z280 CPU architecture also distinguishes'
between the memory and I/O address spaces and,
therefore, requires specific I/O instructions •
I/O addresses in the Z280 CPU are 24 bits long,.
with the upper 8 bits prov ided by an I/O page
register in the CPU. .: .

•

Many data types are supported by the Z280 CPU
architecture. The basic data type is the 8-bit
byte, which is also the basic addressable memory
element. The architecture also supports opera­
tions on bits, BCD digits, 2-byte words, and byte
strings.

•

Addressing spaces in the Z280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/O address
space. The CPU register file is identical to the
Z80 register set, with the exception of the
separate system- and user-mode Stack Pointers.
The A register acts as an 8-bit accumulator; the
HL register is the 16-bit accumulator. These are

1.2.3 Data Types
',' •

r

-,

•

.'

"

.'

1-2

,

.'

• •

"

:

-------:--------------------_.

"

. '

/

..

•
I

•

,
: .

}
" ,

•

,-

. '

1-3

dynamic
memory.

which the
a vector into

•, '

, .
, .

. . .

•

, .

, ,

•

.'

"

,

Memory management consists primarily of
relocation, protection, and sharing of

Hardware resets occur when the RrSrT line is
activated and override all other conditions. A
reset causes certain CPU control registers to be
initialized.

~ '.

"

Traps are synchronous events that trigger a
special CPU response when certain conditions occur
during instruction execution. The Z280 CPU
supports a sophisticated complement of traps
including Division Exception, System Call, , ,

Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps.

"

The first three modes are compatible with the Z80
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested interrupts
and a sophisticated vectoring scheme.,' '" , "

,"

I '

• Vectored interrupt mode, in
, interrupting peripheral provides

" a table of jump addresses.

• 8080 compatible, in which the interrupting
device provides the first instruction of the
interrupt routine •.

• Enhanced vectored interrupt mode, wherein the
,CPU handles traps and multiple interrupt

sources, saving control information as well as
the Program Counter when an interrupt occurs.

, ."'.

· ,

• Dedicated interrupts, in which the CPU jumps to
a dedicated address when an interrupt occurs.

'1.2.6 Exception Conditions . .

I
The Z280 MPU supports three types of exceptions,
(conditions that alter the normal flow of program
execution): . interrupts, traps, and resets.

I

I '

Interrupts are asynchronous events typically
triggered by peripherals requiring attention. The
Z280 MPU interrupt structure has been signi­
ficantly enhanced by increasing the number of
interrupt request lines and by adding an efficient

. means for handling nested interrupts. There are
. four modes for handling interrupts:

, ,

•

, ,>,

" ': ': ", ,." ""

, .. ,
-

, "

,

The operand addressing mode is the method by which
a data operand's location is specified. The Z280
CPU supports nine addressing modes, including the
five modes available on the Z80 CPU. The
addressing modes of the Z280 CPU are:

,

'1.2.5 Instruction Set

1.2.4 Addressing HOdes

• Register
.: Immediate
• Indirect Register
• Direct Address ,

• Indexed (with a 16-bit displacement)
• Short Index (with an 8-bit displacement)
• Program Counter (PC) Relative
• Stack Pointer (SP) Relative
• Base Index

.

, ,

The Z280 CPU instruction set is an expansion of
the Z80 instruction set; the enhancements include
support for additional addressing modes for the
Z80 instructions as' well as the addition of new
instructions. The Z280 CPU instruction set
pr~vides a full complement of 8- and 16-bit
arithmetic operations, including signed and
unsigned multiplication and division. Additional

, ' ", 8-bit computational instructions support logical
and decimal operations. Bit manipulation, rotate,
and shift instructions round out the data
manipulation capabilities of the Z280 CPU. The
Jump, Call, and Return instructions have both. '

conditional and unconditional versions; Relative
addressing is provided for the Jump and Call
instructions to support position-independent
programs. Block move, search, and I/O
instructions provide powerful data movement
capabilities. In addition, special instructions
have been included to facilitate multitasking,
multiple processor configurations, and typical
high-level language and operating system
functions.

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
8-bit shift, rotate, and bit manipulation
instructions are limited to the Register, Indirect

,, Register, and Short Index addressing modes. The
16-bit loads on the addressing registers support
all addressing' modes except Short Index, while "
other 16-bit operations are limited to the
Register, Immediate, Indirect Register, Index,
Direct Address, and PC Relative addressing modes. '

.

. '

'.

" .
, '

.

• •

l

.1.2.9 Refresh

I

Proper memory management can provide a logical
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to
memory, and protect the operating system from
disruption by users.

The 16-bit addresses manipulated by the pro­
grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (t+fU) transforms the
logical addresses into the corresponding 24-bi t
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from
specifying where information is actually located
in physical memory.

The Z280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation.

" "

1.2.10 On-Chip Peripherals
•

Several programmable peripheral devices are
,included on-chip in the Z280 MPUs: four DMA
channels, three 16-bit counter/timers, and a
UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
Z280 HPU's memory after a reset.

•

, .,

When a memory access violation is detected by the
MMU, a trap condition is generated in the CPU and
execution of the current instruction is auto­
matically aborted. This mechanism facilitates the
easy implementation of virtual memory systems
based on the Z280 HPU.

Status information generated by the CPU allows the
t+fU to monitor the intended use of each memory
access. Illegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modi fied and can
inhibit copies of data from being retained in the
on-chip cache.

,

, .
. ~'. •

"

. .

1.2.11 filiItiprocessor Mode

A special mode of operation allows the Z280 HPU to
operate in environments that have a global bus,
wherein the Z280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the Z280 MPU, and
another set of addresses is used for the global
bus. The Z280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the Z280 MPU in multiple-processor configura­
tions. for example, a Z280 MPU could be used as
an I/O processor in a Z80000-, Z8000-, or
Z280-based system. ' .

•

, ,

. ,

,
Cache memories are small high-speed buffers
situated between the processor and main memory.
for each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache. If so, the access ..
is made to the high-speed cache; if not, the
access is made to main memory, and the cache
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

The Z280 MPU includes on-chip memory that can be'
used as a cache for programs, data, or both.
Cache operations, including updating, are
performed automatically and are completely trans­
parent to the user. Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified under program
control, instead of being used as a cache.

, ' ,

,

1.2.12 Extended Instruction facility
•

The Z280 MPU architecture has a mechanism for
,

extending the basic instruction set through the
use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set'aside
to implement this feature. When the Z280 MPU

,

encounters an instruction with one of these
opcodes, it performs any indicated address qalcu­
lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed
by the E;PU •.

If an EPU is not present, the Z280 MPU can be
programmed to trap when an extended instruction is
encountered so that system software can emulate
the EPU's activity.

,

. '

\

1-4 •

,

.'

•,

1.3 BENEFITS OF THE ARCHITECTURE

The features of the Z280 MPU architecture provide
several significant benefits, including increased
program throughput, increased integration of
system functions, support for operating systems,
and improvements in compiler efficiency and code
density.

1.3.1 High Throughput

•
Very high throughput rates can be achieved with
the Z280 MPU, due to the cache memory, instruction
pipelining , and high clock rates achievable with
this processor. The CPU clock rate can be scaled
down to provide the bus clock rate, allowing the
designer to use slower, less-expensive memory and
I/o dev ices. Use 0 f the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievable with
the Z280 CPU's expanded instruction set also
contributes to program throughput, since fewer
instructions are needed to accomplish a given
task.

1.3.2 Integration of 5yst. FWlCtions
,

instruction and the trap mechanism provide a
controlled means of accessing operating system
functions during user-mode execution. '

The interrupt- and trap-handling mechanisms are
well suited for operating system implementations.
Several levels of interrupts are provided,
allowing for separate control of various peripher­
al devices (both on and off the chip). A new
interrupt mode is provided, wherein status infor­
mation about the currently executing task is saved
on the stack and new program status information
for the serv ice routine is automatically loaded
from a special memory area. Traps result in the
same type of program status saving. In both
cases, status is always saved on the system stack"
leaving the user stack undisturbed. " ,

, ,
"

Allocation of resources within the operating
system can be accomplished using a special Test _'
and Set instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid
in task switching and other operating system
chores.,

"
The on-chip MHU supports a multitasking environ-
ment by providing both a means of quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage. '

, '

,

"

, ,

The efficiency of the instruction set is enhanced
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the 8-bit load, arithmetic, and logical
instructions. '

Code density affects both processor speed and
memory utilization. Code compaction sav~s memory
space and improves processor speed by reducing the
number of instructions that must be fetched and
decoded. The largest reduct ion in program size
results from the powerful instruction set, where
instructions such as Multiply and Divide help
substantially reduce the number of instructions
required to complete a task. , , '

, ,
,, .

. '

1.'.. Code Density

Besides a powerful CPU, the Z280 MPU includes
many on-chip devices that previously had to be
implemented in logic external to the micro­
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART. Integration of all
these functions onto a single chip results in a
reduced parts count in a system design, accom­
panied by a result ing reduction in design an'"
debug time, power requirements,' and printed
circuit board space. This increased level of
integration also contributes to system throUghput,
since the on-chip devices can be accessed quickly
without the need of an external bus transaction.

, '

'1.'.' Operating 5yst. Support

\

Several of the Z280 MPU' s architectural features
facilitate the implementation of multitasking
operating systems for ,Z280-based systems. 1.'.5 Co~iler Efficiency

, ,

"

•

"

The inclusion of user and system operating modes
improves operating system organization. User-mode
programs are automatically inhibited from per­
forming operating-system type functions. System­
mode memory can be separated from user-mode memory
and separate stacks can be maintained for system­
mode and user-mode operations. The System Call

for microprocessor users, the transition from
assembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. For the Z280 MPUs,
high-level language support is provided through
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the Z280 instruction set, allowing the Z280 CPU
to easily handle a large amount and variety of
data types. The Z280 CPU's ability to manipulate
many different data types aids in compiler
efficiency; since data structures are high-level
constructs frequently used in programming,
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

•

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the Z280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move and Compare instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Numeric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
the Stack Pointer Relative addressing mode is

. .

•

especially useful for accessing parameters and
local variables stored on the stack.

1.. StIItARY

The Z280 MPU is a high-performance 16-bit micro­
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the Z80 CPU,

'. the Z280 MPU architecture has been expanded to
include features such as multiple memory address
spaces, efficient handling of nested interrupts,

•
system and user operating modes, and support for
multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache
memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture--including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency-­
greatly enhance the power and versatility of the
Z280 MPU. Thus, the Z280 MPU provides both a
growth path for existing Z80-based designs and a
high-performance' processor for future
applications. . .

•

. .

. .

. .

..

• I.

-
..

.It

, ..

. .

, .
,

l .

..

I

1-6

"

"

I ,

•

•

•

'.

,

..
•

..

.' .

..

..

•
,

•

•

•

i .

. ' .

•

, .

•

. . .
J

'. .'

. ,

,

J

• i

..:

.' .

. '

i. ..

•

/

,

•

•

.
;l

•

• 0

.0
. . , .

. ,

Chapter 2.
Address Spaces

2.1 INTROOUCTION 2.2 CPU REGISTER SPACE •

" .
.. '.

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file): '

•

0'

and'
, ,

o ,

, 0

...
register,

. .
• Flag and accumulator registers (F, A, FI, AI)
• Byte/word registers (B, C, 0, E, H, L, BI, CI ,

0 1 , EI, HI, LI)
• Index registers (IX, IV)
• ' Stack Pointers (SSP, USP)
• 0 Program Counter, Interrupt

Refresh register (PC, I, R) ,

The Z2eO CPU register file is illustrated in
Figure 2-1. The primary register file, consisting
of the A, F, B, C, 0, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at anyone time. Special exchange instructions
are provided for switching between the primary and
auxiliary registers. ~i '-

,

are:
• •

• I/O address space. This consists of the
addresses of all I/O ports through which
peripheral devices are accessed, including
on-chip peripherals and MMU registers. .

• CPU control register space. This consists of
the addresses of all registers in the CPU
control register file.

The Z2eO MPU supports four address spaces corre";
sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha­
nisms used to map the logical address into
physical locatiol'ls. These four address spaces

• M!.ory address sp-=e. This consists of the
addresses of all locations in the main memory.

• CPU register space. This consists of the
addresses of all registers in the CPU register
file.

,

" '",

,
,

J

PRIMARY PILE
, .

AUXILIARY PILE \' .. "

,
,

A ACCUMULATOR F FLAG REGISTER
,

A' ACCUMULATOR F' FLAG REGISTER,,
0

,
, .". .

B GENERAL PURPOSE C GENERAL PURPOSE .' GENERAL PURPOSE C' GENERAL PURPOSE

,

0 GENERAL PURPOSE E GENERAL PURPOSE 0' GENERAL PURPOSE E' GENERAL PURPOSE
,

, ' . ,
0

'H GENERAL PURPOSE L GENERAL PURPOSE H' GENERAL PURPOSE L' GENERAL PURPOSE
• ,..

li"I41-----1 BITS----l~~1

I INTERRUPT VECTOR • 0

-

IX INDEX REGISTER

I
I

IY INDEX REGISTER

I

•
PC PROGRAM COUNTER •

SP STACK POINTER
USER (USP)

SYSTEM (SSP)

NOTE: A I. the I-bIt accumuilltor.
HL I. the 11-b1t accumulator.

..

, '

'-

1...41----------11BITS--------~~1

Figure 2·1. Register File Organization

2-1
•

"

,

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction.

The flag registers (f, f I) contain eight status
flags. four can be individually used for control"
of program branching, two are used to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the Z2aO CPU, with only one set accessible as
the flag register and the acclJllulator at anyone
time. An exchange instruction allows switching to
the alternate flag register and acclJllulator.

The byte/word registers can be accessed either as
8-bit byte registers or 16-bit word registers.'
Bits within these registers can also be accessed
individually. for 16-hit accesses, the registers
are paired B with C, 0 with E, and H with L. Two
sets of byte/word registers exist in the Z280 CPU, ,
although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction.

,

The index registers IX and IV can be accessed as
16-bit registers or their upper and lower bytes
(IXH, IXL, IVH, and IVL) can be individually
accessed.

The Z2aO CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting subroutine calls
and returns in system mode. The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program
and for generating relative addresses. The Inter­
rupt register is used in interrupt mode 2 to
generate a 16-bit logical address from an a-bit
vector returned by a peripheral during an inter­
rupt acknowledge. The Refresh register is used by
the Z80 CPU to indicate the current refresh
address, but does not perform this function in the
Z280 CPU; instead, it is another a-hit register
available for the programmer.

,

2-2

,

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accumulator registers, selecting either f, A or
f', AI whenever the instruction specifies the flag
register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the B, C, 0, E, H, L registers or the BI, CI , 0 1

,

EI, HI, LI registers. These two control bits are
changed by the Exchange flag and AcclJIIulator and
the Exchange Byte/Word Registers instructions,

'respectively. At any time the program can sense
the state of these control bits by special jump
instructions. The third cant rol bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User Stack Pointer
register is selected whenever an instruction
speci fies the Stack Pointer register. In
addition, the User Stack Pointer register also has
an address in the CPU control register space via a
special Load Control instruction.

2.3 CPU IDfTROl REGISTER SPAlL

The Z280 CPU status and control registers govern
the operation of the CPU. They are accessible
only by the privileged Load Control (LOCTL)
instruction. '

Control register addresses are specified by the
contents of the C register. No translation is
performed in mapping this a-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization register, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the I/O Page
register, the System Stack limit register, the
Trap Control register, the Interrupt Status
register, the Cache Control register, and the
Local Address register (figure 2-2). The CPU
control registers are described in detail in
Chapter 3.

"

,

J '

"•

,
I

,
,,.
I

,
"
"

\',

. The 16-bit logical addresses generated by a
program can be translated into 24-bit physical
addresses by the on-chip MMU. When the
translation mechanism is disabled, the 24-bit
physical address consists of the logical ~ddress

for bits AO-A15 and zeros for A16-A23.

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can. be stored beginning with either even or odd
memory addresses. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types
are given in figure 2-4. .

•

•

'.

Two memory address spaces, one for system and one
for user mode operation, are supported by the Z280

\
MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

•.
Each address space can be viewed as a string 0 f
64K bytes numbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the Z280 MPU memory address spaces.
However, there are other addressable data ele­
ments: bits, 2-byte words, byte strings, and
multiple-byte EPU operands. . .

The size of the data element being addressed
depends on the instruction being executed. A bit
can be addressed by specifying a byte and a bit
within that byte. 8its are numbered from right to
left, with the least significant bit being bit 0,
as illustrated in figure 2-3.

7 0

I , I~II I I I~I

Note that when a word is stored in
least significant byte precedes
'significant byte of the word, as in
architecture.

'. .. ", ..

•1n memory

memory, the
the most

the Z80 CPU

'.

,

Figure 2·3. Numbering of Bits within a Byte
•'.

'.

2-3

60-bit floating·point (EPU instruction only) at address n: 16-bit word at address n:

80-bit floating-point (EPU instructions only) at address n:

address n

address n+1

,

,

address n

address n+ 1

address n+2
address n+3

. '

address n

address n+1

address n+2
address n+3

address n+4

address n+5
address n+6

,address n + 7

B63-56 (most significant byte)

B55-48
B47-40
B39-32

B31-24

B23-16

B15-8 .
B7-0 (least significant byte)

< -------.------ 1 byte -.-----.---.-- >

B31-24 (most significant byte)
B23-16

B15-8

B7-0 (least significant byte)
< ...------..--- 1 byte -.------------ >

64-bit integer (EPU instruction only) at address n:

least significant byte

most significant byte
< 1 byte ------- >

32-bit integer (EPU instruction only) at address n:

,

address n

address n+1

address n+2
address n+3

address n+4

address n+5

address n+6
address n+ 7

address n+8
address n+9

address n

address n+1

address n+2

address n+3

address n+4

address n+5
address n+6

address n+ 7

sign,E14-8

E7-0

F63-56
F55-48

F47-40

F39-32
F31-24
F23-16

F15-8
F7-0

sign,E10-4

E3-0, F51-48

F47-40
F39-32

F31-24
F23-16
F15-8

F7-0
<·-1 byte ..>

•

, ,

BCD digit strings (EPU instruction only) at address n:
(up to 10 bytes in length; the illustration is for the

maximum length string)

32-bit floating-point (EPU instruction only) at address n:

sign,018

017,016
015,014
013,012
011,010
09,08
07,06
05,04
03,02
01,00

. . -:.

address n

address n+1
address n+2

address n+3
address n+4

address n+5
address n+6

address n+ 7
address n+8

address n+9

•

. '

,

Figure 2-4. Formats of Multiple-Byte Data Elements in Memory

"

2.5 1/0 AlDRESS SPACE
,

, ,..
"

. .

I/O addresses are generated only by I/O
instructions. The a-bit logical port address
speci fied in the instruction appears on ADO-AD7;
this is concatenated with the contents of the A
register on lines Aa-A15 for Direct addressing,
mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. The contents of the I/O Page
register ar~ appended to this address on lines
A16-A23. Thus, the 24-bit I/O port address

consists of the a-bit address speci fied in the
instruction, the contents of the A or B register,
and the contents of the 1/0 Page register.

An I/O read or write is always one transaction,
regardless of the bus size and the type of I/O
instruction. On-chip peripherals with word
registers are always accessed with word
instructions, regardless of the size of the
external bus.

•

•

.'

,

2-4

,

•
•

•

. ,
.

Chapter 3~ , '.
CPU Control Registers'

•

Table 3-1. CS Field of Bus Timing and Initialization Register

CS Field Bus Clock Frequency

Clock Sealing (CS) field. This 2-bit field
.' .

governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table ~-1. This
field is initialized during a reset operation, as
described below, and cannot be modified via
software.

00 Bus clock frequency equals 112 CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)

01 Bus clock frequency equals CPU clock frequency
(one bus clock cycle for everyone CPU clock cycle)

10 Bus clock frequency equals 1/4 CPU clock frequency
(one bus clock cycle for every four CPU clock .
cycles) .!' . .:

low Me.Dry Wait Insertion (lM) field. This 2-bit
field specifies the number of automatic wait

. states to insert in memory transsctions to the
lower a megabytes of physicsl memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2. Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

•

'.

. .

••

. .

•

•

·, .

•

.'

.' .

,. .

I

. \

.: ..'

Reserved11.

"

,,

3.2 SYSTEM CONF"I~TION REGISTERS

There are four a-bit system configuration regis­
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the local
Address register, and the Cache Control register.

3.1 INTRODUCTION
. . .

'.

Several CPU control and status reg isters speci fy
the operating mode of the l2aO MPU. There are two
types of CPU control registers: system

. configuration registers and system status regis­
ters. The system configuration registers contain
information about the physical configuration of.
the Z2aO-based system, such as bus timing infor­
mation. Typically, the system configuration
registers are loaded once during system initial­
ization and are not altered during subsequent
operations. The system status registers contain
information that may change during system
operation, such as the current I/o page. Access
to the CPU control registers is restricted to
system mode operation only, using the privileged
load Control (LDCTL) instruction. Resets ini­
tialize the, control registers so that a laO object

\.

program will execute successfully on the l2aO
MPU. (laO programs do not affect these registers,
since the load Control instruction is not part of
the laO CPU's inst ruct ion set.) Unused bits in
these registers should always be loaded with
zeros.

LM Field

/

3.2.1 Bus Tiaing -.d Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for
bus timing, the duration of bus transactions to
the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap
modes. Figure 3-1 illustrates the bit fields in
this register.

Table 3-2. LM Field of Bus Timing and Initialization Register

Number of Walt States for
Lower 8M Bytes of Memory

00
01
10
11

Figure 3-1. Bus Timing and Initialization Register

..

tlJltiprocessor Configuration Enable (tr) Bit.
This 1-bit field enables the multiprocessor mode
of operation, wherein the l2aO MPU is connected to

. both a local and a global bus. Transactions to

..

•

. ,

. . ,

.'

•

,

o
1
2
3

o
1
2
3

o·
1 '
2.
3

i.

"

:

00
01
10
11

00
01
10
11

00:
01
10 "
11

DC Field

HM Reid

110 Field

Table 3-5. DC field of Bus nmlng and Control Register

Number of Walt States for
Interrupt Acknowledge

Table 3-4. HM Field of Bus Timing and Control Register

Number of Walt States for
Upper8M Bytes of Memory

Table 3-3. 110 Field of Bus Timing and Control Register

Numberof Walt States
for 110

•

Daisy Clain Taing (DC).' This 2-bit field
determines the number of automatic wait states to
be inserted .during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)
or between the assertion of Mf and the assertion
of 'Imm' (for the zao Bus). The value. of the DC
field determines if any additional clocks are to
be added between the Address Strobe and Data
Strobe (or RT and l'n"Irn) assertions.

I/O Wait Insertion (I/O) Field. This 2-bit field
specifies the number of automatic wait states (in
addition to the one wait state always present
during I/O transactions) to be inserted during
each I/O read or write transaction, as per Table
3-3. The specified number of wait states is also
added to the vector read portion of an interrupt
acknowledge cycle.

High Me.Dry Wait Insertion (t.t) Field. This 2-bit
field specifies the number of automatic wait

. states to be inserted during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

•

"

The 8-bit Bus Timing' and Control register deter­
mines the timing of bus transactions to the upper
8M bytes of memory and to all I/o devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

3.2.2 Bus Tilling 2Wld Control Register'

Figure 3-2. Bus Timing and Control Register

The Bus Timing and Initialization register can be
initialized with either of two methods during a
reset operation. If the MPU's WArr input is not
asserted during reset, this register is auto­
matically ~nitialized to ~ll zeros, thereby
speci fying a bus clock frequency 0 f one-hal f the
internal CPU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling of the multiprocessor and
bootstrap modes. I f the WAIT input is asserted. '

during reset, the 8us Timing and Initialization
register is set to the contents of the AOO-A07 bus
lines, as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the lM and MP
fields can be written using the lOCTl instruction.

3-2

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1.

Bootstrap Mode Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper­
ation, memory is automatically initialized via the
UART after the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; execution
then begins from memory location O. (See Chapter
9 for further details.) Setting this bit to 1
enables the bootstrap mode and clearing this bit
to 0 disables this mode. The BS bit can be set to
1 only during a reset operation, as described
below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this
register is read.

addresses on the global bus require a special bus
request and acknowledgement before the bus trans­
action can occur. (See Chapter 10 for detai ls
concerning this mode of operation.) Setting this
bit to 1 enables the multiprocessor mode, and
clearing this bit to 0 disables this mode.

;
,
, ,

I

i
I
I,

I
:

I

I

I
I
!,

1 '

!
!

, .
I

I
i

The Bus Timing and Control register is set to 30H by a
reset. Bits 4 and 5 should always be written with O.
When this register is read, bits 4 and 5 may return a

I

The contents of the Bus Timing and Contt'ol
register govern the number of automatic wait,
states to be inserted during various bus trans­
actions. Additional wait states can be added to
any bus transaction via control of the WAIf
input.

•

1. ,

Match Enable bit (MEn): If MEn is set to 1, then
the corresponding physical address bit An is
compared to base bit Bn to determine if the
address requires the use of the global bus. If
MEn is a zero, then any values for An and Bn
produce a match, signi fy ing a local bus access.
If every MEn is cleared to 0, then all memory
transactions are performed on the local bus.

The-Local Address register is cleared to all zeros
by a reset.

The a-bit local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit S of the Bus Timing and
Initialization register), the contents of the
local Address register have no effect on MPU
operation.

I f multiprocessor mode is enabled, the MPU auto­
matically uses the local Address register during
each memory access to determine if the global bus
is required. The local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the
physical memory address during memory trans­
actions. The 4-bit match field specifies which
bits of the physical memory address are of
intet'est; for those bit positions specified in
the match field, if all the corresponding address
bits match the local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions, then the global
bus is requested, and the transaction cannot
proceed until the global bus acknowledge signal is
asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)

'.2.' local Address Register

•

..

"
'"

, '

contains five control
The format for this

3-4.

.
"t••

",- ,

Figure 3-4. Cache Control Register

The Cache Control register
bits, as described below.
register is shown in Figure

Me.Dry/Cache (HIr) Bit. While this bit is set to
1, the on-chip memot'y is accessed as physical
memory w.ith fixed memory addresses; the useI' can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a cache.

The a-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Csche Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This register is also used to
determine if burst-mode memory transactions are
suppot'te~. (See Chapter a for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

'.2.4 Cache Control Register

is

I

registerAddress
I

of the Local
in figure 3-3.

The format
illustrated

"

,

Figure 3-3. Local Address Register

Cache Instruction Disable (I) Bit. While this bit
and the Hlc bit are cleared to 0, the on-chip
memory is used as a cache dut'ing instruction
fetches. While this bit is set to 1, instt'uction
fetches do not use the cache. If the Hlc bit is a
1, the state of this bit is ignored.

Base bit (Bn): For each MEn that is set to 1, the
corresponding value of Bn must match the value of
address bit An in order for the local bus to be
used; otherwise, the transaction requires the use
of the global bus.

Cache Data Disable (D) Bit. While this bit and
the HIe bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

•

3-3
,,

:

,,'

.'

•

",.

•

,~

Single-Step (55) Bit. This bit is the enable for
the single-step operating mode. While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled. . '

l,

The Master Status register is loaded with all
zeros by a reset. Bits 7,10,11,13, and 15 of
the MSR always should be written with zeros.

3.3.2 Interrupt Status Register

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

Interrupt Requnt Enmle (En) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The Z280
MPU 's' interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit En is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while En is cleared to 0,
interrupt requests from sources at level n are not
accepted. '.

.
Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access Violation, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (for these traps, the PC address of
the trapped instruction is saved for possible
re-execution.) .'

Breakpoint-on-Halt Enable (BH) Bit. Whi le this
bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally.

User/Syste- (U~ Bit. While this bit is cleared
to 0, the Z280 MPU is in the system mode of
operation; while set to 1, the MPU is in the user
mode of operation. The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged
instructions can be executed only while in system
mode.

'.'

. '.

"

•
•

, .

'.

.,

,.

3.3 SYSTEM STATUS REGISTERS

3.3.1 Master status Register

Th~ format of the Master Status register is shown
in figure 3-5•.

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program. Typically, the MSR changes when a new
programming task is dispatched;· it changes
automatically when an interrupt or trap occurs.
f or all traps and for interrupts processed using
interrupt mode 3, the' old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

There are six system status registers in the Z280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, I/O
Page register, Trap Control register, and System
Stack limit register.

3-4

Figure 3-5. Master Status Register

':., .

High Me.ory Burst Capability (tIIJ) Bit. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical

, '.

address is a 1). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to 0
disables burst-mode transactions.

instruction and data fetches by clearing both the
I and D bits.) 1f the M/C bit is a 1, the state
of this bit is ignored. .

, '

low Me.ory Burst Capability (ue) Bit. This 1-bit
field specifies whether burst-mode memory
transactions wi U occur during memory transactions
to the lower 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to 0
disables burst mode transactions.

The Cache Control register is set to a 20H
, (hexadecimal) by a reset, enab ling the on-chip

memory for use as a cache for instruction fetches
only and disabling burst mode transactions. Bits,
0, 1, and 2 of this register are not used.

,

•

,-

enable bits are writeable; all other bits in this
register are read-only status bits. The fields in
the Interrupt Status register are, shown in Figure
3-6.

•

..

The contents of the Interrupt/Trap Vector Table
Pointer are unaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and 0 may return a 1.

". . . /,, . ..

, ~..

•

15 o
Ie 18 IA IMMI 0 0 1M 0 IP. IPs IP4 IP3 IP2 IP1 IPo',' 3.3.4 I/O Page Register

"
, ' .

Figure 3-6. InteinJpt Status Register,

J

InterrUpt Vector Enable (In) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While In is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while In is
cleared to 0, that interrupt is not vectored.
These bits are ignored when not in interrupt mode
3. ..

The 8-bit I/O Page register determines the upper
eight bits of the 24-bit peripheral address output
during execution of an I/O transaction (Figure
3-8). I/O pages FEH and FFH are reserved for
on-chip peripheral addresses.

" ,
. . ..

..,

,

Figure 3-8. I/O Page Register

3.3.5 Trap Control Register

, .
InterrUpt ItJde (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this field' denoting interrupt
mode n. This field can be changed by executing
the 1M instruction.

The contents
cleared to all

........

of the
zeros by

I/O Page
a reset.,

"

register are

The 8-bit Trap Control register contains
enables for the maskable traps. Figure
illustrates the format of this register.

InterrUpt R....t Pending, UPn} Bits. When bit
IPn is a 1, an interrupt request from a source at
level n is pending.

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode a is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. Bits 7, 10, and
11 of this register are not used.

'", ':. '.

F"lQure 3-9. Trap Control Register

.. '

, . •

the
3-9

. "

.'
,

. ,

.

......-

, ,

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most significant bits of the
physical memory address of the start of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table is a memory area that holds the
values that are loaded into the Master Status.
register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
described in Chapter 6. The twelve low-order bits
of the 24-bit physical address are assumed to be
all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7).

15 0

A23 A22 A2l A20 A19 All A17 Al. A1S A14 Au A12 0 0 0 0

Figure 3-7. Interrupt/Trap Vector Table Pointer

\

Inhibit User I/O (I) Bit. This bit determines
whether or not I/O instructions are privileged
instructions. While this bit is set to 1, all I/O
instructions are treated as privileged
instructions, and an attempt to execute an I/O
instruction while in user mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, I/O instructions can be successfully
executed in user mode. I/O instructions can
always be executed in system mode, regardless of
the state of this bit.

.. ,

EPU Enable (E) Bit. This bit indicates whether or
not an Exte~ded Processor Unit (EPU) is available
in the system for execution of extended in­
structions. If this bit is cleared to 0,
indicating that no EPUs are present, the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
is set to 1, the CPU performs whatever data
transfers are indicated by the extended in­
struction opcode, and assumes that the EPU is
present to execute the instruction.

3-5

,

. .

,

\

\

"

"

"

, .

, '-- . , .

.. ,

Limit register

..

'. .

I

, ,

". ,

,

.' ,

•

,
•,

"

\•

•

•

, .

"

The contents of the System Stack
are cleared to zeros by a reset.

,

•

,

,

Figure 3-10. System Stack Limit Register

15

BA1.IA13IA12IA11IA101 Asl Asl All Ael Asl A411

The 16-bit System Stack Limit register determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most significant bits of the logical
address of the System Stack Pointer to be compared
to the 12 most significant bits of this register;
a System Stack Overflow Warning trap is generated
if they match. The low-order four bits of this
register must be zeros (figure 3-10). This
register has no effect on MPU operation if the
System Stack Overflow Warning enable bit in the
Trap Control register is cleared to O.

J.J.6 Systell Stack limit Register

"

, ,
~

" ,

\

.. .

/'

"

"

,

\ "

" '
•

,

The Trap Control register is cleared to all zeros \
by a reset, indicating that I/O instructions are
not privileged, EPUs are not present in the
system, and Stack Overflow Warning traps are
disabled. Bits 3 through 7 of this register are
not used.

Systesa Stack Overflow Warning (5) Bit. This is
the enable bit for the System Stack Overflow
Warning trap. While it is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents of the Stack Limit register. While this
bit is cleared to 0, Stack Overflow Warning traps
are disabled. This bit is automatically cleared
when a System Stack Overflow Warning trap is
generated.

,.'

,

, ,',
, I

· I. ,.
, '1
I' I ' :

' ..
':!, •

, "
'I '.
, I'
: I,",
: ; .,j
· ','· ,.. '.
: ,U'-. ,
. .1'

'j 'Ii
, ". ", . ,

,',
, :!'

",
;

, '

· ', ".
· I'",
: l

!

"
~ i-

i 1
IJi i

1.1"
,

. :, ,
·11 :1" 3-6

•

, ,

, .

BC: 9 A 2 0

HL: 9 A 2 0

;load the contents of HL into BC .

INSTRUCTION REGISTER

I-O-P-E-R~-:r-Io-N"l REGISTER I .. I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

. .

Chapter 4.
Addressing Modes and Data Types

LD BC,HL

Ex8llple of R .ooe:

BC: A 6 B 8

HL: 9 A 2 0

Before instruction execution: After instruction execution:

The operand is always in the register address
space. The register length (byte or word) is
specified by the instruction opcode.

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon. for Z280 CPU instructions,
operands can reside in CPU registers, memory
locations, or I/O ports. The methods used to
designate the location of the operands for an
instruction are called addressing modes. The Z280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.
A wide variety of data types can be accessed using
these addressing modes.

••1 INTRODUCTION

4.2 AlDRESSIM; til)[DESCRIPTIONS · .'· .
..

.'

...- ..

:OPERAND

INSTRUCTION

OPERATION

•

. . .

•

used, the

,. .
... I.' ,

-\' ,

. '.· .

" '. . '.

The Immediate addressing mode is the only mode
that does not indicate a register or memory
address as the source operand. ..

4.2.2 Immediate (1M)

When the Immediate addressing mode is
data processed is in the instruction.

The following pages contain descriptions of the
addressing modes for the Z280 CPU. Each
description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing mode, and
gives an example of an instruction using that
mode, illustrating the assembly language format
for the addressing mode. The examples using
memory addresses use logical memory addresses; if
the MMU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

THE OPERAND VAWE IS IN THE INSTRUCTION.

".,'
_.

! .

. .
4.2.1 Register (R, RX)

.' .
•;load hex 55 into the accumulator

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers.

Exa.ple of 1M .ooe:

lD A,55H

used, the instruction
one of the 8-bit
IXH, IXl, IVH, IVl,
BC, DE, Hl, IX, IV,
registers I or R.

When this addressing mode is
processes data taken from
registers A, B, C, 0, E, H, l,
or one of the 16-bit registers
SP, or one of the special byte

\.

Before instruction execution: After instruction execution:
Storing data in a register
instructions and faster execution
instructions that access memory. .

allows shorter
than occur with

A: A:

'.

•
• 4-1

.- . -_.--- - -----------------

A: 0 F A: 0 B

til: 1 7 0 C Hl: 1 7 0 C..
.~ .

, ,

, Data memory:
, .

"

, ,

•

•

"

•

used,
memory

•

•

•

,

BC: 10 3 0 1I

;load Be with the data in
;address 5E22

"

also used by Jump and Call
speci fy the address of the next
be executed. (Actually, the

as an immediate value that is
Pr~gram Counter.)

INSTRUCTION

o 1

o 3

DATA MEMORY
OPERATION OR 110 PORT

ADDRESS OPERAND

i

THE OPERAND VAWE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION•

•

, .
5E22:

5E23:

Data memory:

BC: 16 7 8 91
Before instruction execution: After instruction execution:

EX8llple of DA .ooe:

lD BC,(~E22H)

This mode is
instructions to
instruction to
address serves
loaded into the

When the Direct Address addressing mode is
the data processed is at the location whose
or I/O port address is in the instruction.

Depending on the instruction, the operand
specified by DA mode is either in the I/O address
space (I/O instructions) or in the data memory
address space (all other instructions).

••2.. Direct Address (DA)

DATA MEMORY,
110 PORT, OR

REGISTER CONTROL REGISTER

ADDRESS H OPERAND I

",.... ~,
.> '.

., ...

".. ',
,

•

. . . ' ..

,

.,
"

, ,
"

..
;load the accumulator with the data
;addressed by the contents of Hl

o B

"

INSTRUCTION

I""'O-'-E-RA-:r-IO-N-I-R-EG-I-ST-E-R-I -I

"

HOC:

4-2

lD A,(HL)

Before instruction execution: After instruction execution:

Ex.-ple of 1ft .ooe:

THE OPERAND VAWE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER•

The Indirect Register mode can save space and
reeluce execut ion time when consecut i ve locat ions
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed.,

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the Hl register
for memory accesses or the C register for I/O and
control register space accesses. For the load,

Byte instruction, BC and DE can also be used in
addition to HL.

, '

••2.3 Indirect Register (1ft)

Depending on the instruction, the operand
specified by IR mode is located in either the I/O
address spsce (I/O instructions), control register
space (load Control instruction), or data memory

-address space (all other instructions).

•

•

•

"

•

,

: , I.", '
'I':'11" ~, .,

J: 1:·:;

; .i ~ :

In.::
:';1'
:. ". ..
I ; ..
1 'J ;.

i '!:;I!l: '
. 1 L, · ... 1·

I, ,
,j ...•
:i 'f ;-I
'1 11' I

l!" ..
_It.

".'.:;
I·- "
r '" .I'r· '" ..
, .'.;.
i:·
,.j ' •

• 1: ':
. I"
j'll',"
I : ~. .
; ~.: ,
'." .,,' "

;~:Ll .
','; .
1 'I, .'
:;',1

l'I!li'.., .. ', .
:. I

j!
, '

II,:
! " "
, '. ~
'j' ,

'"II': ;
!, "

, . ;..
I '
i:

4.2.5 Indexed (X)

for this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
IY.

•In

The indexed address
address specified

is computed by adding the
the instruction to a

twos-complement "index" contained in the 1-1.., IX or
IY register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the
particular element index must be computed by the
program. .

•

\
!,

•

•

,

. ,.,
'.

,

"."

REGISTERINSTRUCTION
DATA'

MEMORY

~ OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

OPERATION REGISTER INDEX :1 ,

ADDRESS +, . , -
. '•

•

LD A,(IX + 231AH)

Address calculation:

231A
+01fE

2518

;load into the accumulator
;the contents of the memory
;location whose address
;is 231AH + the valu~ in IX

•

Data memory:

2518: .~

. ' .

. -

•
". ..

~\ , .
. ' . .~~

.. ' ."

. . .
• •'.

..

'.

,

"

'.

4.2.6 Short Index (SX)

When the Short Index addressing mode is used, the
data processed is at the location whose address is
the contents of IX or IY offset by an 8-bit signed .
displacement in the instruction. (Note that this
addressing mode was called "Indexed" in the Z80
CPU literature.)

'. -. .

The short indexed address is computed by adding
the 8-bit twos-complement signed displacement
specified in the instruction to the contents of
the IX or IV register, also speci fled by the
instruction. Short Index addressing allows random
access to tables or other complex data atructures
where the address of the base of the table is
known, but the particular element index must be
computed by the program.

•

•,

•

. "

- ,.
OPERATION REGISTER ADDRESS '."-

DISPLACEMENT
,

INSTRUCTION REGISTER
DATA

MEMORY

I OPERAND l •

• •

THE OPERAND VAWE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE ADDRESS IN THE INSTRUCTION,
OFFSET BY THE CONTENTS OF THE REGISTER. •

,

•

Before instruction execution: After instruction execution:'Operands speci fled by SX mode are always in the
data memory address space.

EXaiple of SX !lOde:

, A:

IX:

o 1

2 0 3 A

A:

IX:

3 0

2 0 3 A

LD A, (IX - 1) ;load into the accumulator the
;contents of the memory location
;whose address is one less than
;the contents of IX

Data memory: .

2039: ~

•

4-3

..
",.
I

•,

~
", .~

",

.
"

1••

,,

•·,

,..,
,

,,
·

·1,
,

•••••

•

•

•

..
,

.:,
"

•
'.

j,

•
1'.; ..

<t

•

,

,..

. .

•

o 2 0 6

7 6

•

is advanced to point
when the address

constant that occurs

A:

PC:

instruction

•

;load the accumulator with the
;contents of the memory location
;whose address is two more than
;the current PC, which now points
;to the next instruction

;load the accumulator with the
;contents of the memory location
;whose address is six more than
;the address of the start of this
;lD instruction

F 0

7 8

0 2

0 0

1 8

0 1

7 6

•

. ,. .

•

o 2 0 2

2 3

0202:

0203:

0204:
•

0205:

0206:

0207:

LABEL: 0208:

0206
+ 2

0208

Address calculation:

Program memory:

A:

PC:

. ,

I
.,

Before instruction execution: After instruction execution:

. .

Because the Program Counter
to the next, instruction
calculation is performed, the
in the instruction is +2.

•

or

lD A, (PC + 2)

manner:

lD A,<$ + 6>

This format implies that the' assembler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this
example can also be written in the following

•

J •

PROGRAM
MEMORY

I OPERAND l

•
PC

•

-

;load the accumulator with the
;contents of the memory location
;whose address is LABEL

INSTRUCTION

\

.

.
EX&lple of RA mde:

4-4

OPERATION ADDRESS
~

.

DISPLACEMENT +•-

The Program Counter Relative Addressing mode is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and
for loads that access constants in the program
address space.

.. '.

An operand specified by RA mode is always in the
program memory address space.

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction. for extended
instructions, the address used to calculate the
displacement is the address of the template.

THE OPERAND VAWE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION,

203A

+FFTf
2039

4.2.7 Progr. eo...ter (pc) Relative Address (RA)

for Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an
8- or 16-bit displacement given in the
instruction.

Address calculation: FF encoding in the instruc­
tion is sign-extended before

.'

the address calculation.

. LD A,<lABEl>

•

,

1
,
i

•

, ..., ,,,
,I,

"'. I
, '.,I
,. f'.;;

" ,,..
. I,

, ,
r

-,: ~..
t'.,,..

• I •.,
'\I
'.

';1\ ;
1'1..,
, I

''It
'·of".

, 'I ~, ,
.''1
"1I',i

'3'" I,:., ,
~ ,! 't

'1'
,EI
~I

"

,.

, .

. ". .-~ .

, . ,

. -

' .

,

..

'.

.:-'

4-5

. '

'.

'.' .

:- . ",

. ' .

'.

. . ~.

. : ..
·· , ,

•. ..'·
~ .'.. ; .

." .. . ", :" . .

•

"

820 0

. .
F 3

A 2

1 5 0 2

F F F F

. ' .

..,

A:

SP:

...

•

k

, HL:

, IX:

,.

DATA
MEMORY

A B

0 1

F 3

2 8

",j<: .
. ". .". ,;'

..-.. ~'.

'..~

. '.

.. , ..

;load into the accumulator
;the contents of the memory
;location whose address is
;two more than the contents
;of SP .

~ .. ' ' ..
: ..

..

•

8 2 0 0

B C

1 5 0 2

F F F E

6 9

1502
+fffE

1500

Address calculation:

1500: ~

Data memory:

A:

HL:

IX:

Before instruction execution: After instruction execution:

•

Address calculation:
. .

8200
+ 2

8202

. .

contents of Hl, IX, or IV, offset by the contents
of another of these three registers.

, '

Top of stack 8200:

8201:

8202:

8203:

Before instruction execution: After instruction execution:

A:

SP:

Data memory:

EXlllple of SR .ooe:

lD A,(SP +2)

REGISTERS

.' .

THE OPERAND VAWE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

. ' .

SP

--OPERATION REGISTER 1 REGISTER 2 ADDRESS + OPERAND-, . ,
.1 !" .'_

~ DISPLACEMENT,

, .

;load into the accumulator the
;contents of the memory location
;whose address is the sum of the
;contents of the Hl and IX
; register

• . INSTRUCTIPN

"

EXlllple of ax .ade:

lD A, (Hl + IX)

This mode allows access to memory locations whose
physica1 addresses are computed at run time and
are not fully known at assembly time. An operand
specified by BX mode is always in the data memory
address space.

.'

INSTRUCTION

The SR addressing mode is used to speci fy data
items to be found in the stack such as parameters
passed to subroutines. The System Stack Pointer
or User Stack Pointer is selected depending on the
state of the User/System bit in the Master Status
register.

. .

. .

•

OPERATION ADDRESS
INSTRUCTION

1. MEMORY

DISPLACEMENT + OPERAND, ,-

The instruction specifies a twos-complement
displacement that is added to the contents of the
Stack Pointer register to form the address. An
operand specified by SR mode is always in the data
memory address space.

••2.9 Base Index (RX)

for the Base Index addressing mode, the data
processed is at the location whose address is the

••2.8 Stack Pointer Relative (SR)

for the Stack Pointer Relative addressing mode,
the data processed is at the location whose
address is the contents of the Stack Pointer
offset by a 16-bit displacement in the
instruction.

•

. .

,

..

" ",

,.

.. ,

..
'.

•
••3 DATA TYPES

Many data types are supported by the Z280 MPU
architecture; that is, many data types have a
hardware representation in a Z280 MPU system and
instructions that directly apply to them. The
Z280 MPU supports operations on bytes, words,
bits, BCD digits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and I/O address spaces. The 8-bit load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values •.
,

Operations on two-byte words are also supported.
Sixteen-bit load and arithmetic instruct ions

. operate on words in registers or memory; words
can be treated as signed or unsigned numeric
values. I/O reads and writes can be 8-bit or
16-bit operations. Sixteen-bit logical memory
addresses can be held and manipulated in 16-bit·
registers.. .

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte

. registers or byte memory locations can be tested,
set, or cleared.

Operations on binary-coded decimal (BCD) digits

•

,.

,

..
. :"

•

;. .
.0 ."

. .

•

4-6

are supported by the Decimal Adjust AcclJ1lulator
and Rotate Digit instructions. BCD digits are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in­
struction is used after a binary addition or
subtraction of BCD numbers. The Rotate Digit
instructions are used to slHft BCD digit strings
•
~n memory.

Strings of up to 65,536 bytes can be manipulated
by the Z280 CPU I s block move, block search, and
block I/O instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings

•
of bytes in memory to locate a particular value..
The block I/O instructions allow strings of bytes
or words to be transferred between memory and a
peripheral device •

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Return, Push, and Pop.
A special stack write warning feature aids in the
allocation of system stack memory space. .

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction.

•

•

,

. .

•
..... -'

....

,':

..

. .

.

I :' t
• •

, ,
.. \1

"I
II

,
,!

1
"

..
...

..
,.
, i,

" .,

;':. :, ,

I:. I
" ,
I' :
i, .;
F

H
! t

", ,
I:, . ,
t I

'I
I: !
(i

~R,, '

, '

, ,
, ", ,,'..., , ;.

, ,

,,

, .

,
, '.

-'

5.2.2 Add/Subtract flag (N)

5.2.1 Carry flag (C)

5-1

For the rotate instructions, the Carry flag is
used as a link between the least significant and
most signi ficant bits for any register or memory
location. Ouring shift instructions, the Carry
flag contains the last value shifted out of any
register or memory location. For logical in­
structions the Carry flag is cleared. The Carry
flag can also be set and complemented with
explicit instructions.

The flags provide a link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and
subroutine Return instructions; these instructions
are referred to as conditional instructions.

Chapter 5.
Instruction Set'

The Carry flag is set or cleared depending on the
operation being performed. For add instructions
that generate a carry and subtract instruct ions
~hat generate a borrow, the Carry flag is set to
1.' The Carry flag is cleared to 0 by an add that
does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for 'extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the
precision of the result. Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set
to 1 if a carry occurs when adding BCD quantities.

•

The Add/Subtract flag is used for BCD arithmetic.
Since the algorithm for correcting BCD operations
is different for addition and subtraction, this
flag is used to record whether an add or subtract

. was last executed, allowing a subsequent Decimal
Adjust Accumulator instruction to perform

'correctly. See the discussion of the DAA in­
, struct ion for further information.

B-bit load
16-bit load and exchange
Block transfer and search
B-bit arithmetic and logical
16-bit arithmetic,

Rotate, shift, and bit manipulation
Program control
Input/Output
CPU control
Extended instructions

...

Figure 5-1. Flag Register

5.2 PROCESSOR fLAGS

•
,

The Z280 CPU's instruction set is a superset of
the Z80's; the Z280 CPU is opcode compatible with
the Z80 CPU. Thus, a ZBO program can be executed
on a Z280 MPU without modification. The
instruction set is divided into ten groups by
function:

5.1 INTRODUCTION

The nag register contains six bits of status
information that are set or cleared by CPU

'operations (Figure 5-1). Four of these bits are
testable (C, PlY, Z, and S) for use with
conditional jump, call, or return instructions.
Two flags are not testable (H, N) and are used for
binary-coded decimal (BCD) arithmetic.

This chapter describes the instruction set of the
Z280 CPUs. First, flags and condition codes are
discussed in relation to, the instruction set.
Then, interruptibility of instructions is

, discussed and traps are described. The last part
of this chapter is a detailed description of each
instruction, listed in alphabetic order by
mnemonic. This section is intended to be used as
a reference for Z2BO MPU programmers. The entry
for each instruction contains a complete
description of the instruction, including
addressing modes, assembly language mnemonics,
instruction opcode formats, and simple examples

•

illustrating the use of the instruction.

•
•
•
••
•
•,'.. '

•

, '

..

: . "

•

, ,

--' "

•

•

•

. ,

•5.2.7 Condition Codes

For the Test and Set instruction, the 5ign bit is
set to 1 if the tested bit is 1, otherwise it is
cleared to O.

5.2.6 5ign Flag (5)

•

The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con­
ditional instructions. The operation of these in­
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

, .

When inputting a byte from an I/O device addressed
by the C register to a CPU register, the Sign flag
indicates eith~rpositive (5 =0) or negative (5 =
1) data.

-

For the block I/O instructions, if the result of
decrementing B is zero, the Zero flag is set to 1;
otherwise, it is cleared to O. Also for byte
inputs to registers from I/O devices addressed by
the C register, the Zero flag is set to 1 to
indicate a zero byte input.

The Sign flag (5) stores the state of the most
significant bit of the result. When the Z280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is identified by a zero in the
most significant bit. A negative number is
identified by a 1 in the most significant bit.

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location
pointed to by the cont3nts of the register pair
HL.

When testing a bit in a register: or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit is a 0, and
vice-versa).

•
'/

•

5.2.5 Zero Flag (l)

During the Load Accumulator with I or R register
instructions, the P/V flag is loaded with the
contents of the Interrupt A enable bit in the
Master status register.

• 0;"

. . .. ' .,..
"

When inputting a byte to a register from an I/O
dev ice addressed by the C register, the flag is
adjusted to indicate the parity of the data.

The Half-Carry flag (H) is set to 1 or cleared to
o depending on the carry and borrow status between
bits 3 and 4 of an 8-bit arithmetic operation and
between bits 11 and 12 of a 16-bit arithmetic
operation. This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on. , .
packed BCD data. ," ' .

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing
the byte counter results in a zero value, the flag
is cleared to 0, otherwise the flag is set to 1.

for arithmetic and logical operations, the Zero
flag is set to 1 if the result is zero: If the
result is not zero, the Zero flag is cleared to O.

•1S a zero.

The Zero flag (Z) is set to 1 if the result
generated by the execution of certain instructions

5-2

5.2.4 Half-Carry Flag (H)

:

The P/V flag is also used with logical operations
and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are counted. If the total is odd, odd parity (p =
0) is flagged. If the total is even, even parity
is flagged (P =1).

For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on
twos-complement numbers has exceeded the largest
number, or is less than the smallest number, that
can be represented using twos-complement
notation. This overflow condition can be
determined by examining the sign bits of the
operands and the result.

5.2.3 Parity/Overflow Flag (PlY)

This flag is set to a particular state depending
on the operation being performed.

/

,,',,;"',
'. ,I·,

I '.1, j', ,.. ,.
.i!: :I! .

'ii':' . ,

I 'f:!' ", . I";, ,!, .,'

:' :1 .•
" ,
I' ::; i~
:\ ".. ,:.,

NZ Not Zero Z=O 100
"". 2; Zero Z = 1 101

NC No Carry C=O 110

C Carry C = 1 111

•

•

,

I

, .

•

"

, .
. ', ' ,

.....
. '''." ,

.'" " .l

" ". ·t

.. .'

, '.

write protect)

•

5.3.2 Instruction Execution ... Traps

:

. ": .

"

The Z280 MPU supports eight kinds'of traps:

The Division Exception trap occurs when executing
a divide instruction if either the divisor is zero
or the result cannot be represented in the
destination (overflow).

Traps are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Instruction, System Stack Overflow Warning,
Single Step and Breakpoint-on-Halt are nonmask­
able.

5-3

instruction. The contents of the repetition
counter and the registers that index into the
block operands are such that, after each iter­
ation, when the instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers. '

• Division Exception
• ' Extended Instruction
• Privileged Instruction
• System Call
• Access Violation (page fault and
• System Stack Overflow Warning
• ' Single Step ,
• Breakpoint-on-Halt

The Extended Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the Z280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
Z280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the,
Extended Instruction trap. For systems with an
8-bit data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
I/O instruct ions to access the EPU. The
information saved on the system stack during this
trap is designed to facilitate the 8-bit I/O
interface to an EPU by providing address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an I/o
interface trap handler.

,

When the CPU receives an interrupt request, and it
is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are designed to be inter­
ruptible so as to minimize the length of time it
takes the CPU to respond to an interrupt. If an
interrupt request is received during a block move,

,block search, or block I/O instruction, the in­
struction is suspended after the current iter­
'ation. The address of the instruction itself,
rather than the address of the following in-

" struction, is saved on the system stack, so that
, the same instruction is executed again when the

" interrupt handler executes an interrupt return

Table 5-1. Condition Codes

, , .
5.3 INSTRtrrION EXECUTION AN) EXCEPTIONS

Condition Codes for Jump Relative Instruction

5.3.1 Instruction Exec,..Uon ... Interrupts

/

Two types of exception conditions, interrupts and
traps, can alter the normal flow of program

, execution. Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous

, events generated internally in the CPU by
" " particular conditions that occur during

instruction execution. Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and
the exception conditions.

"

. ,' ..

"

"

",,

"

"

I,

•·

-

(
!

"

"
"

••
<:,
"

,..

,,.
"

,',

.. , Rag Binary, ,

,

Mnemonic Meaning Setting Code

.. Condition Codes for Jump, Call, and Return Instructions.. ,
,

, NZ Not Zero Z=O 000
,

",

Z Zero Z= 1 001-:.,

,
; .. NC No Carry C=O 010, ,
,.k ..,· .:' C Carry C 1 011..-." . -~ ...

.~~. : NV No Overflow ,V = 0 100.
!. i PO Parity Odd V=O 100

'-- ..

.., V Overflow V= 1 101
·f'·,- . ,

, "

'{:"~' . PE Parity Even V= 1 101"... .

,
NS No Sign S=O 110-:..... ~_ .

• t' /:

" .'t' .; . "

~. 'j:'~-;'-.'.... P Plus S=O 110.,'. ,.
··;·:T.';·" ".,·r ~ S Sign S= 1 111

"
• M Minus S= 1 111

,

..,

.. ,

, .

...

,

...

"... ..

. ,

.

"

, 'I

, .
•

5•••1 8-8it load Group

5.. INSTROCTION SET flKTIONAl GROOPS

This section presents an overview of the Z280

instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11.)

The Breakpoint-on-Halt trap occurs whenever the
Halt instruction' is encountered and the
Breakpoint-on-Halt control bit in the Master
Status reqister is set to 1. This facilitates
software debugging of programs. ' ,

..
The LOUD and LDUP instructions are available for
loading to or from the user-mode memory address
space while executing in system mode. The CPU
flags are used to indicate if the transfer was .'
successfully completed. LDUD and LDUP are
privileqed instructions. The other instructions
in this group do not affect the flags, nor can
their execution cause exception conditions.

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading ilTlTlediate data
into byte registers or memory. All addressing

'modes are supported for loading between the
accumulator and memory or for loading immediate

, values into memory. Loads between other registers
and memory use the IR and SX addressing modes. An
exchanqe instruction is available for swapping the
contents of the accumulator with another register
or with memory.

Table 5-2. 8-Bit Load Group Instructions

. ' .

.j •

....
, .

.... .

','

,

Load Register (Byte) ,

Load in User Data Space ,

Load Immediate

Load in User Program Space "

Instruction Name

5-4

errors.

The Access Violation trap occurs whenever the Z280

MPU's on-chip MHU detects an illegal memory
access. Access Violation traps cause instructions
to be aborted. When Access Violation traps occur,
the logical address of the instruction is pushed
onto the system stack along with the Master Status
register; part of the logical address that caused
the page fault is latched in the MHO to indicate
which page frame caused the fault; and the CPU
registers are unmodified, i.e., their contents are
the same as just before the instruction execution
began. (For block move, block search, or block
I/o instructions, the registers are the same as
just before the iteration in which the page fault
occurred.)

The Single Step trap occurs with the execution of
each instruction, provided the Single-Step control
bit in the Master Status register is set to 1.
This facilitates software debugging of programs.

The System Call instruction always causes a trap.
This instruction is used to transfer control to
system mode software in a controlled way,
typically to request operating system services.

Exchange Accumulator ,­

Exchange H,L
, Load Accumulator

,

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or
unauthorized actions of user mode processes.
Certain instructions, called privileged
instructions, can be executed only in system
mode.' An attempt to execute one of these
instructions in user mode causes a Privileged
Insrruction trap.

!' The System Stack Overflow Warning trap arises
when pushing information onto the system stack
causes the Stack Pointer to reference a specified
16-byte area of memory. Use of this facility

,

protects the system from system stack overflow

q., ,
, • ,. 1

i ' ' :
t: ' '\I' :
1: ' j
, ',:

, ,
,

, , ' .

,.,.",It
"1,; 'h

!,"; i
; "'" j, :I
t .'

I ,I
, .' :

" I, .' .:: :r ~

,

} .:
'.' ,

':' ,
" I:
j ".'

..

. .

, ,

. '

.,

•
•

.'

•

"

· .•

•

· ~.

",.,.

.'

:

. -.

•

,

•

•

•

•. ,

': '

•
•

•
•

•

•

•
•

•

•
•

•

•
•

•
•

•
•

,
I'

•

•

•

•

•

•

•

•

•

Addressing Modes Available

1M IR DA X SX RA SR BX

,.

•
•

*
•

R

•
, ,

..

reqisters and memory and immediate loads of
registers or memory. The load Address instruction
faci litates the loadinq of the address registers
with a calculated address. The Push and Pop stack
instructions are also included in this group.
None of these instructions affect the CPU flags,
except for EX AF, AF'. The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the
execution of these instructions.

" ,

LD XX,src
LD dst,XX
LD RR,src,

LD dst,RR
LD dst,nn

Format

EX DE,HL '

EX XY,HL
EX (SP),XX
EX AF,AF'
EXX .

LD Sp,src
LD dst,SP
LOA XX,src
POP dst

, PUSH src

>,

, .'

Table 5-3. 16-Blt Load and Exchange Group Instructions

/

"
.. .'

.

Instruction Name

I

5._.2 16-8it load end Exchange Crcq»

Load Addressing Register

This group of load and exchange instructions
(Table 5-3) allows words of data (two bytes equal
one word) to be transferred between registers and
memory. The exchanqe instructions allow for
switching between the primary and alternate
reQister files, exchanging the contents of two,
16-bit registers, or exchanging the contents of an
addressing register with the top word on the
stack. The 16-bit loads include transfers between

Exchange HL with Addressing Register

" Load Register (Word)

Exchange Addressing Register with Top of Stack
, Exchange Accumulator/Flag with Alternate Bank

, .Exchange ByteIWord Registers with Alternate Bank

'Load Immediate Word
Load Stack Pointer

..
" Load Address
.. Pop .

. Push

, .
, ,

'. '.
, .. '

'... " .

.
. : . "'. "

, .' .
'.. ,..,:

''''". '.•- L. ,- '

*Restricted to an addressing register (HL, IX, or Iy),
., '

., . . .
., ~.

i

.'

,

Table 5-4. Block Transfer and Search Group

interruptible; this is essential since the
repetition count can be as hiqh as 65,536. The
instruction can be interrupted after any
iteration, in which case the address of the
instruction itself, rather than the next one, is
saved on the system stack; the contents of the
operand pointer registers, as well as the
repetition counter, are such that the instruction
can simpl y be reissued after returning from the
interrupt without any visible difference in the
instruction execution.

<J

•

5-5

Format •

CPO •

CPDR
CPI .

CPIR'
LDD
LDDR
LOt
LDIR

.'
." '.

- '

Instruction Name

Compare and Decrement .

. Compare, Decrement and Repeat
• Compare and Increment

Compare, Increment and Repeat
Load and Decrement

. Load, Decrement and Repeat

Load and Increment
Load, Increment and Repeat

.. .

•

'~ . "

5._.' Block Tr_fer end Search Croup

Various Z280 MPU registers are dedicated to
specific functions for these instructions: the BC
register for a counter, the DE and Hl registers
for memory pointers, and the accumulator for
holdinq the byte value being sought. The repeti­
tive forms of, these instructions are

This group of instructions (Table 5-4) supports
block transfer and strinq search functions. Using
these instructions, a block of up to 65,536 bytes
can be moved in memory or a byte string can be
searched until a given value is found. All the
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing a length
counter until it reaches zero, or they can operate
on one storage unit per execution with the length
counter decremented by one and the source and
destination pointer reQisters properly adjusted.
The latter form is useful for implementing more
complex operations in software by adding other·
instructions within a loop containing the block
instructions.

~J
"I" 'I, :1 j' ! ,~

. '!'/', '1

,I 'i I" '!' ;~I", ' I'
• !" I

"1"1' , I'[mii, i! ;!, 'II I, !f,'
I'" 1 '

; 'I: ·,11 :~
~ . I,'! I :~
~ ..Il

i '1
· 1 I r

, , "
I
f ~ t ~

'll'-; ill
, "'Ii,, ,It
, "
. "1

i it
: :.,,
, ,, ,.
flit

. II:'
lh! II: II .j

I,,I" ,1, .:
1:111 '1"1 ':'

I:i~ i. 'II; '::
ij: :,'j "
'I JI; :1 'I '
"j ,i ",
" 'II 1:, Ij:• "I "I ,1'1 .1,, .,',

I : I I

'! ll:

. I \,
, "",

" II
· ,I I';'
:I; I ,I· I.'

~I
' " ,;, I. , ..

;~.I i: 111 I::
,i ,1 i"

I' ,,:
: Idol 'I' ::
'''I' ,I '
I . j l.~

"
111,1,':II ;
, '1,1 j.

I ',I

• '; t I

I, ,',h,!,1 1:1,
.' :r;, i

:"t

I
,""li: !I; ih

'. p' II-I
, . "~I' 'j., , ,

· ,I i
'::i",j"I] I:,, II: •

" , I" ,I',I I: I
:, t II I:
"I [. I' I,j'I " . ,, "

I" ii, I'"" t'

,I :I ,,' I! ,'j,
, 'I'~ I ! "I I"
: 11 I: .
"I ''':::' '
'I I' 'I '"1 :,1: Ih' .
';1 ",I :'1: (;, ., ,"

:1 ::1:; ,'.'
'" •1: .'

rq 'II" I,'.' '. I "
': II' ,I ..i
, "\ '

.:1, rI~': l :1:
t I 'I
I l;l d t

" t, ' .,
I ill!, I '1,', I ' '::: .: :.ill ;1;

if; !·hl !.;
·il 'l.id 1,

" !;

';,'1 11 ', "1' ;,, "I, 'I :1' ".I,:, "I '
'.';'! ,I, I '!,',': 'I' :,1 ,:, I " ,
I,.. ,,,,'
, 11 :\.:,' '!f
!' 11,1 '
I, ,'" ,

j..o, 1" I ,i'
I 1 III "1
I, ," '" ,· 11;'l.' ,
I " ' •
I','""',' i
I·, I.::' " ';.
" "I,ll I ,
,.r 1,'I! i !,

I, il' I , "
I •• ,. "

, ." I:,." . '
I .0:;' .,:;. I

, "' ,I. .:
,', I' "

.':' .,'.1

.j' " I., ,. I,1.:1 '; .j'! "
I,,: '. , "

I ,' ,
, ',.;, II

"

.1 ' I' I
<I ••::.!· " . 'I,i I;: ;'1-:." II

~ I;:;,:; ;; i:! ,;;
· II' ", I " ' ili '1,
· " I ,I

· .". 'I' :,1':I ' . "; J .";.

I .' I ,..".:'I I' ,: ': .';;' •, ' I' "",',!: ",:'
"
".:, ' , ,':'
I' I" ,1
" I ,,' •
,j, ,'; I .
~j r' ,j:.:;
\' ',".I' " 1';
I " , .I, "'"
:.: .' !,.'i,
,1. ,,"j I!

t.! 1 .'

: 'fI I',

'I' ".; •
I, .' :

-1' "'.'
:i ,... '
" l ..

, '
j , ,I

,~ ', .. :
;'1 ".'.

'1"1': ; '.'
"I ',' ,..!l . ' .

1." .,'
,: t ',', 'II ","'. "" ", ' ." ..

:. .' ,: ' !
· II • I.' : .· '", .':, I' . ,I

f' , • • '
~.. '," I
ro\ ".;. ~ '., .' • I

, jJ
i

:'t .' j't
'I ! 1;
." . ,!'I· . I, . 'j '. '

! :.: ,oJ
r I :'

1

:1 ';, ;:
> ' ,

! \ i ::' ~

, I'II ':
, , ,
:1 • ,

li \

5.4.4 8-8it Arit~tic and Logic Group

This group of instructions (Table 5-5) performs
a-bit arithmetic and 10Qical operations. The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a register, from'
immediate data in the instruction itself, or from
memory. All memory addressing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack Pointer
Relative, Indexed, and Base Index. Except for the
multiplies, which return the 16-bit result to the
HL register, these instructions return the
computed result to the accumulator. Both siqned

,
,

5.4.5 16-8it Aritt.etic Operations
'.:

This group of instructions (Table 5-6) provides
16-bit arithmetic operations. The Add, Add with
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result is returned to the addressing register.
The 16-bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Indirect Register, Direct Address or PC
Re lati 'Ie addressing mode can be used to speci fy
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
into tables or arrays in memory.

5-6
,

, '

and unsigned division are provided. All memory
addressinQ modes except Indirect Register can be
used to specify the divisor.

•

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressinq modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
a-bit input from the accumulator and returns its
16-bit re~ult to the HL register.

All these instructions except Extend Sign set the
CPU flags according to the computed result. Only
the Divide instructions can generate an exception.

The remaining 16-bit instructions provide general
arithmetic capability using the HL register as one
of the input operands. The word Add, Subtract,
Compare, and signed and unsigned Multiply
instructions take one input operand from the Hl
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit result of a multiply is returned
to the DE and Hl registers, with the DE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and Hl registers (the DE
register containing the most significant bits) and
a 16-bit divisor from a register, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

,

, ,

"

,,

~. .
•

d •

•

Table 5-6. 16-Bit·Arithmetic Operation Instructions

Addressing Modes Available
..

Format •Instruction Name 1M IR DA X RA

Add With Carry ryvord) ADC XX,src • ' ·. " . . .,'. .'
Add ryvord) ADD XX,src ". '. ,eo' . •

, '.. ,
Add Accumulator to Addressing Register ADD XX,A

.. •

'. '. .
Add Word ADDW HL,src

.'• • •• • •
Compare ryvord) CPW HL,src •• • • • •
Decrement ryvord) DECW dst • • '. •• •,..
Divide ryvord) DIV DEHL,src • • • • •

;,

Divide Unsigned ryvord) DIVU DEHL,src • • .: .' .,. : ..
Extend Sign ryvord) EXTS HL

· "
, .

Increment ryvord) INCW dst •• • • • •
Multiply ryvord) MULT HL,src • • • • • ..

.. Multiply Unsigned ryvord) MULTU HL,src • • • •• :.
Negate HL NEG HL ·.. •,

~

Subtract With Carry ryvord) SBC XX,src ; • ;

.~
'.

Subtract ryvord) SUBW HL,src • • •• . .. ' ••.: ...
· !'

.
~xcept for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CPU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions.

.,

.'

.. '

.. .'. .,
,

.:. "

...

tests whether the
fi Ie is being used
file is in use. In

I

. .

•, .
, .

~ special Jump instruction
primary or auxiliary register
and branches if the auxiliary

5•••7 Progr.. Control Group

the contents of the HL register.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location if the processor flags satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact·to improve
code compactness and efficiency.

•..
This group . (Table 5-8) consists of the
instructions that affect the Program Counter (pc)
and therebr control program flow. The CPU
reQisters and memory are not altered except for
the Stack Pointer and the stack, which play a
siqnificant role in procedures and interrupts.
(An exception is Decrement and Jump if 'Ilon-Zero

•

[DJNZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions specifically designed to set and
complement the Carry flag.· ..

None of these instructions generate exceptions.

Instructions in this group (Table 5-7) test, set,
and reset bits within bytes and rotate and shift
byte data one bit position.' Bits to be
manipulated are specified by a field within the
instruction. Rotation can optionally concatenate
the Carry flaQ to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. All these
instructions except Set Bit and Reset Bit set the
CPU flags according to the calculated result; the
operand can be a reqister or a memory location
specified by the Indirect Register or Short
Index addressinq modes.

5•••6 Bit Manipulation, Rotate and Shift Group
g.

16-bit quotient is returned to the HL register and
the 16-bit remainder is returned to the DE
register. The Extend Sign instruction takes the
contents of' the HL register and de livers the
32-bit result to the DE and HL registers, with the
DE reQister containinq the most siQnificant bits
of the result. The Negate HL instruction negates

The RLD and RRD instructions are provided for
manipulating strings of BCD diQits; these rotate
4-bit quantities in memory specified by the
indirect register. The low-order four bits of the
accumulator are used as a link between rotations
of successive bytes. .

. ..

..

•
•

5-7

Table 5-8. Program Control Group Instructions

'.
,~
,

j

,
.'.
t

•

"

•

.,

"

•

•

I

•"

•

'"

I

, .
•

•

•
•
•
•
•

•

•

•

•

•
•

,

•

•
•
•
•

•
•

•

•
•

•

•

•
•

"

• !'

•
•

• • •
• ,

•

•
•

•

•
•

•

•

•

•
•
•

, ''. ,

Addressing Modes Available

IR DA RA

Addressing Modes Available
R IR SX

"

•

The conditional Return instruction is a companion
to the Call instruction; if the condition
specified in the instruction is satisfied, it
loads the PC from the stack and pops the stack.

Jump and Call instructions are available with the
, Indirect Register and PC Relative Address modes in

addition to the Direct Address mode. These can be
useful for implementing complex control structures
such as dispatch tables. When using Direct
Address mode for a Jump or Call, the operand is
used as an immediate value that is loaded into the
PC to specify the address of the next instruction
to be executed.

Format '

CALL cc,dst

CCF

DJNZ dst

JAF dst

JAR dst

RRCA

RRD

SET dst

SLA dst

SRA dst

SRL dst
TSET dst

RLCA

RLD
RR dst

RRA

RRC dst

Format

BIT dst
RES dst

RL dst

RLA
RLC dst

JP cc,dst

JR cc,dst
'RET cc

RSTp

SC nn
SCF

Table 5-7. Bit Manipulation, Rotate and Shift Group

•

Jump

Jump Relative
Return

Restart

System Call

Set Carry Flag

Instruction Name

Call"
Complement Carry Flag

Decrement and Jump if Non-Zero

Jump on Auxiliary Accumulator/Flag

Jump on Auxiliary Register File in Use

Rotate Right Circular (Accumulator)

Rotate Right Digit

Set Bit

Shift Left Arithmetic

Shift Right Arithmetic

Shift Right Logical

Test and Set

Rotate Left Circular (Accumulator)
Rotate Left Digit I

Rotate 'Right

Rotate Right Accumulator

Rotate Right Circular

Bit Test

Reset Bit

Rotate Left

Rotate Left Accumulator

Rotate Left Circular

Instruction Name

•

5-8

systems that reserve the auxiliary register file
for interrupt handlers only (via a software
convention), this instruction can be used to
decide whether registers must be saved.

Call and Restart are used for calling subroutines;
, the current contents of the PC are pushed onto the
processor stack and the effective address
indicated by the instruction is loaded into the
PC. The use of a procedure address stack in this
manner allows straiqhtforward implementation of
nested and recursive procedures. Call, Jump, and
Jump Relative can be unconditional or based on the
setting of a CPU flag.

\

1
1 ~ ; , ;', :

". I ,

! :' ~ '.
: 1', ':.;; !
; i ':: 1-'

i-, .1;'
;. :;': .

,j::' i:;' :
I' , ..

I
, ' "
" ." ...

· .1".; t ;
I .! .b •
",:: "
'J' .',I', I· j' :

, II!;. .

,'j'; Ilj ,I I ;. '10 I
I' ., , I'I" I .., ..".

: _ I

;'. ...:
• ;! i :!

:);:' ~ i
· , • .., ! •

"":., ""', '
· .,l '. . :

L' • ,

." ".' :
".' '<:1' :.' . .
, Ii ' ,
: I:. ,: j ~ I
It,. ..

· I.' ':,,. \.

· :.!:-," '.' .
"

.' :. 'j , :

I, i I :

•

5.4.8 Input/Output lnstructioo Gr~

System Call (SC) is used for controlled access to
facilities provided by the operatinq system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current proqram status
is pushed onto the system stack, and a new program
status is loaded from a dedicated part of memory•.

i,

, .
1

I
i

I
•

• "

~
•
j
:1
•
l,
I
1
,I
•.;,
I

1
1,
j
]

;
;

•

\
!

1,
i
I,
.j,
'.,

"

I
!
1
~

I

•

. , I

,
•"

. 1
t

!•
l

•!•,,
r
I,
;
'."
l•,,
~,

;'
I
!,

i

•

•

•

"

,

;
i

• ••

•
I,

. ,

. . .'

Format

IN dst,(C)
IN A,(n)

INW HL,(C)

IND

INDW
INDR .

INDRW

INI

INIW

INIR

INIRW

OUT (C),src

OUT (n),A
OUTW (C),HL

OUTD

OUTDW
OTDR

OTDRW

OUTI "
OTIRW'

OTIR :'"
OTIRW
TSTI (C)

. '

forms of these instructions are inter-

Input

Input Accumulator

Input HL

Input and Decrement (Byte)

Input and Decrement 0Nord)

Input, Decrement and Repeat (Byte)

Input, Decrement and Repeat 0Nord)

Input and Increment (Byte)

Input and Increment 0Nord)
Input, Increment and Repeat (Byte)
Input, Increment and Repeat 0Nord) ',,'.

Output

Output Accumulator
Output HL

Output and Decrement (Byte)

Output and Decrement 0Nord)

Output, Decrement and Repeat (Byte)

Output, Decrement and Repeat 0Nord)

Output and Increment (Byte)

Output and Increment 0Nord)
Output, Increment and Repeat (Byte)

Output, Increment and Repeat 0Nord)
Test Input

Instruction Name

Table 5-9. Input/Output Instruction Group Instructions

I/O instructions are not privileged if the Inhibit
User I/O bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that I/O service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control and status
registers are . accessed using the I/O
instructions. The ,contents of the I/O Page
reqister are output on AD23-A016 with the I/O port
address and can be used by external decoding to
select spedfie dev ices. Pages FF and FE are
reserved for on-chip I/O and no external bus
transaction is generated. I/O devices can be
protected from unrestricted access by using the
I/O Page register to select among I/O peripherals.

. repeating
ruptible.

Jump if
part of
one-word

,

•, .

A special instruction, Decrement and
Non-Zero (DJNZ), implements the control
the basic Pascal FOR loop in a
instruction.

The instructions for transferring a single byte
(IN, OUT) can transfer data between any a-bit CPU.
reqister or memory address specified in the
instruction and the peripheral port specified by..
the contents of the C reqister. The IN
instruction sets the CPU flags according to the
input data; however, special cases of these
instructions,restricted to using the CPU
accumulator and Direct Address mode, do not affect
the CPU flags. Another variant tests an input
port specified by the contents of the C register
and sets the CPU flags without modifying CPU
reqisters or memory.

This group (Table 5-9) consists of instructions
for transferring a byte, a word, or a string of
bytes or words between peripheral devices and the
CPU reQisters or memory. Byte I/O port addresses
transfer bytes on ADo-AD7 only. Thus in a 16-bit
data bus environment, a-bit peripherals must be
connected to bus lines ADO-AD? In an a-bit data
bus environment, word I/O instructions to external
peripherals should not be used; however, on-chip
peripherals can still be accessed by word I/O
instructions.

./ The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
register and the peripheral port specified by the
contents of the C reqister. For word I/O, the
contents of H appear on ADo-AD7 and the contents
of L appear as ADa-AD15. These instructions do
not affect the CPU flags.

.", ,

, .

, .
;,

.. .

.
" ,

"

, ,

,

." .",.

, '

.".

The instructions in this group (Table 5-10) act
upon the CPU control and status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable
Interrupt (RETN) and Return from Interrupt (RETI)

-, ,".

" .

The remaining instructions in this qroup, form a
powerful and complete complement of instructions
for transferring blocks of data between I/O ports
and memory. The operation of these instructions
is very similar to that of the block move instruc­
tions described earlier, with the exception that

"

one operand is always an I/O port whose address
remains unchanged whi Ie the address of the other
operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

5.4.9 CPU Control Gr~
(

5-9

.
Two of these instructions are not privileged: No
Operation (Nap) and Purge Cache (PCACHE) • The
remaining instructions are privileged.

are used in interrupt modes 0, 1, and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask reqister, or to signal a reset to
Z8400 Family peripherals. T~e Return from
Interrupt Long (RETIL) instruction pops a 4-byte
program status from the System stack, and is used

. in interrupt mode 3 and trap processing •

The Z280 MPU architecture contains a powerful
mechanism for extendinq the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended i,nstructions using this facility. The
extended instructions (Table 5-11) are intended
for use on a 16-bit data bus; thus, this facility
is available only on the Z-BUS configuration of
the Z280 MPU.

•.

...

Format

EPUM src

MEPU dst
EPUF

EPUI

Table 5-11. Extended Instructions

5.5 NOTATION AND BINARY ENCODING .

Load EPU From Memory
Load Memory From EPU

Load Accumulator From EPU

EPU Internal Operation

Instruction Name

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPU's Trap Control reqister. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. If this bit is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extended instruction trap whenever an
extended instruction is encountered; this allows a
trap service routine to emulate the desired
operation in software. •

A 4-byte long "template" is embedded in each of
the extended instruction opcodes. These templates
determine the operation to be performed in the EPU
itself. The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CPU activities are described •
The operation of the EPU is implied, but the full
specification of the instruction template depends
on the implementation of the [PU, and is beyond
the scope of this manual. Fields in the template
that are iqnored by the CPU are indicated by
asterisks, and would typically contain opcodes
that determine any operation to be performed by
the EPU in addition to the data transfers
specified by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple-EPU system.

Format

01 mask

EI mask
HALT

1M P
Lo A,src

Lo dst,A

LoCTL dst,src

NOP

PCACHE

RETI

RETIL

RETN

5••• 10 Extended Instruction Group

Table 5-10. CPU Control Group

Disable Interrupt
Enable Interrupt .

Halt

Interrupt Mode Select
Load Accumulator From I or R Register

Load I or R Register From Accumulator

Load Control
No Operation

Purge Cache

Return From Interrupt

Return From Interrupt Long

Return From Nonmaskable Interrupt

Instruction Name

\,- III;'!: I . :', 1.I'·j1 ,.,,i'-:1 :,1 l ' ; ,
" '\ '", , ,j., I' .,
I l.d; 11 I •'., ,,1 . '
, II" I J ,'; •• ,, 1'1 :,'.I . I J 'I i,ll

:~ ,; ""I ,j':h, ',I 'I'"I It \ Ii',, ,,' 'II 'I'":l "i! ',,:

I
', ,', '".,..I .,. I',l'! r" .
, 'II. 1 .. 'I

1 iI;' ,'. !'I: ,
II .. , ,,"

.1· I· ".)"
o 'I' "",

',: !h' ' q :",;.,
I If' I'" I ,I· \I' 1; ~ I '! II.!,I' , •.

, LI : 'I l' '.

: :! 1 ! "';:!'
" ,i'l 1·,1" ..,
I ." I I 'I".',... . I ',I"1'1. "/'
I; .' 1'1' i' ., , ' <',
I·· "'.
I " "'1':'"l'l l". I" I' ! ,) . i h.

I ", 'It' '.1

'111'" I ' , '... ,I' I'" ,'.
•1 11 , " "', ...'I" I I. ",I ! ! I,-'P::
-\ !l,' I 1: ': .', ., ,'I""I" l'.1'Ii .. "I" 'Ii I';! i :~ ';:j;
If 1 '. • I ,

., I' , "II I.t I I I. I "I

I " ,; ; 1~ "I .
: 1:- J 1: 11'" .
,; '! : ;I:: 'j! l'. ., 11 • ~ I • , I

!: . ,':, I

, "1'1 I'·> ..,',I I •. 'i',I,_·
I' ., I r . I"
: iii"'; q: '

'. '" I "I'.'I I -I' .. ',
': '1: 11 :'I i ::! !' ,
.; ", ' , I 1. ",

I !l I: I',I' ':'., " ,I· ! ', ., ,"'"
J l II";' '",:"1 'J ", "11

• '" 'II""
l1L~!:t" J,-:i.i
I:;!1 !i1i;j ':i~::

ij Ir1.1", '
! 'l', !I" i"J.' h, Ii,':
I H'j 'I ~ I,'j ~:" ,i,::: I! ",'II' ,.\', ,I I ' . ,., ~

:1; \. i,' I ':';'"

· ," "I", I" II" "I','" 'I"I ' ,,'

i 'II!"I" "Ii'!· I', ,I""
II' 'I' ",', 1· I j l.. ' ':" :,\

: .'tIl !: ~I "',
".\ " 'I I'"I... II , "
'''I " ., ",,,''l " ,, ·1,; 11' "" ',:"1"

" I 11' .
;!l li',.' "I'l'lj ~I :' ;':, !
, f/'III,";:;'::
ill!; i i;! ,;::
,I:',; 1,,1, ,

I . I". ' ., ,

" ., I .", • , I
, ,j II 'i .'·,,' ' " ,·.,,' ,II .I. '· 'II., 'I) ,I,,, , I' I~ "

: j' "II" '.,',
I ,of:',' \: I, ,J;, '
· I' • IH" ,'I';,' II ill'::',iL
'" q.l"li "
,,! I; I" II 'I I· "1 .!,",I'; 'i "'~I

;, I \ 1;/1 'I'

· !:' : I ' I'ii
'I" ,·1,1\: :1., ,,, ..."., ',"'"

I ".,'. '.
i~,!1·j'W.~;:
j" \:!'I,nl :jjl
j;,!I:ii; ;.. ;

1,01, I "I:'!"I,' ,',,' :,'

:, '11' 't. I"~!I' ',i I '" ~., I .. "it :J .:1'1"':
. "I" "
II'!L "1;1,1,.

, \1 ,'.,'
'I' "I".,,' " ",." " ,

I;, '':" l: ',', ' , ,I

I!'J'I: '!"'"I·, . ,..
,~ " :;II ,l!.
,I" " II',,:
I' 'I' I,r':'
'I' ,1,1 Ht' 'I!' , '"
1!"ll"I':I'
:!'j" ,ll!l'!""" 'I.. ··':L "Ih',
, '! ' , ' I' ,\,,,,
'II I,' , :': i
III"" 'I' I"'II 'II!',,>
" " '. I'll'
III ' '! "I' ,.1, ""'1 .,'11: 1

, I 1/
,. ,<I ,'"
:i,: ,': l ':!l
,11,1 'H",1,
'I' ."t". ,',

I"
;l" "I " ,

1
",' to' I: 'I 1'1: I I, .\ ...', I "I ','

:,j /.:" ;',

il'iio/ili'i
1:1:': "~ttl,
" , ; ~ '::: ":1,,1, 'Ill
;,:l I :",.
'lljj"j l;j,
',: ';' ',::,
" 1 .. "Ii"· .'
I ,1", " I'"'; ,',t'

\' I '. ~" 'll':, :.: rl '·'
i '!I i.,~ ~ t:;
) !l;', :1"""., .
I ':' : 1 ~ III
'~ ,\!.. ;1.1'.
I ,'.,'1,
i~ :',j : I ',I
"'j' ,~ll', .,!. :" '
" ';hl'"",. ,.,'":.. , ~~; , ' h,
:':,: (iij'
, I" ,t~,:,
,j I' 'I! ;;1
" :,11,:1""
1:;! '!': .
" .1 "~'I .
, ",. I,.. ,\,! ,jl,

i, ,',", j'., '''' \ ",.· ...
'. I: "~, ' ..

, j '"

! ':: ,J'::!
, I" t1t,', ,! ~ I:',..
, ,; ';':,
, : ,:' ,;.'
: ' ,I: "I',
I " ,'"

" " ", ", .'
.j, ,I'· "';'
i,: J'.:

I l' ,' ..~,
! ! ~, '

, • I'·, .; l. , : ,
· • 1 !~ it

:',; I!,
· ' !, '~:':!',

, f""'. .
, '~'" '!',

" l,"l'' : .. ,I,r
I, , .. /;.,'· '" ,.j
i': ",

,,\ ,:1: 1~;

" ..11· ' .. ,
'I, '! ':1'
, '":' ',oj
; , :,' ,~

"" "',:. "i!.!!
I'!! i.' 1
:~ ,'."

.f. : !I'~
",. ''I"
,,I', ,;'1
" .. 'I' '
, ;; : " ~

i .' ""'~1 ". n
'I" I'"
! """j!l, ~;,~! U

" 1'1,.. ,
, i~'
i '.

I i'~. " ~

'". I; ~
'I "j! ':;,1,
'I' :,.

t rll'

'ii1 ~
,1,· I"!~. ,I:

.j i~'" .. '1'1." ,'.J

.' PI
, ",,,'
i 'l,;~'i ., , ~,

tIW'h,'ilIi''a- _.J"""----

There are four types of extended instructions in
the Z2eO MPU instruction set: EPU internal
operations, data transfers from an EPU to memory,
data transfers from memory to an EPU, and data
transfers between an EPU and the CPU's
accumulator. The extended instructions that
access memory can use any of the six basic memory
addressinq modes (Indexed, Base Index, PC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between' the EPU and
CPU accumulator are useful when the program must
branch based on conditions qenerated by an EPU
operation.

5-10

The rest of this chapter consists of detailed
descriptions of the Z280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary
encoding for reg ister fie Ids within inst ruction's
operation codes (opcodes).

.'

. The description of each instruction begins on a
new page. The instruction mnemonic and name is
printed in bold letters at the top of each page to
enable the reader to easily locate a desired

. .

•

,' , "."', '.
;. . . .

In the binary encoding of the instruction, lower
case is used for the corresponding encoding of the
assembler syntax.

..

description. The assembly language syntax is then
given in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes. This is followed by

. a descript ion of the operat ion performed by the
instruction, a listing of all the flags that are
affected by the instruction, a listing of ex­
ception conditions that may be caused by execution
of the instruction, illustrationa of the opcodes
for all variants of the instruction, and a simple,
example of the use of the instruction.

. .
The following notation is used throughout the
descriptions of the instructions:

src
SX
USP
X ,
XX

XV

, '

Source location or contents
Short Index addressing mode
The User Stack Pointer '
Indexed add.'essing mode
One 0 f the 16-b it addressing reg isters
HL, IX, or IV; also XXA and XXB are used
when two different registers are speci­
fied in the same instruction
One of the 16-bit index registers IX or
IV

, ,

"

•

'" .

the
MPU

the
the

"n"

.", '

.. '

..
. '.

added to
stored in

; ;;' '. . . '.

encod ing 0 f an
shown in Table

ref-er to bit
dst(7) •.

consists of
each Z280

. ,

..

the binary
encoded as

is indicated by the symbol

..

AOOW [HL,]src

dst <- dst + src

field in
opcode is

Register encoding

A 111
B, 000
C 001
0 010 ,,

E , 011
H 100
L: 101

Table 5-12. Encoding of 80Sit Registers in
Instruction Opcodes

The remainder of this chapter
individual descriptions of
instruction •

The register
instruction
5-12.

indicates that the source data is
destinat ion data and the result is
destination location.

The notation "addr(n)" is used to
of a given location, for example,

as:

Assignment of a value
"<__". For example,

Brackets ([and]) are used in the assembly
language syntax to indicate an optional field.
For example, the 16-bit addition instruction for

.' adding word data to the HL register is described

.r

A direct address
An address to be encoded using relative
addressing
A 3-bit field specifying the position of
a bit within a byte
Base Index addressing mode
A condition code apecifying whether a
flag is set to 1 or cleared to 0
An 8-bit signed displacement
Direct Address addressing mode
A 16-bit signed displacement
The displacement calculated from the
address in relative addressing
Destination location or contents
Immediate addressing mode
Indirect Register addressing mode
The Master Status register
8-bit immediate data
16-bit immediate data
An interrupt mode
The Program Counter
The program status registers (the Program ..
Counter and Master Status register)
A, single 8-bit register of the set
(A,B,C,D,E,H,L); also, R1 and R2 are used
when two different registers are
specified in the same instruction. (Note
that the R register itself is accessed by
'a single instruction and violates this
convention.)
The corresponding 8~bit or 16-bit
register in the alternate register file,
such as A'
PC Relative Address addressing mode
A 16-bit register of the set (BC,DE,
HL , SP); a Iso, RRA and RRB are used when
two different registers are specified in
the same instruction
A single byte in the IX or IV registers;
that is, a register in the set (IXH,IXL,
IVH,IVL); also, RXA and RXB are used when
two different registers are specified in
the same instruction
The current Stack Pointer in use
Stack pointer Relative addressing mode

R

RA
RR

nn

R'

P
PC
PS

RX

SP
SR

dst
1M
IR
MSR
n

b

d
DA
dd
disp

BX
cc

(addr)
<addr>

.. .-

."'.. '"

'.....

" "

•

5-11

'" " >' ..

.. , '~ ...

•

•

• I

I

.'

....'

•

'.

..,

..

..

•• l-o •.•

"

...;...""" .'..

..

-.

..

•

I

'"

•

..

..

•

".

..

•

•

,

•

..
,

•

..

•

,

. ,

. ,

...

•

•

,

•

.'

•

.-

•

,

....

.,

.,' '.'..;

,

•

•

.' .

,

•

J

, .

,.

"

,
.s

,

"

5-13
•

None

•. i
:.

.<

I . •

.'

..
. .

. .

,

-

•••

,

. .

I .

'6 1 . OOx1xOOO
2 4 5 4

AF:
HL:

..

. .

2454:.' 1 8

Data memory:

After instruction execution: . .

src = R, RX, 1M, IR, OA, X, SX, RA, SR, ex

4 8 szxhxvn1 .
2 4 84

AF:
HL:

2454: 11..-_1_8_1
Data memory:

AOC A,(HL)

Before instruction execution:

cI» : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: . 001 for (IX + del), 010 for (IY + del), 011 for (HL + del)

bx: 001 for (HL + IX), 010 for (HL + Iy), 011 for (IX + IY)

The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected. Twos- .
complement addition is performed.

\

A +- A + src + C

s: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise .
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

ADC [A,]src

exceptions:

Flags:

Field Encodlngs: .

Operation:

... ~ample:

.

'. ' • p-

~' , .

,

,

..

,

•

. .

•

dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Instruction Fonnat

[TIl 101110111 011 rr 1010 I
[!!] $11110111111101110111"'-011 rr 10101

I

ofor IX, 1 for IY

001 for se, 011 for DE, 101 for add register to itself, 111 for SP

$:

rr:

ADC HL,BC

ADC HL,RR

ADC XY,RR

None

Syntax

The source operand together with the Carry flag is added to the destination and the sum
is stored in the destination. The contents of the source are unaffected. Twos-complement
addition is performed.

dst .- dst + src + C

s: Set if the result is negative; cleared otherwise
z: Set if the result is zero; cleared otherwise,

H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared .
C: Set if there is a carry from the most significant bit of the result; cleared otherwise. "

ADC dst,src

, ,

Addressing
Mode

•

\

Field Encodlngs:

Example:

Exceptions:, .

ADC
Add With Carry (Word)

Flags:

Operation:

""I I 'I j I! . rJ I

'I' PI'" I1", ,I

!I"!;: '
I '
'I' I

'I I'"
I ,,~,

, ". If I
"'" '.H' ~ t'

j" t' ,

"
:1' oll"~' •10 ~'

I t" I,!, •

{, ,\ .,'

, 'I'l I :,' r '1 •
,"..;.I ".1 Ij'1 II: '

\' : ,
1 .", 'li ", '., , '.

Ij I I i!
I ."

II "'~'
IJ :,1'1', ,
1 ' J ",
I',' I, 'I:,,I l, .''11.

I '", '
,I·b;~·
I 'I'"', I "'-1

',' , ,"'~ ,, "~"~I

r 1 ':'j41
Ii, :' 'f'!
, ',' I'. '11.

: II"
I II,. 'i ,, "
,

,

Before instruction execution:

, .

After instruction execution: /

, OOxOxOO1
2 3 0 8
1 3 , , 4 1

F:
Be:
HL:

. " szxhxvn1 ,

2 a 0 8
F 0 3 8

•

F:
BC:
HL:

,

, ,

,

5-14

: ,I, .plf
" 'I l:t1r
'I ,ft"

, ,. 11 '11
1I ,1 'I !'

• I 'I
l j 1-< l ,

! II "
. "t I:" I'
I ."

, 'I' ':.1'1'
.' I II

" ' I"'. I. II" . ',,'.
· " I . ,:t:
, "111

., I "'I':'
': ,I
I 'tIl'
I l-fl"
I • I.'" , .
f'I.I,'

I j • 'f "., ,I; 'i
" .

, : '\1 ..

, ,f' f
l

,
! "I .'1 1

, :" I, ,:

I' " , I' t
., "'1", "
, ,.~llil

: .. 1:'1
, ,,\,1, .
'I • I·
I a" .1,:
;, 'j 1,1
, III ~1:!1'

, 'I'

.: ."~ ,i 'if
, I" "

I' ,I'. ,',' ,'f ,. I
, ", ',,' ,"I: :,' /11
',' ' .. II) •

" .. ' I,
•• I" '"<t II' ,f 11

',' I',
'i: II'
· I ' : ~.
it,' i ",
I I , 'I~ ,

" " ,
I, '

" ,I, I', I; ,
I ,; ~i ',:
~ I I ,', I

" ' '! 'i,; I",', "II , 'I~'
" I, ,I, 'j':, -, "
" "'I'
• 'j' .~: ' '

!

,

The contents of the accumulator are added to the contents of the destination and the
result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign­
extended to 16 bits; twos-complement addition \s pe~ormed .. "

;. . .

, ,I, .
"

. :::~
' II

'[,
"

,

•

'-

dst = HL, IX, IY

. ADD
Add Accumulator to Addressing Register

Instruction Fonnat

None

Syntax

dst dst + A

S: Set if the result is negative; cleared otherwise '
z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise ,
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the

result is of the opposite sign from the operands; cleared otherwise
N: Cleared '

•

C: Set if there is a carry from the most significant bit of the result; cleared otherwise

ADD dst,A

Addressing
Mode

exceptions:

Flags:

Operation:

,

"

ADD HL,A

ADD XY,A
lli!1011101 I~ 1011101 I
@I 4»1111011 [!!] 1011101 II!!]1011101 I

..

<

, ,

, '.

, ,
, I
11
, ',
,I
I

, I,
•

Field Encoding:

Example:

•
4» : 0 for IX, 1 for IY

ADD HL,A

Before instruction execution:
/

,

After instruction execution: '
•

•

.,
,I':, I
'I
"

,
, 'I

r

,fr

.' ".
\

I! t OOx1xOO1
I • '6 6

AF:
HL:

E 2 szxhxvnc
2 3 8 4

AF:
HL:

Computation: accumulator is sign-extended.

FFE2 ••

+2384 •
1~~!1I , • I,

•
2366

;1

,
',:1 ,

,

, ;~ I
•

;

,I!
,
".\ ;1, . I

• i ' ,),
• •,,' ,

• ,,

h' .
•,

l:'l: ,

iT'
\:~
I' ~ , ,

"j
• " I

I ,
, I

, ,
, ,

I 11,'
• I, I
, I, .

,

5-15
·\J

,.

s: Set if the result is negative; cleared otherwise
z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise '
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

...,
,..

, '

,

1

•

,

. '

•

,

•

•

•

I dlsp(hlgh) I
I d(hlgh) I

Iaddr(hlgh) I
I d(hlgh) I

"

10 1000 111 I addr(low)

10 1000 xx I d(low)

10 000 110 I d

10 000 1000 I dlsp(low)

10 000 1000 I d(low)

10 000 Ibx

src = R, RX, 1M, IR, DA, X, SX, RA, SR, BX

11 111 101

11 $11 101

11 111 101

11 011 101

11 011 101

Instruction Format

,[i!]oool r I
[ii]$11 1101 11----'101000 Irx I
[i1]000 110 11 n I

, [10 000 110

11 011 101

ADD A,R

ADD A,RX

ADD A,n

ADD A,(HL)

ADD A,(addr)

ADD A,CX:X +dd)

ADD A,(XY + d)

ADD A,<addr>
ADD A,(SP + dd) ,

ADD A,(X:XA + XXB)

None

Syntax

A +- A + src

The source operand is added to the accumulator and the sum is stored in the ac­
cumulator. The contents of the source are unaffected. Twos-complement addition is
performed.

ADD [A,]src

R: '
RX: '

,1M: '

, IR::,·

DA:

X:

SX:

RA:

SR:

BX:

Addressing
Mode

Exceptions:

ADD
Add (Byte)

Flags:

Operation:

•

ADD A,(HL)

$: 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx : 001 for (IX + del), 010 for (IY + dd), 011 for (HL + del)

bx: 001 for (HL + IX), 010 for (HL + IV), 011 for (IX + IV)
,.

,

........

,

1
, ,
•

, .

6 0 OOx1xOOO
2 4 , 5 4

•

I

AF:
HL:

2454: 1"",--_1_8_"
Data memory:

After instruction execution:

,

4 8 szxhxvnc
2 '4 5 4

AF:
HL:

2454: 1----.1_8_1
Data memory:

,

Before instruction execution:·

,

Example:

Field Encodin9s:

5-16 '

,

. .

Field Encodlngs: ~ : 0 for IX, 1 for IY

rr: 001 for Be, 011 for DE, 101 for add register to itself, 111 for SP

.•.. .

The source operand is added to the destination and the sum is stored in the destination.'
The contents of the source are unaffected. Twos-complement addition is performed.

,,

~I
~M

, ,
, ;

, I

"
j
;

" !
,

..·",
..

I,..•.

\,
::,,

,,
,

:,
..

",
!

,
"!;,

, I

.., ,

, .

, '

;1 .
, ,...

j
'I
"

. ~
,

"1

·,

•
, .
, j

. ,,
"•,
,

,
.,
"..
•. :.:
rr
;i
;'

. .

1
]

, .

, ,

•

. . .,
, .

. f' .. ,
..

,

•

, .

. . .

,

•

, .

. .
'.. ..

,

5-17

I

ADD
Add (Word)

...- ..

szxOxv01
2 3 0 8
1 3 4 0'

..

, .

F:
BC:
HL:

After instruction execution:

.
, , .

• •. . '

•• . t

dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

"

Instruction Format

\

I001 rr 10011'
1111~11110111r-:-:-1ooI rr 1001\

szxhxvnc
2 S 0 8, 0 . 3 8

•

F:
BC:
HL:

Syntax

ADD HL,RR

ADD XY,RR

None

s: Unaffected
z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected . .

•N: Cleared ' .". ,
C: Set if there is a carry from the most s.ignificant bit of the result; cleared otherwise

ADD dst,src '

. dst .- dst + src

•

.. ,... .

Addressing
Mode "

, .

. .

Example: ADD HL,BC

Before instruction execution:

Exceptions:

Flags:

Operation:

, ' .

i
~,;,
I

.'".

"1,
,

"':...

:'

';

,
1
l
:j

.
"

-"

i
'.',,

'1
i.:-....

"

•

. ,',

,
, ,

•

.. ' '.

'. '.

"

-,

\

"

".

, ,

, ,. ,

, '

, '

..

, '

•

n(low byte) II n(hlgh byte)I "
addr(low) II addr(hlgh) I

d(low) II· d(hlgh) I
dlsp(low) II, dlsp(hlgh) I

\

, .

10xOxOOO
0 0 1 0
A 1 3 3

F:
DE:
HL:

•

After instruction execution:

/

src = R, 1M, OA, X, RA

.,

Instruction Format
, , '

111101 1011111)" 1101

111.11 101 111 101 10110]100 110

111111 101)11 101 1011 [!!] 110 110

11 011 101 111 101 1011 [TIl 010 110

11 111 101 111 101 1011 [!!] xy 110

111 011 101 (111101 1011 @] 110 110

111 011 101 [!f/101 101 IO!l 000 110

ofor IX, 1 for IV

000 for SC. 010 for DE, 100 for HL, 110 for SP

000 for (IX + dd), 010 for (IV + dd)

, ,

•

szxhxvnc
." 0 0 1 0

A 1 2 3

F:

, '

,.

.'

rr:

" DE:
HL:

xy:

Before instruction execution:

AOOW HL,OE

.

HL'" HL + src

ADDW [HL,]src

The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.

'-
Syntax

•

•
None

ADDW HL,RR

, ADDW HL,XY

ADDW HL,nn

ADDW HL,(addr)

ADDW HL,(XY + dd)

ADDW HL,<addr>

ADDW HL,(HL)

s: Set if the result is negative; cleared otherwise ' ,
,z: Set if the result is zero; cleared otherwise , .
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared . "
C: Set if there is a carry from the most significant bit of the result; cleared 'otherwise

Addressing
Mode

R:

.-

,1M:

DA:

X:
RA:

IR:

5-18 '

Example:

Field Encodlngs:

exceptions:

Flags:

Operation:

:ADDW
Add Word

,

'; .. , ,';, ,,~

<,1'111 h'i+"I' 'I ,I. t;" "t ••:' .". ".,'

, " Field Encodlngs:

,

•

, .

.

. '

.; . .

,

!,,

, ,

"

,

•
" - .

, "" '

,,' - ..

, '

r • .'

. - ..

, '

, ,

. ; :

, ,.'.

J

• I:.

, '

. .'.

" .~. ,

, ,

s

"

. ,

. '

,,

-" ..
•

'.. .

"

. '

"

. - .,

, ,

, ,

.. ' ..

, "

.' '. ,- .'

,

. . .' ,

, "

addr(low) I I addr(hl9fu]

d(low) 1 I, d(hlgh) I

d I
dlsP(low) I I dlsp(hlgh) I

d(low) I I d(hlgh) I

.0 8 OOx1xOOO
2 4 5 4

. '

AF:
HL:

2454: 1_1_1_1
Data memory:

, After instruction execution: '

,src = R, RX, 1M, IR, DA, X, SX, RA, SR, BX

Instruction Fonnat

,,

Gil1jK)] r I .. . ,

[llICl»11j101 ~bool""'rx-I

[!!] 1001110 I n I
~~001110 ,

[!!] 011 101 ~ 100 111

, , [!!J111 101 0!j1oo xx

[TI)CI»11 101 lli]1oo 110

1111111 101 [iO]1oo 000

1111011 101 1101100 000

1111011 101 lliJ 100 bx

,

4 8 szxhxpnc
2 4 5 4

ofor IX, 1 for IV

100 for high byte, 101 for low byte "

001 for (IX + dd), 010 for (IV + dd), 011 for (Hl + dd)

001 for (Hl + IX), 010 for (Hl + IV), 011 for (IX + IV)

AF:
HL:

2454: 1~1_8_1

xx :

Before instruction execution:

Data memory:

bx:

·ne :

AND A.{HL) ,

ANDA,A

AND A,AX

AND A,n

AND A,(HL)

AND A,(addr)

AND A,(XX + dd)

AND A,(xy + d)

AND A,<addr> '

AND A,(SP + dd)

AND A,(XXA + XXB)
,

Syntax

AND
" AND

None
,
!

\

S: Set if the most significant bit of the result is set; cleared otherwise
z: Set if all bits of the result are zero; cleared otherwise
H: S~, ' ' ,,'
P: Set if the parity is even; cleared otherwise
N: Cleared " ' " '
C: Cleared

. .' - '.

A logical AND operation is performed between the corresponding bits of the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s; otherwise a a
bit is stored. The contents of the source are unaffected.'. :';'~ ",:; , '

, ,

A+- AAND src

AND [A,]src

"

•

R: '
RX:

1M:

IR:
OA:

X: "

SX:

RA:
SR:

BX:

, ,

Addressing
, Mode

exceptions:

Flags:

i

, ' ,

'\

!

, ,

, ,
,

,

,.. - '.
, '

: '.'

\. .

, '

'- ..' ..
. - '.'

, , -.

, '

, ' ,

"

Operation:

, ,

'.' '

Example:

. , , -
;. .
, '

, , .

. . '" -

.,

, , .', .-

" ,

- '" ,

. --. <,-' :
-. ",

, .

,

, .
"

5-19

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is zero, otherwise the Zero flag is cleared to O. The contents of the
destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc­
tion; this field contains the binary encoding for the bit number to be tested. The bit
number must be between 0 and 7.

..
Syntax Instruction Format

1111 001 01111 01 r IBIT b,R • b • .. .'. . .

BIT b,(HL) [!!] 001 0111101 b 110 I' . _.... .

11114»11 101 1111 011 11 II 01 1 1110 I · .'

BIT b;(XY + d) 001 d b ··

None

"

..
'.

,

!

'. ,

•

I

.' .

,

. : '" .

", ..

I sOx1xpOc

. .

\

,

...

AF: I 00010110

'.

After instruction execution:

dst - R, IR, SX

szxhxpnc I

(..... . .

. .

. ..

00010110 I

•
,..., ."

AF: I

.
4» : 0 for IX. 1 for IY

Before instruction execution:

BIT 1,A

BIT b,dst

Z +- NOT dst(b)

s: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
P: Unaffected
N: Cleared
C: Unaffected

Addressing
Mode

..

,

..

.'-.

R:
IR:

SX: ..

•

Example:

Field Encoding:

Exceptions:

Flags:

5-20

BIT·.
Bit Test

Operation:

,

• •

'CALL
, Call

. . "., '." .

A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an uncondi­
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return instruction (AET) can be used to return to the original
program. '. ,

". , .

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

. . . . :

When using OA mode with the CALL instruction, the operand is not enclosed in paren-
theses. . . '.'

I

If the cc is satisfied then: SP ~ SP - 2
(SP) ~ PC
PC ~ dst

..

,
. .

.. '.
,.

'. .

.. .

... .dst = lA, OA, AACALL [cc,]dst

.. .

. .

(

. Operation:

.'

. I.

.,

. ,.
Flags: No flags affected

.. exceptions: System Stack Overflow Warning

Instruction Format

,.

:. :. Addressing
Mode Syntax

• ..

IR:

DA:

RA:

CALL cC,(HL)

CALL (HL)

CALL cC,addr

CALL addr

CALL cC,<addr>

CALL <addr>

..

11 011 101 111 cc 100 I
11 011 101 111 001 101 I . ': I "unconditional call" I
11 cc 100 I addr(low) II addr(hlgh)

11 001 101 I addr(low) II addr(hlgh) I "unconditional call" I
11 111 101 111 cc 100 II dlsp<low) I dISP(hl9i!lJ

11 111 101 (11 001 101 II dlsP(low) I dlsp(hlgh) I I "unconditional call" I

Field Encoding:

. ,

•
cc: 000 for NZ. 001 for Z. 010 for NC. 011 for C, 100 for PO or NV, 101 for PE or V,

110 for P or NS, 111 for M or S
.

Example: CALL 2520H

Before instruction execution:
.

After instruction execution:

pc:
SP:

1 8 3 0
F F 2 8

pc:
SP:

2 5 2 0
F F 2 4

'"
Data memory: Data memory:

•,
•

FF24: 0 0 FF24: • 3.'

•

FF25: 0 0 FF25: 1 8
•

•

..-

5-21

"

•

CCF
Complement Carry Flag

•

•

Instruction Format

None

Syntax

CCF

The Carry flag is inverted.

C +- NOTC

s: Unaffected
z: Unaffected
H: The previous state of the Carry flag
P: Unaffected
N: Cleared
C: Set if the Carry flag was clear before the operation; cleared otherwise

Addressing
Mode

(

Exceptions:

Flags:

Operation:

CCF

, ., I

I "I ,'I ,
" ,I ,',:' I,

,::, II !I~,!,! i
"

'I ; :i'M
· '"

1
,I

j '"
I "~I II • ,

I,f' 'j'!!!,' I,
! "'J' I',
I I, " ' ,F

I,
I II ~,' ..i ~'I I.U, 11, ',
,
I, ' 'I 'I': 'I II :,;11

"
,I< L,,',:

,"" "l'" :,1,: "; ,t : '1
I II,! 'b,, "1' "',1 • "'1 :.:'l 'j,. 1"1 " •

I ~ ,t :,',.' II
I ,111'1 .. :
j, " ", , ,

i : II': J,
, I' ''I
; ,t '/1 11:1 ,

1'.;,' i "I J
, ~ (I: I ,j

.' ,': I'; ,j
, :' I I

,., r I
I t,' I •
\ ~ '11 •
': "'ffl '

j , .'; il •, I . ',! l

: ,"! I!l.
I ", 'jl

f, I I ,I, t· it
I - ',: h:.

I'I";' :· ", " ..;'I ,I'I j. " ,· ,. '.' ';'\
' , ,
, .. ' I· :'1"1. "1

, ,.1 ,I
'. ,.' I.

I • .'"

• 'I' '" ,.
'. ,,,: I

", I

, ',' j'l
d I

1\' " I 'j
· :' "II'

", ,... , .
, .. ','1'. ",'

, • ' "'j

- !," I
: ,~",I

", ,.. ".. ','
.' ,I I...:;...

I 'I •, t·,
, ;. "I:':," "

"......".: "\'"I'" ., ':',
j", ;

", ' 'I' ;
I • ' •

.~ I I ,'j,,,t, ., .,:' ,
, "j' I I "
I .. ,' ,
., I ""
j " I I, ' ,
. 'I ·"r

• • I"'.' 'I., .
f, tl'

'11 ;:.
I ",'l '
"I"'",, I
, I ., '

I I ' ,.
l -,1';1,

I
, ' ,

" .!",
'l':i I

. 'II',:::'
I' I I'.'

:i!(t'
"'1, 'I '
I I"'j'" ",'-.j r,l

•

Example:
"

5-22. "'. - '.

CCF

Before instruction execution:

F: I szxhxvnO I
,
,

"

"

•

After instruction execution:

F: I szxOxv01 I

, .

•

•

•

, ,

,

The source operand is compared with the accumulator and the flags are set according­
ly. The contents of the accumulator and the source are unaffected. Twos-complement
subtraction is performed.' ';'" '

s: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise .
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and

the result is the same sign as the source; cleared otherwise
N: S~ .
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

.
Field Encodings: 4» : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + Iy), 011 for (IX + IY)

I

••

•

•
•

,

,
,.

•

CP
_. Compare (Byte)

•

addr(low) I addr(hlgh) I .
d(low) I d(hlgh) I

d . •
1 ..

dlap(low) I dlap(hlgh) I
d(low) I d(hlgh) I

,

After instruction execution:

src = R, RX, 1M, IR, DA, X, SX, RA, SR, ex

Instruction Fonnat

1101111 r

1114»11 101 11011111 rx I
111111 110 I " I
101111 110

1110111101110111111111

11 111 101 110 111 xx I
11 4»11 101 110 111 1101

11 111 101 110 111 000 1

11 011 1011110 111 000 I
11 011 1011110111 bx I

•

"

•

Before instruction execution:

CP A,(HL)

None

CP A,R

CP A,RX

CP A,n

CP A,(HL)

CP A,(addr)

CP A,(XX + dd)

CP A,rxv + d)

CP A,<addr>

CP A,(SP + dd)

CP A,(XXA + XXB)

Syntax

A - src

CP [A,]src

R:
RX:

1M:

IR:
OA:

X:

SX:

RA:

SR:

BX:

Addressing
Mode

Example:

Exceptions:

Flags:

Operation:

. '

.
, .

AF:
HL:

,

4 8 szxhxvnc
2 4 5 4

AF:
HL:

4 8 OOxOx010
2 4 5 4

Data memory: Data memory:

2454: I 1 e' I
..

2454: I 1 8 I

5-23

.'
, .

, '
•

-,

, ,

•

, ,

, '

, ,
, .

. '

•

",

,

3 B 01xOx01c

1 2 1 4

0 0 0 0

AF:

HL:

Be:

, After instruction execution:

Instruction Format

, ,

[!!] 1011101111011011 0011

I

a B szxhxvnc ..

1 2 1 5

0 0 • 0 1

, .

•

. ,

AF:

HL:

BC:

Before instruction execution:

None

Syntax

CPO

This instruction is used for searching strings of byte data. The byte of data at the loca­
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. Next the HL register is decremented by one, thus moving the pointer to the
previous element in the string. The BC register, used as a counter, is then decremented
by one.

s: Set if the result is negative; cleared otherwise "
Z: Set if the result is zero, indicating that the contents of the accumulator and the

memory byte are equal; cleared otherwise "
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise , .
N: Set
C: Unaffected

A - (HL)
HL ~ HL - 1
BC~BC-1

CPO

Data memory: Data memory: ,
;'.

" . .-..

1215: I '3 B I' 1215: I 3 B t
"

"
f

Addressing
Mode

.'

Example:

Flags:

5-24

Operation:

CPO"
Compare and Decrement

/ Exceptions:

.',
•

•

CPDR
Compare, Decrement and Repeat

"

CPDR
,

-.

,

•

.
, .
•

•

5-25

·•

.. ,
, ,

•

•

. ' ,

· .' -

··

" ,

, ,

•

F 3

0 0

5 2

F 3 01xOx11c

1 1
,

1 5

0 0 0 4

\

AF:

HL:

BC:

.

1116:

1117:

1118:

Data memory:

After instruction execution:

Instruction Format

mJ 1011101 1110111110011

F 3 szxhxvnc

1 1 1 •
0 0 G 7

F 3

0 0

5 2

AF:

HL:

BC:

1116:

1117:

1118:

Data memory:

Before instruction execution:

None

. ,

Syntax

CPDR

CPDR

s: Set if the last result is negative; cleared otherwise .
z: Set if the last result is zero, indicating that the contents of the accumulator and

the memory byte are equal; cleared otherwise '
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Repeat until BC = 0 or match: A - (HL)
HL +- HL - 1
BC +- BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac­
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the
accumulator and the memory bytes are unaffected. Twos-complement subtraction is per-
formed. ' .

After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de­
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

, . '

This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed. '."

I

Addressing
Mode

Example:

.'

Exceptions:

Flags:

operation:

••

, .,

..,
~"11',",,. •q ,It :\

•

.
<

'.

,
.'

,

•

•

•

, .

" '

•

. ,

•

3 B 01xOx01c
. . 1 2 1 8

0 0 0 0

.'

,

AF:

HL:

BC:

After instruction execution:
..

•

•

•

(

Instruction Format

3 B szxhxvnc

1 2 , '1 S-

, 0 0 0 1

\

AF:

HL:

BC:

Before instruction execution:

Syntax

CPI

s: Set if the result is negative; cleared otherwise
z: Set if the result is zero, indicating that the contents of the accumulator and the '

memory byte are equal; cleared otherwise .
H: Set if there is a borrow from bit 4 of the result; cleared otherwise '
V: Set if the result of decr'ementing BC is not equal to zero; cleared otherwise
N: S~ ..
C: Unaffected

A - (HL)
HL +- HL + 1
BC +- BC - 1

CPI

CPt

This instruction is used for searching strings of byte data. The byte of data at the loca­
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. .

, Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented by one.

•

I

Addressing
Mode

5-26

Exceptions: None

Example:

Flags:

Operation:

CPI. .

~ompare and Increment

•

1. , "',,. .~'I " ~••.!, •
,'1 • ','.,

·1 ,'I •.. '
" I' I', :; iii'~": ; ,
~ •. 11 ,,'t','." '" .,:: ~ t";· .:

I ~., i (,.
: . I ;:.;"

,. 'j' I:' "
11~ ... t ... t,'
" I',"". II' 'I
" ",,:. "
. "~'I! !.",!)'.,.j,.
, .," • t.1M ' •••• "

I " " ,:. ',';','

'. r :'l:!' I;'" ,,. I)
'i" I 1":'~ ,

, 'I""'·f·'1' 1,';1 .
,·rl,U.'l· ~,I
, ' I" 1

• j,· "" .,,' "
I 't ::!",:

, ,I""
I '" r'" '.
' •. 1 t. 'I • !'
•OJ.; I ," :11', ',1
:;., '111:)'1" lt'
_, ", I • ":>1.• I
I: ' I 'I j' . ~:;,
~: . , I,: II.,' I

'i ~ . ',,', :,. :
, ' I ' .' ,~,

;~ '. • 'I' '"I ~,
,~ ~ ',::"1''';
• • ,I .••1"; I"" 'j

• " II ' :'; .~!

I' """,
I , .
• ",1· I'" ,':," . • r. "
, .' ' :; ;'"

i !'i~j I :.:
" "

, ' ':;.;::' ,
.: ;:.;' .,.~:,

" . ..;', I.' 'i
. ' ;' . ,."1 •
. ' ", ;. ,.. l~,'

. ~" .
,.: .. ; I, '.
: . l. , '
'," 'j-j',

, , .1 ,

.' ;, ,'j
:. ,I.' ~.
, :1' ,

: I", •, ,.,.,',.
"'j" ".! 1.;~' lj.; ... '

I' \I: I :·.r,. '1 . . ··1

I
'. ,;; .

,'If I • " I

I ' .. 'I '. ..': <': ,I,.!
I '. ;f·; '. I .' ~.
I : ':l! '11.1"" j.
I " I: " I I, I j .• ~ .,I· ,./' ·1. 'I
• :1 >1 j !I:'i ! ~ 1:1

fl

. " , , II'
'! . ,r'~

1'" ! I' • '. !'
'.' ,"', " :!.". I,l :l't! "
• 'I ,'," ,.
I ;: I',·.Ii· ...

~
' 1:\ :: ": .J"

. 11
1

1 II '.d,li I.

: y; 1:';:::11' II', ... "
" •• j,

11'.l I:.' :~; '.1.\,1'1 ',' II " ,I., ,
" I 'I 'f·, . ~, , I •

! I : i. '. <, (

I! :~ ~ " Ii;:> 1... J
. '1'1,," I ", .I

... I' :.'!.',;.il 't
" I"l ; t I '" .:

'. " ' ,'" \~"", I

, ",' '" " ." I'

I;, ,I':, I
! ' .',' ~

'I" .'. I
'/1 . ..,1" 'I

'Ii.:, 'liL',·.j
II":' 'I':', f
I '1 q".," ., .

I: 1, I 1
,::\1';' ;'," I
,I I"

!: :t~'II'Il(1::';' :
r In
, "1 '. I\' j"",
i :I:PI '
i\ t~': 'I I :'1; ,',..",',t d' .r '.1 . >

"I" ,<! t: "j:, I

I,I:!I' " ,,.. ,,,,' I ,I. '. ,

Ill' I! . I . I II •
I, .: ~ I., I

Ii'!:•• j •

" ., 'I' •,."',. .
I' I'

:1 1:1,:, ~
.j 1'1 ,! .'1'1 ,, "~"~iI, 'l •

".jl'i I ,I."l,·',k;1 I ,'.'i ; ,"I' ,." ,: ' ...'.'
" l ' " .'

!1!!:'P :~ '~!jl' . ;
I '~. I 1 1 •~
: II! 1.".1 ', ," ., ,t •

I" ,,' : I".,'1,'1. i ' I., '. " ."", ":.1 l' I " " .

l'i'I'" ,I "';'."'II .' '.
i,II',,1 ,I I:
':,'; i\i id, i;'
I .1'1 ' ,

~ I ' '

': ""'/1
..1 I
:I ~ 1 I

)'!','II: 'I; ,
" l'
"1 ,,' ,. I '1'iI, ".', I., : ,I '., .
I:;! "1." I• I '! ,.':1"'" . ,.J" ,
:! l~ <j
"",
, . ,j
I,,, '!' I j'! 11'
",', I ; . I..

· 'I",,\,\

1'1"hi), ","II I " I ~.' "'! ': ~\ ',til :, ' ,. "
'~ll .

'II " "'" ''''''~', , , 't", I

I,' . ,,'
'" "IiIi Ii ' ''''1'' ,I~ I"': 'l!' , !if; '!,' ... ;'

If
" , ":' '/"11, .,'" ;"1 "'! ,H"'I' " 'I "1"

I,·, ',' I', " ",.
" •.,! • I "::1: ':I)I;!\':
;!:ill'J!~/;:: i!l:'I" 1,1, ,,'\., ,I " '"I'
'.I ,I . 'I ~!'IH;'I' .,\ ,. ,'" 'I'II' lJI. ,;; I

, I.', , I" .. ·.",..,q.,., ,!,,,:\., .
, '.,' ""'. 'II
• I" '.,' r'I'" . I 1 , :"1
1:1" 1 "WI!, .f I

f ':1.
r II,

· 'I',... 'j "" ,,'; I ,', ,'}V':I

'I ' ,,' I"s ' . I I. :'1 '
~~':l:jlliq:I:,·:LlI:
, , '11'1' '~~", 'I'" ,., I '
\'" • I ~"I" !
')', I , I, "
~, {, l.i ,,"11.' i)"
, ," '. I I

':'~I:l ;i;:ff
;.'" I l", ~'
'1 I' til: t'", , "

. ,
•,

,
"

, ,

•

•

•

,.

P.,

.
I '

5-2'7

. .

..
t '5

0 0

F 3

F 3 ·01xOx11c

1 1 1 B

0 0 0 4

. '

AF:

HL:

BC:

1118:

1119:

111A:

Data memory:

After instruction execution:

Instruction Fonnat

2 5

0 0

F 3

F 3 szxhxvnc

1 1 1 8

0 0 0 7

AF:

HL:

BC:

1118:

1119:

111A:

Data memory:

Before instruction execution:

Syntax

CPIR '

CPIR,

None

s: Set if the last result is negative; cleared otherwise ' , ' '
z: Set if the last result is zero, indicating that the contents of the accumulator and

the memory byte are equal; cleared otherwise ' , ,
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise '. ,'. ,','
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise, .",
N: 'Set ' '.
C: Unaffected .' '. ,

, ,

CPIR
, .

Compare, Increm~nt and Repeat '

Repeat until BC = 0 or match: A - (HL)
" HL +- HL + 1 .

BC+-BC - l'
, ,

This instruction is used for searching strings of byte data. The bytes of data startiflg at
the location addressed by the HL register are compared with the contents of the ac­
cumulator until either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. - '

After each comparison, the HL register is incremented by one, thus moving the pointer'
to the next element in the string. The Be register, used as a counter, is then de- ,
cremented by one. If the result of decrementing the BC register is not zero and no '
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.. . . .

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed., ." . '

CPIR

Addressing
Mode

Example:

'. ., '

,
"

•

'r --------------------------------------

Flags:

Exceptions:

·,

·"

, , '

, .

, Operation:

\

CPL·,'
Complement Accumulator

CPL [AJ

,,

I

. .

•.\

.,
I!..
",
",'.
' .

, .
,!"
,"::. Operation: A +- NOT A

The contents of the accumulator are complemented (ones complement); all 1 bits are
changed to 0 and vice-versa.

.'

"."
!

,
i,

"
i

.'
.~

",
1'"., 1,

'l"
"·
., .,,,
j .

"

j

".j .
" ,

Flags:
• s: Unaffected

Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

•

. . . •
,,

,

;

,,
•,
•

1

:1
"<.,,

},.,

~
"•

, ,

,

•

, .

.,

•

,

-

. -

. ,

AF: 1__D_7_11.-_SZX_1_xv1_C__1

.After instruction execution:

,

" .

.' ,.," .f

. .

. .,,

•

•

None

Before instruction execution:

. . . ~

I AF: 1~_2_8_,_I__SZX_h_xvn_c__1

•

/

Addressing
Mode Syntax Instruction Format

CPL A 100110111111
. ,

•

Example: CPL A / ..
•

i

5-28

Exceptions:

'.
=: .
j;'
, .,., .
·.
"""
",., .

"\ ,ti'
", .

~i '
"jl ..

~Il .I .

. ",

" .

,
',.

'.

i,
"j

,.. ',
.',,

: .
,,

:, 't"',',. ,:1". . ;1'
l'iI! I .': . .o,,I.. i
.". .
h:,' I

'I~'l ,. . '
t' ~ I
,. I .

;~I' .~ I" ; .i
,j •. ; 1'::;-1It I: f' I ': .
,I t· I'", 1..

,
I ',:'j :.. -j

,. f" ; 'iii I· ' :, ,; ,•.:j',. .. .
•

, .
11~. ,.' '". I .
"I' " . •
',J'. "'\"

:l

"..,

,
"

i,
,,.
,,,
I.

. .

;

•

· .

·,

.' I

••

., .

•

. ,

I .

•

•

•

.

•

. .

CPW
.Compare (Word)

.' .

. 10xOx010
0 0 1 0
A 1 2 3

•

•

,

F:
DE:
HL:

i .

. .

After instruction execution:

.

src = R, 1M, OA, X, RA

Instruction Fonnat

111 011 101 1111101110111111010 111 I addr(low) II addr(hlgh)

111 111 101 111 101110111 11 10C110 111 I d(low) II d(hlgh)

111 011 101 111 1011101 11111110 11111 dlsP(low) II dlsp(hlgh)

111 011 101 111 101 1101 I[!!]000 111 1

111110111011111 rr 11111 .<

[111ca.11 1101 II 11 101110111"-'1111001111 . ' '~

111 111 101 111 10111011 [i1]110 111 I n(low byte) II n(hlgh byte),

,

szxhxvnc
0 0 1 0
A 1 2 a

F:
DE:
HL:

ca. : 0 for IX, 1 for IY

rr : 000 for BC, 010 for DE, 100 for HL, 110 for SP

Before instruction execution:

CPW HL,OE

. .

•. s

HL - src

. .

The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected. Twos-complement subtraction' is
performed.

CPW [HL,]src

Syntax

CPW HL,RR

CPW HL,XY.

CPW HL,nn

. CPW HL,(addr)

CPW HL,(XY + dd)

CPW HL,<addr>

CPW HL,(HL)

s: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is the same sign as the source; cleared otherwise
. N: Set .

C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

R:

1M:

DA:

'x:
RA:

IR:

Example:

Field Encodlngs:

. .

. ,

Operation:

Addressing
.' Mode

. Flags:

., Exceptions: None

.
'. .

•

;

',"

•. ,

,

5-29

..

'.

•

, '

. . ~. ~

, .

,.

,

• •

. .'

. ~ .. ".

Instruction Format

Operation of DAA Instruction

!

DAA

, ,

.', ..'

Syntax

None

A +- Decimal Adjust A

DAA·

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: See table above
P: Set if the parity of the result is even; cleared otherwise
N: Not affected
C: See table above

. The operation is undefined if the accumulator was not the result of a binary addition or sub­
traction of BCD digits.

, Hex Value in Hex Value in Number
C Before Upper Digit H Before '. Lower Digit Added CAfter H After

DAA (Bits 7-4) DAA (Bits 3-0) to Byte DAA DAA

0 0-9 0 0-9 00 0 0
0 0-8 0 A-F 06 0 1
0 0-9 1 0-3 06 0 0
0 A-F 0 0.;9 60 1 0
0 9-F 0 A-F ····66

..
1 1

0 A-F 1 0-3 66 1 0
1

\
0-2 0 0-9 60 1 0

"1, 0-2 0 A-F 66 1 1
1 0-3 1 0-3 • 66 1 0

SUB 0 0-9 0 0-9 00 0 0-
SBC 0 0-8 1 6-F FA 0 1

. ,

DEC 1 . 7-F 0 0-9 , ' AO 1 0
NEG 1 6-F 1 6-F 9A 1 1

(N = 1) .'
~

. I

\

The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC,
DEC, NEG).

I

ADD
ADC
INC

(N = 0)

. Addressing
Mode

Operation

Exceptions:

Flags:

•

DAA
Decimal Adjust Accumulator

.·5-30

.Operation:

, .

• •

,

Example: OM

Before instruction execution:

,
/.

After instruction execution: '.
.' ,

.. .; .'

, .

AF: I . a •

. '

.
I

II..-_SZ_ X_OX....;;..P_01__t

I

I,

, "

AF: 1l-.-,-8_8_II..-_o_o_xo_XO_O_1_J

•

: !

•

.
'~•

" .
I '

,

•

, ,..~ .

, .

"

J '

,,

, , .

\
,

•(

v" •

. " ;

•

•a

I '

-.

~.. .

",

.'

, ,.

.'. ',.

. "

•

•

.

,.

•

•

•

, ,

5-31

•

t ,.' '. I,

1
:\ 'j" ~~!.:;:, :,"
, ' ,.fl ·... f'. .' '1 ',": :." :': I ... , ",1,'

'1 .'.;
,

, '

'\

,

dst = R, RX, IR, DA, X, SX, RA, SR, ex

,

Instruction Format

[00] r 1101

1111.111101 I00 Irx 1101 I
I001 1101101

[Ii] 011 101 I00 11111 101 II addr(low) II addr(hlgh) I
1111111 101 I00 1xx 110111 d(1ow) II d(hlgh) I
\111.11 101 1001110 10111 d I
111 111 101 I00 1000 101 II dlap(low) II"'-d-Ia-p(-hlg-h-)I
111 011 101 I00 1000 10111 d(1ow) II d(hlgh) I
111 011 101 1001 bx 1011

DEC R
DEC AX
DEC (HL)

DEC (addr)

DEC (XX +dd)

DEC (XY + d)

DEC <addr>

DEC (SP + dd)

DEC (XXA + XXB)

Syntax

None

,

The destination operand is decremented by one and the result is stored in the destina­
tion. Twos-complement subtraction is performed.

dst ... dst - 1

s: Set if the result is negative; cleared otherwise
z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80H; cleared otherwise
N:~,

•

C: Unaffected

DEC dst

•

R:
RX:
IR:

DA:
, X:'

SX:

RA:

SR:

BX:

Addressing
Mode

Exceptions:

Flags:

Operation:

DEC
Decrement (Byte)

"',I,
i'l
;.11
;'.

Ii
,,'

I.
, ,
,j ~l

, .,.
. 'I:

!,

I
'I,'

:::
,

j."
":,
I:
";i
"

"
"1.,
..
"

""
"
!

""

"

.\
i
"
,,
i,
!
j,
,

"

"

"",,

,,
I

I,
J

,, ,

,, ',

'"I I"
~; j
~ Ii:'
\. "

I·i i '
.!:;'!

If,
.! •
1, I., ~.
, "

.'~ .,,':1;
I' "

",. "I
J I,~

:', ;1;1"', "', 'I "I' Ii'; :.1; ::, "I' ~;.
"I'" I I:". \", ,'I;" t, -.1;" i

! I .'. I (,
'! ' ..•
i' ".

I"

:1

'i
!l
~,

,
,
,
:,.
:i:
""
,

:::
",
'r,
1
"
.]
,',
-'j

:j; .
tl , .,',
!

P
!i
";,
"
"\'!
::,
;.1
;!

• : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (Hl + dd)

bx: 001 for (Hl + IX), 010 for (Hl + IV), 011 for (IX + IV)

szxhxvnc
2 4 5 4

•,

10XOx01c
2 4 5 4

. ,

•

•

,.

i

, F:
HL:

2454: 1L.-._8_7_1
Data memory:

After instruction execution:

;

-

•

•

, -'

, .~

F:
HL:

. ,

Data memory:

DEC (HL)

Before instruction execution:

. 2454: 1""--8_8_1
,

.r

, ,

Example:

5-32

Field Encodlngs:

•

•

.

5- :n
. ,

.'

•

," DEC[W]
Decr~ment (Word)

\

•

'.

HL:
•

•

After instruction execution:

dst = lA, DA, X, AA

dst = A

Instruction Fonnat

~ rr 0111

G3l.11 10111-00""--10-1 0111

111 011 10111 00 001 011 I
111 011 1011100 011 o11II-.-d-dr(-low-)II .ddr(hlgh))

111 111 1011100 xy 01111 d(low) II d(hlgh) I
111 011 1011100 111 01111 dlsP(low) II dlsP(hlgh) I

HL: I 2 3 0 8 I
Before instruction execution:

DECW HL

. '

DECW RR

DECW XY

DECW (HL)

DECW (addr)

DECW (XV + dd)

DECW <addr>

Syntax

None

No flags affected

•
The destination operand is decremented by one. Twos-complement subtraction is
performed. ' ,; .

dst ~ dst - 1

DeC[W] dst
or
DeCW dst

R:

IR:

DA:

X:

RA:

, ,

, '.

Addressing
Mode

Example:

Field Encodlngs: • : 0 for IX, 1 for IY

rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP

xy: 001 for (IX + del), 011 for (IY + del)

exceptions:

Flags:

Operation:

"

DI 23H

01 111111010111
01 mask 1111101110111~011110111111 mask I·

= byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;,

mask(7) must be zero.

-

. ..

..

•

..

..

.'

. '",

..

"

"

MSR: 11---_0_0_1__5 _c_--,I
After instruction execution:

.. ..

= Hex value between 0 and 7FH

..

. .

'. '.

Mask

Instruction Format

..

•

..

•-

= 1 then MSR(i) 0

'. :.. ..

..

..

,..
.-

.

MSR:1__0_0---11__7 _F__I

Before instruction execution:

No flags affected .

Privileged Instruction

Syntax

01 mask

If mask(i)

The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
unaffected. If no mask is present then all interrupts are disabled.

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i.

/

Mask

Addressing
Mode

5-34

exceptions:

Examp~e: .

Flags:

Operation:

01.
Disable Interrupt

-

/

•

•

•

,.•

. .
. ,

. DIV
'",:. . Divide (Byte)

src = R, RX, 1M, DA, X, SX, RA, SR, BX

s: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected· '
V: Set if the divisor is zero or if the computed quotient lies outside the range from - 27

to 27-1; cleared otherwise
N: Unaffected
C: Unaffected

A+- HL src
L +- remainder'

DIV [HL,]src

Division Exception

5-35

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are unaffected. Both operands are treated as
signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend. '. , '

There are three possible outcomes of the DIV instruction, depending on the division and
the resulting quotient:

. .

CASE 1: If the quotient is within the range - 27 to 27-1 inclusive, then the quotient is
left in the accumulator, the Overflow flag is cleared to 0, arld the Sign and Zero flags are
set according to the value of the quotient. '

, ,

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and'
Overflow flags are set to 1, and the Sign flag is cleared to O. Then the Division Exception
trap is taken. ' . ' ,

,CASE 3: If the quotient is outside the range - 27 to 27-1, the accumulator remains un­
, changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to O.
Then the Division Exception trap is taken.

"

_' I . .
, '

, '
, ,

, . '

.

,

•

.'-: '

7

Exceptions:

Flags:

•

operation:

-

-

-

-

-

"

Field Encodlngs:
.;,

j
••

,.~

•

+
1,
•

,,,
'~

1

o for IX, 1 for IY

100 for high byte, 101 for low byte

001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

001 for (HL + IX), 010 for (HL + IV), 011 for (IX + IV)

4»:
rx:
xx:
bx:

DIV HL,C

,""

Example:

. '

Before instruction execution:
\

After instruction execution:
"•

,
"

'j
•,,

,,
1

1

'f!,
",
•

•

, '

•

, "

"

"

"

•

.,

. -,.

•

"

•

0 1 OOxhxOnc
F E

F F F F
•

,"

,

AF:
c:

HL:

'0

..

,

;

....•..

•

•

•

",

!

,

, ,

'.

,

"

','

•

5 5 . szxhxvnc
F E

F F F D .

•

,

"

•

AF:
C:

HL:

,

, ,
,

, 0

5-36

1
1l

Addressing
Instruction FormatMode Syntax

. . R: ' OIVU HL,R IT!] 1011101 [ill r 1101
.

RX: OIVU HL,RX @Ica.111101 @I101 101 [ill rx 1101 1

1M: OIVU HL,n lliI111 101 WJ 101 101 [!!1111 1101 II n I
OA: OIVU HL,(addr) @I 011 101 li!J 101 101 [ill111 1101 I eddl(low) I eddr(hlgh) I

X: OIVU HL,(XX +dd) @I111 1011 WJ101 101 [!!J xx 101 I d(low) I d(hlgh) I . ,

SX: OIVU HL,(XY + d) @Ica.111101 [ill 101 1101 \ [TI]110 101 I d

RA: . OIVU HL,<addr> @J111 101 [ill101 101 I@looo 101 I dlsP(low) I dlsp(hlgh) I
SR: OIVU HL,(SP + dd) [!!]011 101 [IT]101 101 I[TIJooo 101 I d(low) I d(hlgh) I •

BX: OIVU HL,(XXA + XXB) " [TI]011 101 lliJ101 101 I[!!] bx 101

IR: OIVU HL,(HL) [li]101 101 @]110 101 I

Operation:

exceptions:

,

,

. " "

" .

". "

, "

,

. '. .

DIVU
Divide Unsigned (Byte)

.- ".

, "

src = R, RX, 1M, DA, X, SX, RA, SR, BX

•

.
t.' .•.• • I ", ".> '~'. .": • :.... ::

", . '" '. '.. ' "

•

". "

'. , . , .:' . .
I ,- • 7"

" ,

Division Exception

5-37

s: Cleared "
Z: Set if the quotient or divisor is zero; Cleared otherwise
H: Unaffected. . .
V: Set if the divisor is zero or if the computed quotient is greater than or equal to

28; cleared otherwise
N: Unaffected
C: Unaffected

DIVU [HL,]src

A HL +- src
L remainder

"

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not a~e~ted. Both operands are treated as
unsigned, binary integers. "" I

" "

There are three possible outcomes of the DIVU instructi~n, depending on the division " "
and the resulting quotient:

•
" "

CASE 1: If the quotient is less than 28, then the quotient is left in the accumulator, the
Overflow and Sign flags are cleared to 0 and the Zero flag is set according to the value
of the quotient.

I

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag is cleared to O. Then the Division Exception
trap is taken.

CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un­
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to O.
Then the Division Exception trap is taken.

,

" "

' .. :".' .

· "

. '/
.~ .

· ,. .

Flags:

,

· "

""_'"I

, . ".

" ", "

"" "

..
,

•

,

, '

Field Encodlngs: 4> :
".. ,. . :...

, ,

" ', .. rx·
, .

,":, .

xx :
bx:

ofor IX, 1 for IY

100 for high byte, 101 for low byte •

001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

001 for (HL + IX), 010 for (HL + IV), 011 for (IX + IV)

, \

, .

•

I '

. " •

Example: DIVU HL,C
~ ,-.' '"

Before instruction execution: , After instruction execution:
. ,. . ". ~ ~

. : .

5 5 szxhxvnc

0 2
..

, 0 1 0 1

, . ..

•

"
"

"",'

'I~~
., -\',
.•>,.

. .
"

, ..

.~;......
(."

'.o!l4'

m;

.. ,

, .

, .

•
, ,

I

. • • a.
, .

: :. .'

'. f.

........

,

•

,

.
: . '-

, "
, ,

"

, ,

;

..

, ,
•

,. ,

.. , ,

"

I ',

,

, ...

•

" .

8 0 00xhx0nc

0 2

0 1 0 1

AF:
,C:

HL:

.
; . '. .'

" .'. ..'

.". .

. '

, , ,

. "

, ,

" ,

. " .

,

i

•

,

.'..'

, '

~ ..~ ..

" ,

, ..

,J

. '

,

"

,

AF:
C:

, ' ..
HL:

" ,

, , ,

.' . .

, ,

,

,

5-38

•'.

,

DIVUW
. Divide Unsigned (Word)

•

DIVUW [DEHL,]src src = R, 1M, DA, X, RA -

Operation: HL +- DEHL + src
DE +- remainder

,

•

5-39

Field Encodlngs: 4» : 0 for IX, 1 for IY

rr: 001 for SC. 011 for DE, 101 for HL, 111 for SP

xy : 001 for (IX + dd), 011 for (IY + dd)

,.

Instruction Format

[TIl 1011101 IL!iI rr 1011 I
01].1111011 [ill 1011101 I[ill1011 011 I
lli!11111011lli]1011101 I[TI] 1111 011 Ilr--n(-~-11 n(hl@)l

[TI] 011 1101111111011101 I llil011 I011 II addr(~ I (adclr(hi8tiL]

[ill 1111101 I[ill 101 I101 I[illii] 011 II dla.p(IOWiJ Idla~
11110111101 IL!iJ 1011101 I[!!] 1111011 II dlap(1ow) II dlap(hlgh) I
~0111101) ~101 11011 @]0011 0111

DIVUW DEHL,RR

DIVUW DEHL,XY

DIVUW DEHL,nn

DIVUW DEHL,(addr)

DIVUW DEHL,(XY + dd)

DIVUW DEHL, <addr>

DIVUW DEHL,(HL)

Syntax .

Division Exception

.'

The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotient is stored in
the HL register and the remainder in the DE register. The contents of the source are
unaffected. Both operands are treated as unsigned, binary integers.

There are three possible outcomes of the DIVUW instruction, depending on the division
and the resulting quotient: .

CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to 0, and
the Zero flag is set according to the value of the quotient.

.'

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to O. Then the Division Exception
trap is taken.

.
CASE 3: If the quotient is greater than 216 - 1, then the DE and HL registers remain un­
changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to O. .
Then the Division Exception trap is taken.

s: Cleared
z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected .
V: Set if the divisor is zero or if the computed quotient is greater than or equal to 216;

cleared otherwise
. N: Unaffected

C: Unaffected

R:

1M:

DA:

X:
RA:

IR:

Addressing
Mode

exceptions: .

Flags:

-

szxhxvnc
0 0 0 0

0 0 - 2 2

/

••

.• Ad

•

','

•

,

, ..

•

, '." f":

-.

,

- . OOxhxOnc

• 0 0 4

• 0 . 0 5

. ",'

"

--

" '

F:

DE:
HL:

" ..

After instruction execution:

\

., :

-'

,

•

,

/

,

•

.' "

"

•

•

• 'j. •
,".,

-,

F:

DE:
HL:

DIVUW DEHL,6

Before instruction execution:

. '

,

,

•

•

- .

,

.­-

5-40

Example:

•

, .

.

DIVW
Divide (Word)

.Operation:

DIVW [DEHL,]src

HL +- DEHL + src
DE +- remainder

src = R, 1M, DA, X, RA

..

I

. .

, .

Flags:

Exceptions:

The contents of the DE and HL registers (with the DE register containing the most signifi­
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source'are unaffected. Both operands are
treated as signed, twos-complement integers and division is performed so that the re­
mainder is of the same sign as the dividend.

There are three possible outcomes of the DIVW instruction, depending on the division
and the resulting quotient: ..
CASE 1: If the quotient is within the range - 215 to 215 - 1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.

. .

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to O. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range - 215 to 215 - 1, the DE and HL registers re­
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
O. Then the Division Exception trap is taken.

s: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
z: Set if the quotient or divisor is zero; cleared otherwise '
H: Unaffected
V: Set if the divisor is zero or if the computed quotient lies outside the range from - 215

to 215 - 1; cleared otherwise, .
. N: Unaffected

C: Unaffected

.

Division Exception

. ,

,

-

Addressing
Mode Syntax Instruction Fonnat

R: DIVW DEHL,RR 111 101110111111 rr 10101
. .

'.

DIVW DEHL,XY 111.11110111111101 1011111101 010 1,

1M: DIVW DEHL,nn 111 111 10111111101 1011 11 111 010 I n(low) 1I n(hlgh)]
DA: DIVW DEHL,(addr) 111 011 1011111 101 1011 11 011 010 I addr(low) II addr(hlgh) I

... X: DIVW DEHL,(XY + dd) 111 111 1011111 101 1011 11 xy 010 I d(low) II d(hlgh) I
• RA: DIVW DEHL,<addr> 1111011 1011111 101 1011 11 111 010 I dlap(low) II dlsp(hlgh) I

• IR: DIVW DEHL,(HL)
\ 1111 011 101)111 101 101 I 11 001 010

Field Encodlngs: . • : 0 for IX, 1 for IY

rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP

xy : 001 for (IX + del). 011 for (IY + del)

5-41

" .

. r '.

I

•

•

Op

•

•

, .

.

•

•

"

•

,

" -,,
F
-

• . E..

-
.

i
, .- •

00Xhx0nc

0 0 o 4

0 0 o 5

, ,,

.,

. .

. -,

F:

DE:
HL:

After instruction execution:

. ,

/

szxhxvnc
,

0 0 0 0

0 0 2 2

•

•

F:
DE:
HL:

, '

--

Before instruction execution:

DIVW DEHL,6

I

,.'

"

•

5-42

, "

Example: "

. ,

,.

•

"

. '

\

.- ',' ' .. .

. .
'.

. .
. .

OPeration:

. " .'

DJNZ dst
. .

8+-8-1.'
if 8 =1= 0 then PC +- dst

. . .

dst = RA

'. .

• •
. . . I

.
.

..

. ..

; .

• •

The 8 register is decremenJed by one. If the result is non-zero, then the destination ad-
dress is calculated and then loaded into the Program Counter (PC). Control then passes
to the instruction whose address is pointed to by the PC. When the 8 register reaches
zero, control falls through to the instruction following DJNZ. This instruction provides a

. simple method of loop control. .

The destination address is calculated using Relative addressing. The displacement in the
instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction. The a-bit displacement is treated as a signed, twos-complement
integer. Thus the branching range from the location of this instruction is -126 to +129 .
bytes.

. ,

Flags:

Exceptions:

Addressing
Mode

RA:

Example: ..•

No flags affected

None .'

Syntax

DJNZ addr

DJNZ 1050H

. .,'

, .

. Instruction Fonnat

I0010101000 II dlsp I
'. . .

. ..

•

Before instruction execution:

"

• After instruction execution:

\

..

B:
PC:

1 2

1 0 7 6

B:
PC:

, .

1 1
. 1 0 6 0.

. .

--'"

•

I .

,

5-43

•

EI':
Enable Interrupt

'.

E
-
-
-

-
E

F
-

(

•

, .

f ,

, ,

•

•

, ,

" '

0014.

, .

MSR: I
After instruction execution:

Mask = Hex value between 0 and 7FH

Instruction Format

•

, :
. "

\

Before instruction execution:

EI 49H

Syntax

No flags affected

Privileged Instruction

If mask(i) = 1 then MSR(i) +- 1

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl­
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected. '
Note that during the execution of this instruction and the following instruction, all
maskable interrupts (whether previously enabled or not) are automatically disabled for
the duration of these two instructions.

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

" MSR: 1__0_0_1__0_0-..;.._1

EI 111111110111 " ,

EI mask 1111101110111011111111111 mask 1 ',' '
Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;

.. mask(7) must be zero.

Addressing
Mode

'...

, ,

•

Example:

Exceptions:

Flags:

Operation:

, 5-44

EX
Exchange Accumulator/Flag with Alternate Bank

Operation:

Flags:

,, Exceptions:

I

/ '

EX AF,AF'

AF'-'AF'
• , ,

, ,

The control bit mapping the' accumulatot and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectively exchanging the accumulator and flag
registers between the two banks.' , ...'"

, .

Loaded from F'

None

, '
, ,

Addressing
Mode Syntax

EX AF,AF'

Instruction Format
I

Example: EX AF,AF'
" ,

•

Before instruction execution: After instruction execution:
, , ,

"

AF: 2 3 F 3, AF: 1 0 B 0 ,

, I
AF': 1 0 B 0 AF': 2 3 F 3

,

•

,

, '

•

, '

••

, .

, .
•

....

, ,

, "

•

•

"

\ '

~

"

"

•
•

,

"-- , .. ,

5-45

The contents of the destination register are exchanged with the contents of the top of
stack. That is, the low-order byte contained in the register is exchanged with the con­
tents of the memory address specified by the Stack Pointer (SP), and the high-order byte
of the register is exchanged with the contents of the next highest memory address ..
(SP + 1). , .

Addressing
Mode Syntax InstRiction Fonnat

.[!!] 100 I011 1EX (SP),HL . ," . . .
v

.' [TI]4l11 I101 I[!!]1oo1011 I
,, • EX (SP),XY·,

•· -,

. .

' ..

... .

.'

· '

•

, .

•

,

•

•

•

,

•

,

•
•

dst = HL, IX, IY ,

,
I

,

•

. .
. "

•
..-;.

. '

, ,

, .;

ell: OforlX.1forlY

(SP) .. dst

EX (SP),dst

"

•

5-46

Field Encoding:

Flags: . No flags affected

Operation:

,

. exceptions: . None

;.

EX
Exchange Addressing Register with Top of Stack .

.. ".,
t~· ,.
:; .

EX
Exchange Hand L

EX H,L

Operation:
"r

The contents of the Hand L registers are exchanged.

-

--

,
,
".

.,
,
,.

Before instruction execution:

HL: I 1 2 3 4 I

After instruction execution:

HL: I 3 4 1 2 I

,

---" ---------------------------------------
5-47

------------------ ---

------------...--

The contents of the Hand L registers are exchanged.

HL: I 3 4 1 2 I
After instruction execution:

Instruction Format

HL: I 1 2 3 4 I

EX
Exchange Hand L

Before instruction execution:

EX H,L

EX H,L

No flags affected

Syntax

EX H,L

. None

Addressing
Mode

Example:

operation:

-
Flags:

.
Exceptions: :

-

-

-

. ,

-

-

-

-

.
•

---- ----- - -

5-47
\

EX
Exchange HL with Addressing Register

EX src,HL src == DE, IX, IY

Operation: src - HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected

Exceptions: None

-
Addressing

Mode Syntax Instruction Format

_ ••_-------

ep : a for IX. 1 for IY

... -. . . ' ' ".,'.....• " .. ; .. ~: ..". . '. ,'. ~: .'

3 8 F F
8 2 E 0

• • ••.•• ~ ,".:" •••. '!', .. ~ •. ~'.."... ,. .'.....;.. ";... ~•..~.;:t.. J". "'1". :', ':..~ .,' ••~. ~ .~ •••• " ' •• '," ••. ~ . .,..

DE:
HL:

After instruction execution:

.. , ".

11111011011 J

111141111101] [11]1011011: I

" . '.' '.

8 2 E 0
3 8 F F

, . . .' ­,',", ,~

DE:
HL:

Before instruction execution:

EX DE,HL

EX DE,HL

EX XY,HL

-
5-48

Example:

Field Encoding:

•

EX A,src

EX
Exchange with Accumulator

src = R, RX, IR, DA, X, SX, RA, SR, BX

Operation:

,
•

'. '

Flags:

Exceptions:

src"'A
• •

The contents of the accumulator are exchanged with the contents of the source.

No flags affected

None ..

... '. 1·.' .". ". ". - , .-

Addressing
Mode

R:
RX:
IR:

OA:

X:

SX:

RA:

SR:

Bx:

Syntax

EX A,R

EX A,RX

EX A,(HL)

EX A,(addr)

EX A,(XX + dd)

EX A,(XY + d)

EX A,<addr>

EX A,(SP + dd)

EX A,(XXA + XXB)

Instruction Format

111101 10111 00 r 1111 1

11 «1111 101 1111 1011101 11'----00I rx 1111 I
11 101 101] I00 110 1111

11 0111101!l 11 101 10111~001111111111

11 111 101 1111 101 101 II 00Ixx 1111 II
1111«1111 1011111 101 1011100 110 11111

111 111 101 1111 101 101 II 00 000 111 II
111 011 101]111 101 1011100 000 11111

111 011 101 1111 101 101 II 00 bx 111 I

addr(low) II addr(high) I
d(low) II d(high) I

d I
disp(low) IIr-d-iS-P-(h-i9-h)--"1

d (low) II d (high) I

Field Encodings: 41 : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

=

,

-

•i
f,
},
;.

,

•

t

Example: EX A,B

Before instruction execution:

A: 0 3
B: 8 2

After instruction execution:

A: 8 2
B: 0 3

5-4~

-

..

EXTS
Extend Sign (Byte) ..

EXTS [A]

Operation:

Flags:

Exceptions:

L~A

If A(7) = 0, then H ~ 00 else H ~ FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands to longer signed operands.

No flags affected

None

Addressing
Mode

Example:

Syntax

EXTS A

EXTS A

Before instruction execution:

Instruction Format

11111011101 1[01] 1001100 I

After instruction execution:

.. " .. "_/....

5-50

A:

HL:

. ~.'

•

8 2

5 5 5 5

. '" ' .

A:

HL:

. .

• 2

F F a 2

, '. ~.. •••• /... ~: "'::-; •• ;. ', • ., ; •• ..:, '0" •

•

l

EXTS
Extend Sign (Word)

--
EXTS HL

Operation: If H(7) = 0, then DE - 0000 else DE - FFFF

The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the result is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of
signed operands to larger signed operands.

Flags: No flags affected
..

Exceptions: None

Addressing
Mode.

Example:

Syntax .

EXTS HL

EXTS HL

,,- . ~ .'~' , Instruction Format

111 \1 0111 01 II 0111011100 I

Before instruction execution: After instruction execution: (

•

DE:

HL:

0 3 2 F

E F 3 0

DE:

HL:

F F F F

E F 3 0

5-51

-------------------- =_01I_a__a_asu_sa_:_,.."n_, Si.:sc.ggg.m_zjJ 121••_1 2 &&IiiJi&2 2iJ2L2i2 :2£

EXX
Exchange Byte/Word Registers with Alternate Bank

EXX

Operation: BC - BC'
DE - DE'
HL - HL'

The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, 0, E, H, and L
registers between the two banks.

Example: EXX

. --., .. -. _. -.--_._.

•

•

~:.. ' :'... :: ... ' •.;" ,

2 3 A 0
1 6 5 3
2 4 F F

3 8 0 F
E 2 0 0
1 F A 3

.'

BC:
DE:
HL:

BC':
DE':
HL':

After instruction execution:

, . "

Instruction Format

. . '" ~

2 3 A 0
1 6 5 3
2 4 F F

3 8 0 F
E 2 0 0
1 F A 3

,

. -..., ..~

BC:
DE:
HL:

BC':
DE':
HL':

Before instruction execution:

EXX

None

No flags affected

Syntax
Addressing

Mode

5-52

Flags:

Exceptions:

---------_.~

-.

Operation:

Flags:

Exceptions:

HALT
HALT

HALT

CPU Halts

The CPU operation is suspended until an interrupt or reset request is received. This in­
struction is used to synchronize the Z280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc­
tion following HALT is executed. While halted, memory refresh cycles still occur, and bus
requests are honored.

For the Z80 Bus configuration of the Z280 MPU, the HALT signal is asserted when the
Halt instruction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the halt instruction is executed.

If the Breakpoint-on-Halt control bit in the Master Status register is set to 1, the Halt
,. instruction is not executed, and Breakpoint-on-Halt trap is taken instead.' '

No flags affected

Breakpoint, Privileged Instruction

,

j
j

1
I,

Addressing
Mode

....- -------------

Syntax

HALT

Instruction Format

,.

5-53

--;---

1M
Interrupt Mode Select

Operation:

1M p

Interrupt Mode - p

p = 0,1,2,3
• -

(

Flags:

Exceptions:

The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip­
tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.

No flags affected

Privileged Instruction
-
I

Addressing
Mode Syntax

1M P

Instruction Format

p
mode

o
1
2
3

Example: 1M3

Before instruction execution:

t
encoding

000
010
011
001

After instruction execution:

. , . • , 4 •

5- 54

, Interrupt Status register:· , ,.,

I_F_O_I~_'O_I

Interrupt Status register: . ,,' . '.'

1__F_3_1 ° 0

:
•

I

.

'.
I

IN dst,(C) dst = R, RX, DA, X, RA, SR, BX

IN
Input

Operation: dst ~ (C)

I
The byte of data from the selected peripheral is loaded into the destination. During the I/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines As-A15 and the
contents of the I/O Page register are placed on address lines A16-A23. The byte of data from
the peripheral is then loaded into the destination.

• ~ •• c." , • " I ,. .. •• ', .. '.. • I.,. "

s: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
V: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Flags:

, ,

Exceptions: Privileged Instruction (if the Inhibit User 1/0 bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

R:
RX:

DA:

X:
RA:

SR:

BX:

IN R,(C)

IN RX,(C)

IN (addr),(C)

IN (XX + dd),(C)

IN <addr>,(C)

IN (SP + dd),(C)

IN (XXA + XXB),(C)

11 101 101 II 01 r 000

11 $11 1011111 101 101 @II rx 000

11 011 1011111 101 101 @!]111 000 I addr(low)

11 111 1011111 101 101 ~ xx 000 I d(low)

11 111 1011111 101 101 @Dooo 000 I disP(low)

11 01111011111110111011 @TIoool 000 II d(low)

11/ 0111101 111111011101 I@II bx I000 I

II addr(high) I
II d(high) I
II disp(high) I
II d(high) I

f• Field Encodings: $: 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

'.'

Example: IN L,(C)

Before instruction execution: After instruction execution:

F:
BC:
HL:

szxhxvnc

1 • 5 0
0 0 2 3

F:
BC:
HL:

OOxOxOOc
1 • 5 0
0 0 7 6

I/O Page register:

t~1_1_1

Byte 76H available at 1/0 port 111650H

5-55

___-L ._. . . _.

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accumulator are placed on address lines
Aa-A15 and the contents of the I/O Page register are placed on address lines A16-A23.
The byte of data from the selected port is written into the accumulator.

"Privileged Instruction (if the Inhibit User 110 bit in the Trap Control register is set to 1)

•

.. !.' .,'.' ••"., ,,< ,',;:. ••• :

•
:

'.. ' .

tA: I F 0

"

After instruction execution:

,"
. '

Instruction Format

'. ! • " " •••••••.•• " .' ~

1_1_ 1_1

A: 1,---4_2_1

Byte FDH available at I/O port 114266H '

Before instruction execution:

IN A,(66H)

No flags affected

1/0 Page register:

IN A,(n)

Syntax

IN A,(n)

A -(n)

Addressing
Mode

.'.. .

5-56

Example:

Exceptions:

Flags:

Operation:

IN
Input Accumulator

'. ..,

" ,

Operation:

INC dst

dst +- dst + 1

.. INC
Increment (Byte)

dst = R, RX, IR, OA, X, SX, RA, SR, BX

Flags:
•

The destination operand is incremented by one and the sum is stored in the destination.
Twos-complement addition is performed. .

s: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 7FH; cleared

otherwise
N: Cleared
C: Unaffected

Exceptions:

Addressing
Mode

R:
RX:

IR:

DA:

X:
SX:

RA:

SR:

BX:

. " , " .
None

Syntax

INC A

INC AX

INC (HL)

INC (addr)

INC (XX + dd)

INC (XY + d)

INC <addr>

INC (SP + dd)

INC (XXA + XXB)

. ..'

Instruction Format

I001 r 100 I
I111CS-11 1011~ rx 1100 I
1001110 100 I
[!1] 011 101 I~ 111 1100 II addr(low) I Iaddr(hl9rii]

[!!] 111 101 I~ xx 1100 II d(low) I 1 d(hlgh) I
[ITlCS-11 1101 I~ 1101100 II d I
1111111 1011 ~ooo1100 II dlsP(low) I IdlsP(hlgh) I
11110111011~oooI10011 d(low) II d(hlgh) I
[ill 011 101 I[QQ] bx 1100 I

Field Encodings: cs- :

rx:
xx :

bx:

o for IX, 1 for IY

100 for high byte, 101 for low byte

001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

001 for (HL + IX). 010 for (HL + IY). 011 for (IX + IY)

.··t.",·~ .. · ...

···, Example: INC (HL)

Before instruction execution: After instruction execution:

F:
HL:

szxhxvnc

2 4 5 4
F:

HL:
10xOxOOc

2 4 5 4

Data memory:

2454: 11..-_8_8_~

•
Data memory:

24S4: 11..-_8_9_t

------------_._-------------------_._- -_. ------_._-

~-57

---------------- ----

INC[W]
Increment (Word)

,
INC[W] dst
or
INCW dst

dst = R

dst = IR, DA, X, RA

-

Operation:

Flags:

dst - dst + 1

The destination operand is incremented by one. Twos-complement addition is performed.

No flags affected

Exceptions: None \

Addressing , . . . • '-.1-
, ... t •• Mode Syntax Instruction Format

~ rr 10111R: INCW RR

INCW XY 11114>111101 II 00 1100I011]

IR: INCW (HL) lliI 011 101 II 00 000 1011 1
DA: INCW (addr) @1011 10111 00 0101011]1 addr(low) II addr(hlgh) I

11111111011100 xy1011]1 II IX: INCW (XY + dd) d(low) d(hlgh)

dlsP(low) II dlsp(hlgh) IRA: INCW <addr> lliI 0111101 1100 1101011 II
•

Field Encodings: 4> : afor IX, 1 for IY

rr:) 000 for Be. 010 for DE, 100 for HL, 110 for SP

xy : 000 for (IX + dd), 010 for (IY + dd)

Example:

5-58

INCW BC

Before instruction execution:

. BC: 1e--_3_F_I 1 2

.

t

After instruction execution:

'BC: 1__3_F----J[1 3

.. ~, ., ,
•

I

.. --

IND
INDW

-- IND
Input and Decrement (Byte, Word)

I

1
i
-­
,
!

Operation: (HL) .- (C)
B'-B-1
HL .- AUTODECREMENT HL (by one if byte, by two if word)

"

. ~." .. .'. ~ . .

This instruction is used for block input of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A8-A15, and the contents of the
I/O Page register are placed on address lines A16-A23. The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.

. . - '.. , ;

Flags: s: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INO

INOW

111110111011 [!Q]1011 010 I
11111011101111010011010 I

Example:
c • -•••

INDW
. . . .

Before instruction execution:
" ... ,

After instruction execution:

F:
BC:

HL:

szxhxvnc

1 5 6 4

5 0 0 2

F:
BC:

HL:

sOxhxv1c

1 4 6 4

5 e 0 0

T., 1/0 Page register: Oata memory:

'.
-
--",
~

~
1_3_ 3_1 5002:

5003:

8 7
• 8

Word 8007H available at 1/0 port 331564H

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used,

5-5~
•

. _-- -_._----- ---------,------------------------

INDR
Input, Decrement and Repeat (Byte, Word)

•
INDR
INDRW

-
E

Operation:

.. " .

Flags:

Repeat until B = 0: (HL) ~ (C)
B~B-1

HL ~ AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aa-A15' and the contents of the
110 Page register are placed on address lines A16-A23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then decremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in­
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

s: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

. . .

Exceptions:
. .l· -'. .' ~

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
-

Addressing
Mode

5-60

Syntax

INOR

INORW

Instruction Format

[1I]1011101![!Q]1111010 I
[!TI1011101 I~0111 010 I

..

•.; , '

•

Example: INDR

Before instruction execution:

\

After instruction execution:

,,

•

F:
BC:
HL:

szxhxvnc

0 3 4 6

5 2 1 8

F:
BC:

HL:

s1xhxv1c
0 0 4 6
5 2 1 5

, 1/0 Page register: Data memory:-,-,,

, ;

f 1 7 f 5216: I F F I
5217: I B I

r Byte 9AH available at
110 port 170346H, 5218: I 9 A I

then byte 3BH available at
- 1/0 port 170246H,

then byte FFH available at
110 port 170146H. .

.~. '.

,

~--------

, ,

•

•• , •.1'-' ,

S-61

INI
Input and Increment (Byte, Word)

- -INI
INIW

Operation: (HL) - (C)
8-8-1
HL - AUTOINCREMENT HL (by one if byte, by two if word)

01

This instruction is used for block input of strings of data. During the 110 transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the 8 register are placed on address lines Aa-A15' and the contents of the
1/0 Page register are placed on address lines A16-A23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one.

Flags: s: Unaffected
Z: Set if the result of decrementing 8 is zero; cleared otherwise
H: Unaffected .
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User 1/0 bit in the Trap Control register is set to 1)
I

Addressing
Mode Syntax Instruction Format

INI

INIW

lliJ 1011101 11101100I010 I
11111011101111010001010 I

Example: INI
.

Before instruction execution: After instruction execution:

sOxhxv1c

6' 4

o 3

1 4

5 0

F:
.-------t------......

BC:
I-------t--------i

HL:

szxhxvnc

1 5 • 4

5 0
,

0 2

F:

BC:

HL:

c'

I/O Page register: Data memory:

f 3 3 I 5002: I 7 A J

Byte 7AH available at

110 port 331564H

5-62

. -_.~. .~." -- .. . - .. -

-

•,

-

"- .

,

-

Operation:

Flags:

Exceptions:

INIR
Input, Increment and Repeat

INIR
INIRW

Repeat until 8 = 0: (HL) ~ (C)
8~8-1

HL ~ AUTOINCREMENT HL (by one if byte, by two if word)
.

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the 8 register are placed on address lines A8-A15, and the contents of the
I/O Page register are placed on address lines A16-A23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The 8
register, used as a counter, is then decremented by one. If the result of decrementing
the 8 register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the 8 register contains 0 at the start of the execution of this in­
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

s: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
, ..

\

•
1
7

Addressing
Mode Syntax

INIR

INIRW

cw. _

Instruction Format

liiJ 1011101 IG!j110 1010 I
IT!] 1011101 I~I 010 I010 I

-- _.--_._--,--- ->-- ,----,---

5-63

•

Example: INIRW

Before instruction execution: After instruction execution:

F:
BC:

HL:

szxhxvnc

0 2 5 5 •

4 0 0 2

F:
BC:

HL:

s1xhxv1c

0 0 5 5

4 0 0 6

1/0 Page register: Data memory:

1_3_ 1_1
Word 66D7H available at

I/O port 31 0255H
then word A8FFH available

at I/O port 31 0155H.

4002:
4003:
4004:
4005:

0 7
6 6
F F
A 8

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used..

•

5-64

. ~. "'~' .,.;. '::., "';'" i·; -......

..'

. ."

.' .

I •. , to", " ",•• " .' -I,.

Operation:

Flags:

Exceptions:

•

•

IN[W]
Input Hl

IN[W] HL,(C)

HL -- (C)

The word of data from the selected peripheral is loaded into the HL register. During the
1/0 transaction, the 8-bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines As-A15
and the contents of the 1/0 Page register are placed on address lines A16-A23. Then one
word of data from the selected port is written into the HL register. For 8-bit data buses,
the contents of L are undefined for external peripherals.

No flags affected

Privileged Instruction (if the Inhibit User 1/0 bit in the Trap Control register is set to 1)

if'''' sq

~,

Addressing
Mode

Example:

Syntax

IN HL,(C)

INW HL,(C)

Before instruction execution:

Instruction Format

After instruction execution:

BC:

HL:

2 6 5 0

3 3 3 3

BC:

HL:

2 6 5 0

8 7 4 0

..

110 Page register:

I 1 0 I
Word 4087Havailable at 110 port 102650H

Note: Example assumes that a 16-blt data bus configuration of the Z280 MPU IS used.

/

..

5-65

,

JAF
Jump On Auxiliary Accumulator/Flag

JAF dst dst = RA

#

Operation:

Flags:

If auxiliary AF then PC +- dst

A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. If
the jump is taken, the Program Counter is loaded with the destination address; otherwise
the instruction following the JAF instruction is executed. This instruction employs an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range -125 to +130 bytes from the location of this instruction.

No flags affected

Exceptions: None
'........> , .. '

. "," -,'

Addressing
Mode Syntax Instruction Format

11110111101 II 00 1101 1000 II IRA: JAF addr disp

Example: JAF 5000H

Before instruction execution:

Auxiliary Accumulator/Flag in use

After instruction execution:

•

pc: I 4 FIE 6 I pc: 1__5_0_1__0_0_I

5-66

'.. " .. ':', " :. ::,:- ~ . . .:- ~";' ';.- .-

. .

'. : . :."

,

r

Operation:

JAR dst

If auxiliary file then PC +- dst

JAR
Jump On Auxiliary Register File In Use

dst = RA

II.,
I.

Flags:

Exceptions:
•

A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address; otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos­
complement displacement from the Program Counter to permit jumps within the range
-125 to +130 bytes from the location of this instruction.

No flags affected

None

Addressing
Mode .'. '. Syntax . Instruction Format

lo~'.' ... , .••• . I .'~' ~.~ •. .",. . ~'II: ,. '.

RA:

Example:

JAR addr

JAR 42DOH

Before instruction execution:

Auxiliary file in use

After instruction execution:

pc: 1L--_4 _2_1 F 6 . l pc: 1__4 _2_1 Dol

5-67

,
•

JP
Jump

'.

JP [cc,]dst dst = IR, DA, RA - -
Operation: If cc is satisfied then PC - dst (

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an uncondi­
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per­
mits jumps within the range -32764 to +32771 bytes from the location of this instruc­
tion.

. .
Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.

When using DA mode with the JP instruction, the operand is not enclosed in paren­
theses.

•

Flags: No flags affected

Exceptions: None
..

Addressing
Mode Syntax Instruction Format

•

I"unconditional jump" I
I"unconditional Jump"]

IR:

DA:

.0 t ...~~ •• J>, '

RA:
.~ ..

JP CC,(HL)

JP (HL)

JP (XY)

JP CC,addr

JP addr

JP CC,<addr>

JP <addr>

11110111 101

11111011001

11 CS>11 101 [ID1011 OO1 I
11 cc 010 I addr(low) IIr--a-d-dr-(h-19-h)-'

11 000 011 I addr(low) II addr(hlgh) I I"unconditional jump"]

11 111 101 [IT] cc I010 II disP(low) IIr--d-is-P(-h-ig-h)---'1
..-------:-:--7."1

11 111 _10_1 IT!Jooo 1011 II disP(low) II dlsp(high) I "unconditional jump"

.
"

-
Field Encodings: cs> : 0 for IX, 1 for IY

cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for P or NS, 111 for M or S

•

Example: JP C,5000H

Before instruction execution: After instruction execution:

szxhxvn1

o 05 0
F:

...------4--....:=------1
PC: l- -L... ___

.
szxhxvn1

2 6 8 4
F:

PC:

,
•

5-68

..

,
, .:

;,

•

JR
Jump Relative

. -
t.

... JR [cc,]dst dst = RA

of a
Ij-
ne
n
llue.
mg
r·
JC-

np

-
1

operation:

Flags:

•

If the cc is satisfied then PC - dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an uncondi­
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit
signed, twos-complement displacement from the PC to permit jumps within the range
-126 to +129 bytes from the location of this instruction.

Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

No flags affected
.... ""~ .. ,~ .

Exceptions: None

-
Addressing

Mode Syntax Instruction Format

RA: JR CC,addr

JR addr

looiccloooll
I00I0111 000 II

disp I
disp I I"unconditional jump" I

Field Encoding: cc: 100 for NZ, 101 for Z. 110 for NC. 111 for C

Example:. JR NZ,6000H

Before instruction execution: After instruction execution:

F:
PC:

sOxhxvnc
5 F D 4

F:
PC:

sOxhxvnc
6 0 0 0

•

-

, , \ -

---.. -=----------------------------------
5-6')

LD
Load Accumulator -

Operation:

LD dst,src

dst - src

dst = R, RX, IR, DA, X, SX, RA, SR, BX
src = A

or
dst = A
src = R, RX, 1M, IR, DA, X, SX, RA, SA, BX

•
J

-

The contents of the source are loaded into the destination. The contents of the source
are not affected. Special instructions are provided so that the Be and DE registers can
also be used in the IR addressing mode.

Flags:

Exceptions:

No flags affected

None

, " -. •

1

Load into Accumulator
Addressing .

Mode Syntax Instruction Fonnat

. .- •.• ,.j,.',. "~ f 1 ... ~ ... '

R:
RX:

1M:

IR:

DA:

X:
t ,-,. ...',

SX:

RA:

SR:

BX:

LD A,R

LD A,RX

LD A,n

LD A,(HL)

LD A,(RR)

LD A,(addr)

LD A,oo< + dd)
, , ..

LD A,(XY + d)

LD A,<addr>

LD A,(SP + dd)

LD A,(XXA + XXB)

•
.'

I0111111 r I
1 11 14>111101 11~0111111 rx I

[00[1111 11011 " t
I01 Q111110 I
IOor rra 010 I
I00 1111 010 II-ad-=-d-r(l-ow-)- I addr(high) I

11 1111 101 II 01 111 xxa I d(low) II'---d-(h-igh-)-,

11 4>11 101 1101 111 110 I .. t
11 111 101 II 01 111 000 I disp(low) II-d-is-p(-hig-h-)I
11 011 101 11011111 000 II d(low) II d(high) I
11 011 101 II 011111 I bx I

.', ..

:1.

-
5- 70

__________-s..,..OT......ns.._v_"1._'. .__~

Load from Accumulator

5-71

o B
170 C

1_0 _ 8__1

A:
HL:

Data memory:

170C:

After instruction execution:

1 7 0 C
o F

I_O_B_--Jl

A:
HL:

Data memory:

Before instruction execution:

170C:

LD A,(HL)

Syntax Instruction Fonnat

LD R,A I011 r 11111

LD RX,A 111 14»11 101 II 011 rx 1111 I

LD (HL),A 1011110 1111

LD (RR),A I001 rrb 010 I
LD (addr),A I00 1110 010 II addr(low) II addr(hlgh) I
LD (XX + dd),A 1111 101 101 I00Ixxb I011 II d(low) I d(hlgh) I
LD (XY + d),A 111 4»11 101 I 01 110 1111]I d

• LD <addr>,A 111 101 101 I00 100 I011 II dlsp(low) I disp(high) I --.
~"••

LD (SP + dd),A 111 101 101 100 000 1011 II d(low) I d(hlgh) I
LD (XXA + XXB),A 111 101 101 I00 bx I011 I

OA:

X:

SX:

RA:

SR:

BX:

R:
AX:

IR:

Addressing
Mode

Examples:

Field Encodings: 4» : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte
.' '~" '." (. • ' h,. I. I. • • " •• . ~"". ~. ";'

rra : 001 for Be, 011 for DE

rrb: 000 for BC, 010 for DE

xxa: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

xxb : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IV)

•

.' ,
•

-----~~--

.

The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

LD
Load from I or R Register

, .. , .

...

• •

4 2 OOxOx10c

4 2

4 8 7 F

AF:

R:
MSR:

src = I, R

After instruction execution:

Instruction Format

,.. ,

11111011101 I@!] 010 1111 I
11111011101 I@I 0111 111 I

1 szxhxvnc
-

0

4 2

4 0 7 F

. .

AF:

R:

MSR:

Before instruction execution:

LD A,R

LD A,I

LD A,R

Privileged Instruction

Syntax

s: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared .
V: Set when loading the accumulator if the interrupt A Enable bit is set; cleared

otherwise
N: Cleared
C: Unaffected

A+- src

LD A,src

Addressing
Mode

~ '. I •

5-72

Example:

Exceptions:

Flags:

Operation:

".'l .

\

----------.

...

Operation:

LD dst,n

dst +- n

LD
Load Immediate (Byte)

dst = R, RX, IR, DA, X, SX, RA, SR, BX

"
,
,

,

Flags:

Exceptions:

The byte of immediate data is loaded into the destination.

No flags affected

None

. . -. .

•

..' ..

Addressing
Mode

R:
RX:

. IR:

DA:

X:

SX:

RA:

SR:

BX:

Syntax

LD R,n

LD RX,n
. .

LD (HL),n

LD (addr),n
,..,

LD (XX + dd),n

LD (XY + d),n

LD <addr>,n

LD (SP + dd),n

LD (x:t.A + XXB),n

Instruction Format

~ r 1110 II n t
.------

[ll]4>11 \101 I[QQ] rx 1110 II n I
"·':'··~110111011 n I ,' .

~011 101 I~111 110 II addr(low) I IaddrM] I
G!J 111 101 I~ xx 110 II d(low) I I d(hlgh) I I
[ll)4>11 101 I[gQ]110 110 II d I [n I
[ill 111 101 I~000 110 II dlSl!!low)j IdlS~ I
IT!] 0111101 I[~]ooo 1110 II d(low) I I d(hlgh) I I
@I01111011~bx111011 n I

~"-~""~""'.'~

n 1
n I

n I
n I

Field Encodings: 4> : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + Iy), 011 for (IX + IY)

. .

Example: LD A,55H

Before instruction execution:

A:I 671
After instruction execution:

A:I 551

•

5-73

LD
Load Register (Byte)

LD dst,src dst = R
src = R, RX, 1M, IR, SX

or
dst = R, RX, IR, SX
src = R

Operation: dst ~ src

•,

The contents of the source are loaded into the destination.
•

Flags: No flags affected

Exceptions: None

Load into Register
Addressing

Mode Syntax Instruction Fonnat
•

R:
RX:

1M:

IR:

SX:

LD R1,R2

LD R*,RX

LD RXA,RXB

LD RX,R*

LD R,n

LD RX,n

LD R,(HL)

LD R,(XY + d)

011 r1 I r2 I
11 eIl11 101 1r-0-1 1r* I rx

11 eIl11 101 101 Irxa Irxb

11 eIl11 101 I01 Irx I r*

00 r 110 I n;::::::::;::::::;::=
[t1] eIl1111 01 I00 Irx 1110 IL.----:It.:....-_I
101[r1110

I111e1l111101 \I 01 I r 1110 11__d _I
. .

,," , ," ""~ ~. , __ 'oJ.•• ' ,.,.,.., ••.• '.,. ~.' ~~

Load from Register
IR:

SX:

LD (HL),R

LD (XY + d),R

I011110I r I
111 leIl11 I101 11r--~1"'-111-0I r IIL...---=..d_I

Field Encodings: ell: 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

rxa : 100 for high byte, 101 for low byte

rxb: 100 for high byte, 101 for low byte
rxa and rxb refer to the same index register

r* : Only registers A, B, C, D, and E can be accessed

r1,r2: See Table 5-12

.,' -Example: LD A,B

Before instruction execution: After instruction execution:
•

8 2

8 2

A:.
.' ~-----1

B:
o a
8 2

A:.
1--------1

B:

5-74

b

,
,

.'
.

<;..'t "

• LD
Load to I or R Register

,

\,
•,
.

LD dst,A dst = I, R

Operation: dst +- A

The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.

Flags: No flags affected

Exceptions: Privileged Instruction

-
Addressing

Mode Syntax Instruction Format

. .., . ., LD I,A

LD R,A

. "'.'.'. . ., -'. i 11 1101 [101 1[01]0001111 I
111110111011~001\1111

Example: LD I,A

Before instruction execution: After instruction execution:

o D

o 0

A:
J-----~

I:

o 0

2 2

A:.
...-----~

I:

"

.....

------- ..--

LOA
Load Address

Operation:

LOA dst,src

dst - address(src)

dst = HL, IX, IY
src = OA,X,RA,SR,BX

-

Flags:

Exceptions:

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address translation mechanism in the MMU
is not used to determine if the address is valid.

No flags affected

None

Addressing
Mode

DA:

X:

RA:

SR:

BX:

Syntax

LOA HL,(addr)

LOA XY.(addr)

LOA HL,(XX + dd)

LOA XY.(XX + dd)

LOA HL,<addr>

LOA XY,<addr>

LOA HL,(SP + dd)

LOA XY,(SP + dd)

LOA HL,(XXA + XXB)

LOA XY,(XXA + XXB)

Instruction Format

~ 100 001 II addr(low) II addr(hlgh) I
@I4>11 101 I00 1100I001 II addr(low) II-a-dd-r(-hlg-h-)I
lli!101 101 100Ixx 1010 II d(low) II d(hlgh) I
@I4>11 101 1111101 101 ~ xx I010 I d(low) II_d_(h_lg_h)_1

[!~] 101 101 1001100 010 I dlsp(low) I dlsp(hlgh))

O:~]4>11 101 [1]101 101 ~1001010 I dlsp(low) II-d-is-p(-h-lg-h)-'I

lli!101 101 1100I000 010 I d(low) I d(hlgh) I
[!!]4>11 101 I[t1] 101 101 ~OOO 1010 I d(low) II-d(-hlg-h-)--'1
[!!] 101 101 1100Ibx 010

[!!] 4>111101 111111011101 I~ bx 1010 I

_ ~.". ~ ~ '.. Field Encodings: .. 4>:

xx :

bx:

ofor IX, 1 for IY

101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

001 for (HL + IX). 010 for (HL + IY), 011 for (IX + IY)

.,

-

Example: LOA HL,(IX + 4)

Before instruction execution: After instruction execution:..
. .

•

HL: 2 3 0 8 HL: E 3 2 8
IX: E 3 2 4 IX: E 3 2 4

Address calculation:

E324
+ 4

E328

5-76

Operation:

LDCTL dst,src

dst +- src

dst = (C), uSP
src = HL, IX, IY

or
dst = HL, IX, IY
src = (C), uSP

LDCTL
Load Control

, "'on

"

""l .

,

This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:

"
. . '., '. ... -. _.. ~.;~.

-

Register";'''' ", -", ',," " .~, " -"'. '. '. ', ,
Address

(Hexadecimal)
, .'.

,

Master Status register (MSR)
Interrupt Status register
Interruptffrap Vector Table Pointer
1/0 Page register *
Bus Timing and Initialization register *
Bus Timing and Control register *
Stack Limit register
Trap Control register *
Cache Control register *
Local Address register *
* 8-bit control register

00
16
06
08
FF
02
04
10
12
14

Flags:

Exceptions:

I

When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control register contents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.

Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.

No flags affected

Privileged Instruction

,.,

5-77

..

Addressing
Mode Syntax Instruction Fonnat

LDCTL HL,(C)

LDCTL XY,(C)

LDCTL (C),HL

LDCTL (C),XY

LDCTL HL,USP

LDCTL XY,USP

LDCTL USp,HL

LDCTL USP,XY

11111011101 II 0111001110 I
1111<1>11110111-1111011101 I[gj]100 1110 I
111 1101 101 11011101 110

1111<1>11 101 11111101 101 [Q!] 101 1110 I
1111101 10111101000 111

1111 <1>11 101 1111 b01 101 [!Q]000 1111 I
1111101 1101 1110 1001 1111 I
1111<1>111101 111111011101 I~0011111 I

• Field Encoding: etI : 0 for IX, 1 for IY

Example: LDCTL (C),HL

Before instruction execution: After instruction execution: ,~.

o 8
3 A5 5

c:
.-------+-------

HL:
• •

5 5 3 A
c:

HL:

. " .~ ". .".

I/O Page register: I/O Page register:

1 00 I I 3 A t

,
','

, .. __ •• , ..•:.: J.
'. .,'

• .t. .,~, .. ~;., ~.' '......... '."." -... '

. .' ..".j~' .•.. ,. "'.' ~

,<

• " . .,._.'~ ,~. ,~ •••:_. . • . f. " •
. ' . :~: "'. •. .-,1,.' ,',.1.:.. ' ~'. .. " "i

.
, ,

"

. .."

5-78

----_..--- ,--- --_.. "','--

LDD
Load and Decrement

LDD

. '.
i

Operation:

•

(DE) (HL)
DE DE - 1
HL HL - 1
BC BC - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca­
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.

Flags:

;" '

s: Unaffected '
Z: Unaffected
H: Cleared . . . ',' "?' ..;.".. . ._.... ~

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

LDD 11111011101 111011011000 I

Example: LDD

Before instruction execution: After instruction execution:

F:
HL:

DE:

Be:

szxhxvnc

1 1 1 1

2 2 2 2

0 0 0 7

F:
HL:

DE:

Be:

szxOxOOc

1 1 1 0

2 2 2 1

0 0 0 6

Data memory: Data memory:

8 8
., 8

1111:
1--------1

2222:

8 8

6 6

1111:
1--------1

2222:

5-7')

-~-~-----...

LDDR
Load, Decrement and Repeat

Operation:

LDDR

Repeat until BC = 0: (DE) ~ (HL)
DE ~ DE - 1
HL ~ HL - 1
BC~BC - 1

-.-

~ ,. ~ . , . ..

Flags:

Exceptions:

This instruction is used for block transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

s: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

None

Addressing
Mode

Example:

0-

Syntax

LDDR

LDDR

Instruction Format

Before instruction execution: After instruction execution:

o 000.-

F:
HL:

DE:

BC:

szxhxvnc

1 1 1 7

2 2 2 5

0 0 0 3

F: szxOxOOC
0-

HL: 1 1 -1- 4

DE: 2 2 2 2

BC: 0 0 0 0

Data memory: Data memory:

5-80

1115:

1116:

1117:

2223:

2224:

2225:

8 8

3 •
A 5

9 6

1 1

2 8

1115:

1116:

1117:

2223:

2224:

2225:

8 8

S 8

A 5

8 8

3 6

A 5

LDI
Load and Increment

.'

LOI 1
I

I
,..

Operation: (DE) +- (HL) I

DE +- DE + 1
HL +- HL + 1

°,
BC +- BC - 1 ,

•

This instruction is used for block transfers of strings of data. The byte of data at the loca­
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the
pointers to the next elements in the strings. The BC register, used as a counter, is then
decremented by one.

Flags:

............. ~ll~· ~- ,. '-~

s: Unaffected
Z: Unaffected
H: Cleared ,.. . ..~ ...- , .. o. 0" I ~,.,.. -,., ..,,,.,. '.":,"C

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

LDI

Example: LDI
•

Before instruction execution: After instruction execution:

F:
., • .' f " ,•. HL:

DE:

BC:

szxhxvnc

1 1 . . 1 1 ..

2 2 2 2

0 0 0 7

. F:

HL:

DE:

BC:

szxOxOOc

1 1 . 1 2- .

2 2 2 3

• • 0 6

Data memory: Data memory:

8 8
• •1111:

2222:

8 8

6 6

1111:
r---------I

2222:

..

5-81

LDIR
Load, Increment and Repeat

LDIR

" .. .

Operation:

•• , •. •. I .,~ .:.~. '., ' •..

Flags:

. ~

Repeat until BC = 0: (DE) - (HL)
DE - DE + 1
HL - HL + 1
BC - BC - 1

This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
65,536 bytes are transferred. The effect of incrementing the pointers during the transfer
is important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy­
ing the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

5: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

.,

.'.
'.

Exceptions: None

1"; _t.'· • '. ,.

Addressing
Mode,

5-82

Syntax'

LOIR

'. . "

t' ,. " .~

,. ,'.. ,. Instruction Format
. '. . , .

:
•

, ..

Example: LDIR

Before instruction execution: After instruction execution:

:!'f'j

F:
HL:

DE:
BC:

szxhxvnc
1 1 2 5

2 2 1 0

0 0 0 3

F:

HL:
DE:

BC:

• szxOxOOc.

1 1 2 8

2 2 1 3

0 0 0 0

Data memory: Data memory:

"f' ~

1125:

1126:

1127:

5 A

IS 0

7 8

1125:

1126:.
,~.:.,

1127:

5 A

B 0

7 6

2210:

2211:

2212:
" ,." . '" ,,' , .'" "'!" :' " . ',·~.t, :"

F F

9 A

2 7
" ' .. '...•~ , I '~•• ," "

2210:

2211:

2212:

5 A

B 0

7 6

•

'. ot., " . , ".,: ~' .' , .,
• ••• 0 •• ~~.~"'" ._" •• , '4,.:, ... ' ." , ,', ~. _ . ". . - -

.
;
,"
!.

5-83

-~-~-------------------------------------

LOUD
Load in User Data Space (Byte)

LOUD dst,src dst = A
src = IR or SX in user data space

. "- or
dst = IR or SX in user data space
src = A

Operation: dst src

...~'. ,;-·f····"..,. ..•·····•· :.•;.-" •.. .
~." .

.
The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to translate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for data in user-mode operation is used to translate
the destination address. See Chapter 7 for an explanation of this mechanism. The con­
tents of the source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un­
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared to 0; if the transfer is unsuccessful, the Carry flag
is set to 1. The other flags are unaffected if the transfer is successful. If the transfer is
unsuccessful, the value of the Write Protect (WP) bit in the Page Descriptor register
used by the MMU is loaded into the Z flag and the value of that Page Descriptor's Valid
bit is loaded into the V flag.

'. ., ,'." .' '. '". . ..I.. ,....... .. .

s: Unaffected
Z: For unsuccessful accesses,loaded with the value of the WP bit used by the MMU;

unaffected otherwise
H: Unaffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

unaffected otherwise
N: Unaffected

..... C: Set if the transfer is unsuccessful; 'cleared otherwise '. . ,'.,' ,. -, ' .

Flags:

. , ." ..' . . .

Exceptions: Privileged Instruction

I
•
\

Load from User Data Space
'~\.. .
\,. .

•

Addressing
Mode Syntax Instruction Fonnat

IR: .

SX:

LOUD A,(HL)

LOUD A,(Xi + d)

WJ 1011101111010001110 I
@jcll111101111111011101 I~OOO 1110 11__d__1

Load into User Data Space

IR:
SX:

LOUD (HL),A

LOUD (Xi + d),A
WJ 10111011 [!QJ0011110 I
[Ii] cIl1111 01 1@]1011 101 I~ 001 1110 I[__d_---'I

5-84

"

Field Encoding:

Example:

ell : 0 for IX, 1 for IY

LOUD A,(HL)

Before instruction execution: After instruction execution:
•

AF:
HL:

0 F 5zxhxvnc
8 0 0 7

AF:
HL:

5 5 5zxhxvnO
8 0 0 7

User data memory:

8007: 1_5_ 5----,I

, " '·""·~'·'·'··l;':··-;···-········'······~·- '-' .."

'.' .

~~. . .

, .

User data memory:

8007: 1_1_5---,'

..

",' • , •••• h ••,.. -'.<1_,' .•...•..... ~., .(.:,e. ,'" ••. ~ '."

)

..

~

. ~. "'.: ~.z-t. ,. . .~. ., ,'. -,,'." .,' . .. ," . ,..' ~, • , .' ~..'...'......., , lI' 10.".. . • • ~ . '., • '" ••~ •• , M

5-85

--~-------------------

lDUP
load in User Program Space (Byte)

Operation:

LDUP dst,src

dst - src

dst = A
src = IR or SX in user program space

.- or
dst = IR or SX in user program space
src = A

• ,. -' ,. ."'t"'-' '.: "

The destination is loaded with the contents of the source. In loading from the user pro­
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress­
ing mode) in user-mode operation is used to translate the source address. When loading

... '.......,.,/" ' ," - into the user program space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for program accesses (instructions or data using
PC Relative addressing mode) in user-mode operation is used to translate the destination
address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un­
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared; if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc­
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by
the MMU is loaded into the Z flag and the value of that Page Descriptor's Valid bit is
loaded into the V flag.

Flags:

~:~ of' •

Exceptions:

s: Unaffected
Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;

unaffected otherwise
H: Unaffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

"

, unaffected otherwise
N: Unaffected
C: Set if the transfer is unsuccessful; cleared otherwise

Privileged Instruction

.. ,

:
•

Load from User Program Space

Addressing
Mode

IR:

SX:

5-86

Syntax

LOUP A,(HL)

LOUP A,(XY + d)

I

Instruction Fonnat

[E] 10111011 ~0101110I
IT!] 4>11 1101 I[!!] 101 1101 I[!Q] 01 0 1110 II'---_d_---'I

"

c

.'

Load into User Program Space
Addressing

. Mode Syntax Instruction Fonnat

IR:

SX:

LDUP (HL),A

LDUP (XY + d),A

1111101 1101 1110 10111110 I
1111<1>111101 111111011101 I~0111110 11__----'1 .

Field Encoding: <I> : a for IX, 1 for IY

Example: LDUP A,(HL) .

Before instruction execution: After instruction execution:

•szxhxvnO

9 0
F F
5 3

AF:
~----+------~

HL:
0 F . , szxhxvnc

5 3 • •
AF:
HL:

User program memory: User program memory:

5390: I_F_F_t
. ,. , . ',' . " .. ". ' '.'''' "". ' . ,. .' . '

.. ' -,". '.' . ,"

5390: IFF
. ",,,., ...~ ... '-,

•

.. ...• . ' " , " ~, ' ". ~

... ·..:1' '.;'" " ..• ~ ..".
..

• ." v • • •• .' i';. " ...,'

•

.
•

-------------------------_..... -

5-87

,-

LOW
Load Immediate Word

LO[W] dst,nn
or
LOW dst,nn

dst = R
dst = IR, OA, RA

Operation: dst +- nn

The two bytes of immediate data are loaded into the destination. For register destina­
tions, the low byte of the immediate operand is loaded into the low byte of the register
and the high byte of the operand is loaded into the high byte of the register. For memory
destinations, the low byte of the operand is loaded into the addressed location and the
high byte of the operand is loaded into the next higher memory byte (addressed location
incremented by one).

. ,,'. , '" ",- Flags:·".,.v " .. ,... No flags affected .;

Exceptions: None

.,. ••.• - .~, 'f-· ,.;' '.' " ." " ' .~' : ¢:::: •." f~'·;. ,. •• ~ , ,. '.-- ..•~.- ",.,••

Addressing
Mode Syntax Instruction Format

R: LOW RR,nn I00I rr I001 II n(low) n(high)

LOW XY,nn I111cJ)11 1101 II 00 1001001 n(low) I n(high) I
IR: LOW (HL),nn 1111 011 101 II 00 000I001 n(low) I n(hlgh) I

DA: LOW (addr),nn 111 [011 10111 00 01Ql001 addr(low) I addr(hlgh) II n(low) II n(hlgh) I
RA: LOW <addr>,nn 1111011 101 II 00 110I001 dlsP(low) I dlsp(high) II "(low) II "(high) I

Field Encodings: rr: 000 for BC. 010 for DE. 100 for HL, 110 for SP

cJ) : 0 for IX, 1 for IY

. ,
Example: LOW (HL),3825H

'. - ~ . ~. '." . -, .' ." '. '.' ,. '. '. . '. ,.-

Before instruction execution:

HL: (2 3 9 1 I
Data memory:

After instruction execution:

HL: I 2 3 9 1 I
Data memory:

5-88

2391:
2392:

1 E
A 3

2391:
2392:

2 5
3 8

•

••. ,

Operation:

LD[W] dst,src

dst ~ src

LD[W]
Load Addressing Register

dst = HL, IX, IY
src = 1M, DA, X, RA, SR, BX

or
dst = DA,X,RA,SR,BX
src = HL, IX, IY

, ,

••···.

}

Flags:

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For register-to-memory transfers, the effective address of the memory
operand corresponds to the low byte of the register and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

No flags affected

. " . ." , Exceptions: None
" .'

.
~ .' i . ,. , . . " ,

Load into Addressing Register

Addressing
Mode Syntax Instruction Fonnat

,\ . - .

1M:

DA:

X:

RA:

SR:

BX:

LOW HL,nn

LOW XY,nn

LOW HL,(addr)

LOW XY,(addr)

LOW HL,(XX + dd)

LOW XY,(XX + dd)

LOW HL,<addr>

LOW XY,<addr>.

LOW HL,(SP + dd)

LOW XY,(SP + dd)

LOW HL,~ + XXB)

LOW XY,~ + XXB)

I00h00I001 II n(low) II n(hl9!!Lj

111 4»11 101 II 001100 I001 II n(low) II""--n-(hi-gh-)-I
[00 101 010 II addr(lowU I addr<fu9!llJ

--~

111 4»11 1011100\1011010 II addr(low) II addr(high) I
111 101 101 11001 xx 1100 II d(low) II d(high) I

11114»11 101 11111101 \101 1100 Ixx 1100JI d(low) II""--d(-hi-gh-)-I
111 101 101 1[00]100 100 II dlsp(low) II dlsp(high) I
111 4»11101 11111101101110011001 10011 disp(low) II-d-IS-p(-hlg-h-)]

111 101 101 1100 000 100 II d(low) II d(high) I
111 4»11 101 1111 101 101 1100 1000 1100 II d(low) II""--d-(hl-gh-)-]

111110111011100 bx 1100 I
11114»111101 11 11 1101 1101 IIr-::-::-oo Ibx 1100 I

5-8Y

» ---------------------------45_

Load from Addressing Register
Addressing

Mode Syntax Instruction Fonnat

Ok

X:

RA:

SR:

BX:

LOW (addr),HL

LOW (addr),XY

LOW (XX + dd),HL

LOW (XX + dd),XY

LOW <addr>,HL

LOW <addr>,XY

LOW (SP + dd),HL

LOW (SP + dd),XY

LOW (XXA + XXB), HL

LOW (XXA + XXB), XY

10011001010 II addr(low)j I addrri!i9!!)J

11114>111101 II 001100I010" addr(low) 11r--~-dd-r(-hlg-h-)I
11111011101 11001 xx 1101 II d(low) II d(hlgh) I
11114>111101 1111 \1011101 I[QQ] xx 1101 II d(low),-­

11111011101 110011001101 II disp(low) I disp(high)

11114>111101 1111 \1011101 I[QQ]100 1101 I dlsp(low)

111 11011101 1100I000 1101 II d(low) I d(high)

111 14>111101111111011101 I [QQ]0001101 I d(low)

11111011101 "00Ibx 1101 I
11114>111101111111011101 I~ bx 1101 1

Ld(high) I

.• ' ., \. . .'" 1" ~-: .• --.., .••. . • •• • • ~ •• ~ ',' ~. ~ ~"-'. -, ... , .. , ., :" ~.'. ". " .. " ._---.:._-----------------------------------
Field Encodings: 4> : 0 for IX, 1 for IY

xx: 101 for (IX + dd), 110for(IY + dd), 111 for(HL + dd)

bx: 001 for (HL + IX). 010 for (HL + IY). 011 for (IX + IY)

Example: LDW HL,(HL + IX)
,

Before instruction execution: After instruction execution:

HL:
IX:

1 502
F F F E

HL:
IX:

o 3 A 2
F F F E

Data memory: Data memory:

1500:
1501:

A 2
o 3

1500:
1501:

A 2
o 3

Address calculation:
,

•
.~,

1502
+FFFE

1500

,'. .,.. . ~ .. '0.1" '. • •• " .. . ',. . .

..,
.:

•

I

•

Operation:

LD[W] dst,src

dst -- src

..

dst = BC, DE, HL,SP
src = 1M, IR, DA, SX

or
dst = IR, DA, SX
src = BC,DE, HL,SP

LD[W]
Load Register Word

t

Flags:

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
the effective address incremented by one corresponds to the high byte of the register.

No flags affected

Exceptions: None , ',j" .' .~ , • ·.~l ~ ~ ": I.j '" J'" " 04

.
',': _.... "'" . .'

Load into Register
Addressing

Mode

1M:

IR:

OA:

SX:

Syntax

LOW RR,nn

LOW RR,(HL)

LOW RR,(addr)

LOW RR,(xy + d)

Instruction Fonnat

I oar rra 001 1[n(low) II n(high) I

111 101 101 I[00 rra 110 I
111 101 1011101 rrb 011 II"'--ad-d-r(l-ow-)-\ I addr(high) I (except Hl)

111 ~11 101 1111 101 101 II 00 Irra 1110 II d I

Load from Register

IR:

OA:

SX:

LOW (HL),RR

LOW (addr),RR

LOW (XY + d),RR

111/101 b0111 001 rrb 1110 I
111\1011101 11011 rra I011 II-ad-d-r(l-ow-)-I I addr(high) I (except Hl)

1111~111101111111011101Iloolrrb 1110 \I d

Field Encodings: rra :

rrb:

<1>:

000 for BC, 010 for DE, 100 for HL, 110 for SP

001 for BC, 011 for DE, 101 for HL, 111 for SP

o for IX, 1 for IY

Example: LOW BC,3824H

Before instruction execution: '. After instruction execution:

-,
•,

Be: 121 F 31- Be:

5-'J1

LD[W]
Load Stack Pointer

LD[W] dst,src dst = SP
src = HL, IX, IY, 1M, IR, DA, SX

or
dst = IR, DA, SX
src = SP

•

. .

Operation:

Flags:

dst - src

The contents of the source are loaded into the destination, where the source or destina­
tion is the Stack Pointer.

No flags affected

• ~ .' • J • • _,

Exceptions: None

Load into Stack Pointer
Addressing

Mode

R:

1M:

IR:

DA:

SX:

Syntax

LOW SP,HL

LOW SP,XY

LOW SP,nn

LOW SP,(HL)

LOW SP,(addr)

LOW SP,(xy + d)

Instruction Fonnat

11111111 001 I
11 <1>11 10111~1--r11-11-11001 I
00 110 00111 n(low) 1I-nQ!!9!!}-hl-h---'1

111011011100111011101

11 101 101 II 011111 I011 II~a-d-dr-(lo-w)-11 addr(hlgh) I
1111 <1>111 101 11111101 1101 II 00 1110 1110 II d I

• • '. 4 " • ,'. I '. 1.' '.. • ,..
' .

• t .. I- .,': t•• >.:., ., ...1 .' • ,
" , 1

Load from Stack Pointer

IR:

DA:

SX:

Field Encoding:

Example:

LOW (HL),SP

LOW (addr),SP

LOW (XY + d),SP

<I> : 0 for IX, 1 for IY

LOW SP,IX

Before instruction execution:

111 101 1101 II 001111 1110 I
111 101 1101 II 011110 I011 Il-a-dd-r(-lo-w)"""'1 I addr(hlgh) I
111 <1>111101 1111 1101 1101 I~ 111 1110 II d I

After instruction execution:

5-92

SP:
IX:

2 3 8 D
F F F 0

•

SP:
IX:

F F F 0
F F F 0

.'

•

MULT
Multiply (Byte)

MULT [A,]src src = R, RX, 1M, IR, DA, X, SX, RA, SR, BX

Operation: HL - A x src

The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.

..... I ",' !f ": .' .",";"'

s: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected

.,. V: Cleared
N: Unaffected
C: Set if the product is less than - 27 or greater than or equal to 27; cleared otherwise

Flags:

,,', ",~."'" -}

Exceptions: None

•

Addressing
Syntax Instruction FormatMode

R: MULT A,A 1111101 101 11111 r I000 I
RX: MULT A,RX 11114111 101 111111011101 1111 I rx I000 1

1M: MULT A,n 1111111 101111111011101 1111 11111 000 II n I
IR: MULT A,(HL) 111 101 101 1111110 000

DA: MULT A,(addr) 11 011 101 111 101 101 11 111 000 II addr(low) II addr(hlgh) I
x: MULT A,(XX + dd) 11 111 101 111 101 101 11 xx 000 II d(low) II d(hlgh) I

SX: MULT A,(XY + d) 11 4111 101 I11 101 101 11 110 000 II d I
RA: . , MULT A,<addr> I '. '.

11 111 101 1111 101 101 11 000 000 II disp(low) II dlsp(high) I. . .

SR: MULT A,(SP + dd) 1110111101111111011101 11111000 000 II d(low) II d(high) I
BX: MULT A,(XXA + XXB) 11110111101 111111011101 1111 Ibx 1000 I

Field Encodings: 41 : 0 for IX. 1 for IY

rx: 100 for high byte. 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx : 001 for (HL + IX), 010 for (HL + IY). 011 for (IX + IY)

Example: MULT A,H .

Before instruction execution: After instruction execution:

F E 10xhxOnO
F F 0 C

AF:
HL:

szxhxvnc

o •
F E
1 2

AF:
1------+---------1

HL:

5-93

.-i.... _

-
t·· 1

I
~. . !

I
MULTU
Multiply Unsigned (Byte)

MULTU [A,]src src = R, RX, 1M, IR, DA, X, SX, RA, SR, BX

The contents of the accumulator are multiplied by the source operand and the product
is stored in the HL register. The contents of the accumulator and the source are
unaffected. Both operands are treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds zero.

,,,
1
•, ,

,

\
. !

:1
,J.\
t
~'

I.

Operation:

. Flags:

HL - A x src

s: Cleared.... ~. • 1 • • • • • _•• '

Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 28; cleared otherwise

. . ".

Exceptions: None

Addressing
Mode Syntax Instruction Format

,

,..

,
..,

R:
RX:

1M:

IR:

DA:

X:
'.,,," ;j\,,~,.,:;,.,

SX:

RA:

SR:

ax:

~. - .

MULTU A,R

MULTU A,RX

MULTU A,n

MULTU A,(HL)

MULTU A,(addr)

MULTU A,(XX + dd)

MULTU A,(XY + d)

MULTU A,<addr>

MULTU A,(SP + dd)

MULTU A,(XXA + XXB)

LiiJ 1011101 11111 r I001 I
[f1J4>1111011 LiiJ 1011101] 8.!l rx 1001 I

.------
llil1111101 1\1111011101 I[!!J 1111001 IIL..-----:"-=--_I
[fi] 1011101 lliiJ 110I001 I
[!!] 0111101 IOIl 101] 101 [!II 1111 001 I addr(low) I[addr(high) I
[!!] 1111101 ILiiJ 101 1101 @]xxI0011:::::::d:::(Io=w:::)=11 d(high) I
[D]4>11 1101 ![!!]1011 101 [D]11010011 d I
@]11111011Q]1011101[!I100010011 disp(low) II-d-iS-p-(h-ig-h)-1

Q!l 0111101 I[!I] 1011101 ~Iooo1001 II d(low) 1\ d(high) I
Q2J011 I101 I[!!] 1011101 I [!!J bx 1001 I

•·· ..

1:

Field Encodings: 4> : afor IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)
.

•

Example: MULTU A,H

Before instruction execution:
-

After instruction execution:

- , .· .
: '

" .· ,
, .; !

,'. ,;, I r

, i
; Ii
• I, ,

AF:
HL:

F E szxhxvnc

0 2 F a

.-

AF:
HL:

F E OOxhxOn1

0 1 F C

,

_______________2

MULTUW [HL,]src

.- MULTUW
Multiply Unsigned (Word)

src = R, 1M, DA, X, RA

Operation: DEHL - HL x src

-..

,.-

.
'..!.

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
. to 1 to indicate that the DE register is required to represent the result; if the Carry flag is

cleared to 0, the product can be represented correctly in 16 bits and the DE register
merely holds zero.

., .. ",; . ". '.. :

Flags:

. . . I•

s: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared" I . . -, ' , ; .'. ,', ','

N: Unaffected '
C: Set if the product is greater than or equal to 216; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R:

1M:

DA:

X:
RA:

IR:

MULTUW HL,RR

MULTUW HL,XY

MULTUW HL,nn

MULTUW HL,(addr)

MULTUW HL,(XY + dd)

MULTUW HL,<addr>

MULTUW HL,(HL)

1111101 101 1111 rr I011

1111 <1111 101 1111 101 1101 1111100 011 I
1111111 1011111 1011101 111 110 o11II-"-(lo-w-)-II "(high) I
111101110111111011101111010101111 addr(low) II addr(high) I
1111111 1011111 1011101 111 xy 1011 11 d(low) II d(high) I

1111011110111111101110111111110101111 disp(low) II disp(high) I
111 I011 1101 11 11 1101 1101 I~OOO 1011 I

• . 1. ..",' ,.' '.
. ..~... . .. '

Field Encodings: <II : 0 for IX, 1 for IY

rr: 000 for BC, 010 for DE. 100 for HL, 110 for SP

xy : 000 for (IX + dd), 010 for (IY + dd)

Example: MULTUW HL,DE

Before instruction execution: After instruction execution:

OOxhxOnO -

G 0 0 0
0 1 E A

F:
DE:

HL:

szxhxvnc
o A
3 1

o 0
o 0

F:
,.....-----t---------t

DE:
t------t---------t

HL:

---------------_.
5-95

MULTW
Multiply (Word)

MULTW [HL,]src src = R, 1M, DA, X, RA

,'
~-""."".

Operation:

Flags:

DEHL ~ HL x src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in 16 bits and the DE register
merely holds sign-extension data.

s: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected '
C: Set if the product is less than - 215 or greater than or equal to 2 15; cleared

otherwise

"

",

Exceptions: None

Addressing
Mode Syntax Instruction Format

•

.' ,~ 1 __ ." •• ' \ ••• , ",.'.: '"

R:

1M:

DA:

RA:

IR:

MULTW HL,RR

MULTW HL,XY

MULTW HL,nn

MULTW HL,(addr)

MULTW HL,(XY + dd) ,

MULTW HL,<addr>

MULTW HL,(HL)

[ill1011101! IT!] rr 1010 I
[ill4>11 I101 I[ill 101 1101 I[!!] 100 1010 I
@]11111011[DJ10111011IT!]110101011-"-(lo-w-)---'II"(high)1

[DJ011 1101J[IT] 1011101 I[!!] 010 1010 II addr(low) II addr(high) I
[ill11111011lli]10111011[!!] xy 101011 d(low) II d(high) I
@Io111 101 1@I1011 101 I[ill 110 1010 II disp(low) II disp(high) I
~ 011 1101] @] 101 1101 I[!!]000 I 010 I

Field Encodings:
rr:

xy:

a for IX. 1 for IY
000 for Be, 010 for DE, 100 for HL, 110 for SP

000 for (IX + dd). 010 for (IY + dd)

.... "',-
:

Example: MULTW HL,DE

Before instruction execution: After instruction execution:

5-96

F:
DE:

HL:

szxhxvnc

0 0 0 A

0 0 3 1

F:
DE:

HL:

OOxhxOnO

0 0 0 0

0 1 E A

• J.'

Operation:

NEG [AJ

A+- -A

.' NEG
Negate Accumulator

... -7!lJ'
" .,

Flags:

. i '. I'· " \ "' .• , '-j"';6':':;

The contents of the accumulator are negated, that is, replaced by its twos-complement
value. Note that 80H is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

s: Set if the result is negative, cleared otherwise
Z: Set if the result is zero, cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of

the result (bit 4); cleared otherwise
V: Set if the contents of the accumulator was not SOH

before the operation; cleared otherwise,
N· Set I \. " _I',:, "\'. 'j .t, : ~,'.,'.1 II. ".

• • ,:'. • :' • • 0" • :.' ' • • ",1< ·":.:·· ';. "'. " ·'''ilt~.·· ... ~· ~... • __~.", 1 "." • ,. '.' ,e .' -r _

c: Set if the contents of the accumulator was not OOH before the operation; cleared otherwise.

. ..

Exceptions: None

Addressing
Mode Syntax

NEG A

Instruction Format

.. ~ ". -. . .' , . ~'. '. . .

Example: NEG A

Before instruction execution:

AF: 1l..-_2_8__I__s_ZX_h_x_vn_c__:I

After instruction execution:

AF: I D 8 I 10xOx010 I. ! ----I

.,,,~ - ,

........._---------------------_..• - -_._ .. -

5-97

~

f
I,
,

I
i

-------p-

NEG
Negate HL

NEG HL

, " . , . .

Operation:

Flags:

HL - - HL

The contents of the HL register are negated, that is, replaced by its twos-complement
value. Note that 8000H is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

s: Set if the result is negative, cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of

the result (bit 12); cleared otherwise
V: Set if the contents of HL was 8000H before the operation; cleared otherwise
N: Set
C: Set if the contents of HL was not OOOH before the operation; cleared otherwise.

Exceptions: None

Addressing
Mode

Example:

Syntax

NEG HL

NEG HL

Before instruction execution:

Instruction Format

[11 1101 [101 I[01 1001 I100 I

After instruction execution:

F:

HL:
. :..:. i'~ .'. ' ..: . • I. . ,... • . ' \'~.. .., ,

szxhxvnc

0 1 2 1 .

F:

HL:

10x1x010

F E 0 F

5-98

:.,1..,

.'

.-,.'·-iiiiii.. • ._. .

NOP

Operation: None

NOP
No Operation

Exceptions: None
I, .. ',-

Addressing
Mode Syntax Instruction Format

NOP 100 1000 1000 I

Flags:

No operation.

No flags affected

,
,

" • I I' .',.'. .. ,. ".....

. '.

'I .~~,'."" ", .. " ..
.~ '.' • '•• .J \ .. ," ':'. • r ': ...'o. _ • • ." '.

•

, '.. .. ' ..

5-99

>

!

I•
I

Example: OTDR

Before instruction execution: After instruction execution:

I/O Page register:

I 1 7'

•

Byte 9BH written to 1/0 port 170346H,

then byte FFH written to 1/0 port 170246H.

then byte A3H written to 1/0 port 170146H·
..
'>

s1xhsv1c

0 0 4 6
5 2 1 5

F:

BC:

HL:

t

szxhxvnc

0 3 4 6

5 2 1 8

F:
BC:

Hl:

Data memory:

5216:

5217:

5218:

A 3

F F

9 B " ,1.,' •.

.
.. "

..
..

. ~J." •

.
..

: ;.

....: ..:.-.,' '. , . '. '. .. , ..'.. '

. ., ..;
. ': "'.'

'. ,,'

'. , ,.. ...

•

•

•

.'

5-102

...
•-.• ..".~..,.....,.~c__• ..._ ...--_... -........- .---._~""--_ .. - .--- . __._.~--- .~---_ ..._"._--,.,.__~.-

" .. _.....
-

Operation:

OTIR
Output, Increment and Repeat (Byte, Word)

OTIR
OTIRW

Repeat until B = 0: (C) +- (HL)
B+-B-1
HL +- AUTOINCREMENT (by one if byte, by two if word)

.. • •

Flags:

, .. , .

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the 1/0 transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines As-A15, and the contents of the
1/0 Page register are placed on address lines A16-A23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then in­
cremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing B is zero,
the instruction is terminated, otherwise the output sequence is repeated. Note that if the
B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

s: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

OTIR

OTIRW

Instruction Format

1111 101 1101 11101110 1011 I
11111011101111010101011 I

5-103

Example: OTIRW

Before instruction execution: After instruction execution:

F:
BC:
HL:

szxhxvnc

0 2 4 4

5 0 0 4

F:
BC:
HL:

s1xhxv1c

0 0 4 4

5 0 0 8

I/O Page register:

I 3 1

Data memory:

t

Word 3A90H written to I/O port 310244H.
then word 8867H written to 110 port
310144H·

5004:
5005:
5006:
5007:

8 0
3 A
8 7
8 8

.. -

~. , . ~ ... ~.... ",.: ~.

5-104

..

,

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used,

.'

". ,"'1' ' <1' ' '~ .., •••• ,;. 'l .. i. .•

•

, -, .

, .

Operation:

OUT (C),src

(C) ~ src

src = R, RX, DA, X, RA, SR, BX

OUT
Output

Flags:

Exceptions:

The byte of data from the source is loaded into the selected peripheral. During the 110
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines As -A15, and the
contents of the 1/0 Page register are placed on address lines A16-A23. The byte of data

, from the source is then loaded into the selected peripheral.

No flags affected

Privileged Instruction (if the Inhibit User 110 bit in the Trap Control register is set to 1)

Addressing
, " "Mode ';'," ," Syntax' ", :,.. ", ,

R:
RX:

DA:

X:
RA:

SR:

BX:

OUT (C),R

OUT (C),RX

OUT (C),(addr)

OUT (C),(XX + dd)

OUT (C),<addr>

OUT (C),(SP + dd)

OUT (C),(XXA + XXB)

Instruction Format'.. .' ",' ,J' ,'1,c,.'.,.· .. "

111101 10111011 r 001

1114111 10111111101 101 @!] rx 1001

111011 101 ILiil101 101 @Il1111001

11/111 1011 [!!I 101 101 @!] xx 001

11/111 101 111111011101 @!looo 001

111011 101 I@]1011101 11011000 001 I
11110111101 111111011101 11 01 1bx 1001 I

:'''''~.''-.:''.', :··1~·"~.'-''1·'','1-.'':;';·''''··'''''11.·''··'.:· ".'" :..,\' .':' ," .

addr(low) II addr(hlgh) I
d(low) II d(high) I

dlsP(low) II dlsp(hlgh) I
d(low) II d(high) I

Field Encodings: 41 : 0 for IX, 1 for IY

rx : 100 for high byte. 101 for low byte

xx: 001 for (IX + dd), 010 for (lY + dd), 011 for (HL + dd)

bx: 001 for (HL + IX). 010 for (HL + Iy), 011 for (IX + IY)

Example: OUT (C),IXH

Before instruction execution: After instruction execution:
,- .

Be:
IX:

1 6 5 0
F 0 0 7

Byte FDH written to
I/O port 321650H

1/0 Page register:

11...-_3_ 2_'

--_.._._--------------------- ._--_ -

5-105

•

." l', I' I'"'' . -.. ",', I, •

After instruction execution:

Byte 42H written to

110 port 114255H

.'

Instruction Format

. . ..
I 1 1 I

A: I 4 2 I

I/O Page register:

Before instruction execution:

OUT (55H),A

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

OUT (n),A

No flags affected

Syntax

The contents of the accumulator are loaded into the selected peripheral. During the I/O
transaction, the 8·bit peripheral address from the instruction is placed on the low byte of
the address bus, the contents of the accumulator are placed on address lines Aa-A15,
and the contents of the I/O Page register are placed on address lines A16-A23. Then the
contents of the accumulator are written into the selected port.

OUT (n),A

(n) -A

• -.,. ,. 'J.' I ... ·, .. ~ .>, .•. .' , ., ,. f • ,

Addressing
Mode

5-106

Example:

Exceptions:

Flags:

Operation:

OUT
Output Accumulator

.~ .', ~ ..

"': '., '

,,
I ,
I ' ,

'-, . ,
·1 - ' .. ' •••

Operation:

Flags:

Exceptions:

OUTD
Output and Decrement (Byte, Word)

OUTO
OUTOW

(C) - (HL)
8-8-1
HL - AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the 8 register are placed on address lines Aa-A15, and the contents of the I/O
Page register are placed on address lines A16-A23. The byte or word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The 8
register, used as a counter, is decremented by one. The HL register is decremented by one
for byte transfers or by two for word transfers, thus moving the memory pointer to the next
source for the output.

s: Unaffected
Z: Set if the result of decrementing 8 is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

." ...".'

: .; .r;,

"f
•

I.

,

.-,

Addressing
Mode Syntax

aUTD

aUTDW

Instruction Format

11111011101111011011011 I
111 1101 1101 11 10 1001 1011 I

. - . . .'

5-107

Example: OUTDW

Before instruction execution: After instruction execution:

F:
BC:

HL:

szxhxvnc

1 5 6 4

5 0 0 6

F:

BC:

HL:

sOxhxv1c

1 4 6 4

! 0
.

0 4

,,' ..,'.. ".

I/O Page register:

tL...--_3 _3_I
Data memory:

5006: I a 7 I
5007: I 8 D t

Word 8D07H written to

I/O port 331564H

..'.. '~.;.., •

.
"

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

,'.: .;. '.. ', .

5-108

...... . . ", " . .." .'

"..

.'
• :,'.' ', ... _.', • -, :"~ '., • ••••J. • • ,' '•• ',:.-.. • ." .' "

..

•

, .. ' .'. ..'~. "".,

:

OUll
OUllW

""

OUTI
Output and Increment (Byte, Word)

""

""

Operation: (C) ~ (HL)
B~B-1

HL ~ AUTOINCREMENT HL (by one if byte, by two if word)

Flags:

'",

.', -

c'"
." ,
""

,.,... ..' . ',' .;. . ' ..

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aa-A15, and the contents of the
I/O Page register are placed on address lines A16-A23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one, The HL register is then incre­
mented by one for byte transfers or by two for word transfers, thus moving the memory
pointer to the next source for the output. f', ,,.c" ,'""','," ,,' ".' ,""

s: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

. " .

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

OUTI

OUTIW

Instruction Format

11111011101 11101100 I011 I
[it] 1011101 11101000 1011 I

Example: OUTI
. ... :,.

Before instruction execution: After instruction execution:

F:
BC:

HL:

szxhxvnc

1 5 • 4

5 0 0 2

F:

BC:

HL:

sOxhxv1c

1 4 6 4

5 0 0 3

1/0 Page register:

I 3 3

Data memory:

t

Byte 7BH written to

I/O port 331564H
,

5002: 1_7_B_l

5-109

OUT[W]
Output HL

OUT[WI (C),HL

Operation: (C) ~ HL

The contents of the HL register are loaded into the selected peripheral. During the I/O
transaction, the 8·bit peripheral address from the C register is placed on the low byte of
the address bus. the contents of the 8 register are placed on address lines As-A15. and
the contents of the I/O Page register are placed on address lines A16-A23. Then the can·
tents of the HL register are written into the selected port. For 8·bit data buses, only the
contents of the H register are transferred during a single bus transaction.

Flags: No flags affected

.. --
Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

..._--------------

•

•

, '! .':" t .

•

'."'~",~,~' .." .

Word 843AH written

to I/O port 172650H

After instruction execution:

, - ..,. ;';', -." .'.' ...- .

Instruction Format

.' . '. ,. ". .

2 6 5 0

3 A 8 4

[1 7 I

..--...

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

Be:

HL:

I/O Page register:

Before instruction execution:

OUTW (C),HL

OUlW (C),HL

Syntax

; •.. ;,,_,' 4'~"'~':"" .• ;'·~ ":,1' ,.-,

Addressing
Mode

5-110

Example:

,' "

Operation:

Flags:

.'

PCACHE

All cache entries invalidated

This instruction is used to invalidate all entries in the cache.

No flags affected

PCACHE
Purge Cache

Exceptions: None
:~~

-
;
•

Addressing
Mode Syntax Instruction Format

PCACHE 1111101 1101 II 01 1100 1101]
. . . ' , '.. .. , ., f "., " •...' .',." • - , , .' ".. ' "t·.' , ".. , ..

", " ... ~ - '.

•

" .~. .'. ,.- ..

5 -111

_--.'.'1IIiiIIIIi 77 _

No flags affected (unless dst = AF)

Field Encodings: 4> : 0 for IX. 1 for IY

rr: 000 for BC. 010 for DE, 100 for HL, 110 for AF

••

• < • ~ ., ",'." .'-

2 3

o 9

o 9 2 3
F E 3 4

BC:
SP:

. . ~. ".' ' .

FE32:
FE33:

Data memory:

After instruction execution:

dst = BC. DE, HL, AF, IX, IY, IR, DA, RA

Instruction Format .

11 rr 1001 I
11 4>11110111-11 10010011

1101111011111 000[0011
11 01111011111 0101001 Il-ad-d-r(I-OW-)--'1 I addr(high) I

111101111011111 110I001 II disp(low) II disp(high) 1

. '~,

2 3
o 9

2 3 0 8
F E 3 2

BC:
SP:

FE32:
FE33:

Data memory:

Before instruction execution:

POP BC

POP RR

POP Xy

POP (HL)

POP (addr)

POP <addr>

Syntax

dst -- (SP)
SP -- SP + 2

The content of the memory location addressed by the Stack Pointer (SP) are loaded into the
destination. For register destinations, the byte at the memory location specified by the
contents of the SP is loaded into the low byte of the destination register (or Flag register for
AF) and the byte at the memory location one greater than the contents of the SP is loaded
into the high byte of the destination register. The SP is then incremented by two. If the
destination is a memory location, the destination and the top of the stack must be
non-overlapping.

POP dst

R:

IR:

DA:

RA:

Addressing
Mode

5-112

Example:

Exceptions: None

Flags:

Operation:

POP
POP

- . :.

i
,

i
I

!
i
1

Operation:

/flf,;.... ,

PUSH src

SP +- SP - 2
(SP) +- src

PUSH
Push

src = BC. DE, HL, AF, IX, IY, 1M, IR, DA, RA

,1

Flags:

Exceptions:

The Stack Pointer (SP) is decremented by two and the source is loaded into the location
addressed by the updated SP; the low byte of the source (or Flag register for AF) is load­
ed into the addressed memory location and the upper byte of the source is loaded into
the addressed memory location incremented by one, The contents of the source are
unaffected. If the source is a memory location, the source and the new top of the stack
must be non-overlapping,

No flags affected

System Stack Overflow Warning

Addressing
Mode Syntax Instruction Format..

R: PUSH RR 1111 rr 11011

PUSH XY 111 4111 1011111 100 101

111 111 1011111 110 1011M: PUSH nn "(low) II "(high) I
IR: PUSH (HL) 111 011 1011111 000 101

111 011 1011111 010 101 I addr(low) II addr(high) I. DA: PUSH (addr),,
,

RA: PUSH <addr> 111 011 101 1111 110 101 II disp(low) II disp(high) I

Field Encodings: 41 : 0 for IX, 1 for IY

rr: 000 for BC, 010 for DE, 100 for HL, 110 for AF

Example: PUSH BC

Before instruction execution: After instruction execution:
. -

BC: 0 9 2 3 BC: 0 9 2 3
SP: F E 3 4 SP: F E 3 2

Data memory: Data memory:

FE32:

FE33:

o 0
o 0

FE32:

FE33:
2 3
o 9

•

5-113

.' ,
i

l,.,,
i
• RES

Reset Bit

Operation:

RES b,dst

dst(b) - 0

dst = R, IR, SX

-I

The specified bit b within the destination operand is cleared to O. The other bits in the
destination are unaffected. The bit number b must be between 0 and 7.

Flags: No flags affected)

Exceptions: None

.• ,~'r

Addressing
Mode Syntax ,~ .. - .. Instruction Format . '. .

,

R:
IR:

SX:

Field Encoding:

Example:

. ..

5-114

,.

RES b,R

RES b,(HL)

RES b,(XY + d)

ell : 0 for IX, 1 for IY

RES 1,A

Before instruction execution:

A: I 00010110 I

. . '.

[iii 001 I011 1110 b r I
11110011011 1110 b 110 I
[t1]eIl11 [101 11 11 001 011 11.-----1110 I b 1110 I

After instruction execution:

A: I 00010100 I

.' . '.. '

•.
•

•
,
••

•

RET
Return

Operation:

-•• I,

RET [ccl

If the cc is satisfied then: PC +- (SP)
SP +- SP + 2

•

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry,
Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code
"cc" encoded in the instruction; if the condition is not satisfied, the instruction following the
Return instruction is executed, otherwise a value is popped from the stack and loaded into
the Program Counter (PC), thereby specifying the location of the next instruction to be
executed. For an unconditional return, the return is always taken and a condition code is
not specified.

The following figure illustrates the format of the PC on the stack for the Return instruction:

I
1

1
,
, ;
'~

I
I
,
-~

~

I
.~
,
,

I

•

SP before-+ low address

No flags affected

SP after -+ high address
+- 1 byte -+ ~.

Exceptions: None

,- ...'. . .
••·0 1.·<.'·:'··- '. .. ,'..

Instruction Format

111lccloool
111 1001 I001 I

RET cc

RET

Syntax
Addressing

Mode

Flags:

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,

110 for P or NS, 111 for M or S

Example: RET NC

Before instruction execution: After instruction execution:

F:
PC:
SP:

szxhxvnO

2 5 2 8
F F 2 4

F:
PC:
SP:

szxhxvnO
1 6 3 3
F F 2 6

Data memory: Data memory:

3 3
1 6

FF24:
FF25:

3 3
1 6

FF24:
I---------i

FF25:

') -11')

RETI
Return from Interrupt

RETI

Operation: PC +- (SP)
SP +- SP + 2

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by an interrupt while in interrupt mode 0, 1, or 2. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC).

The following figure illustrates the format of the PC on the stack for the Return from In­
terrupt instruction:

•

- '.' ,. SP before-

SP after-

PC (low)
PC (high)

1--------1 high address

.... ~.. ~ . ,.~.. ,.

+- 1 byte-

A special sequence of bus transactions is performed when this instruction is
encountered in order to control Z80 family peripherals; see Chapter 12.

Flags: No flags affected

Exceptions: Privileged Instruction

.
~:.---~ ::---.---~' - ... -~~--_._.J---~- - -- _..

Data memory:

.... """~" ; _.~ , .. ,

•

7 2

1 8

1 9 7 2

F F C 8
'h: .

pc:

SP:

Data memory:

After instruction execution:

FFC6:
~------;

FFC7:

'. ; .' , , ·· .. ·.1· ,', ...t." ,-. ! .•..•. , .

Instruction Format .

• " .", .. .;.' , : -. ,I •••• ",Ii. '.. . .

7 2

1 9

8 4 1 0

F F C 6

pc:

SP:

Syntax

Before instruction execution:

RETI

FFC6:
~------I

FFC7:

. .. "',' , . . '., .

5-116

Addressing
Mode

Example: RETI

..•.

' ..

Operation:

.,..

.'

RETIL
Return from Interrupt Long

RETIL

PS - (SP)
SP - SP + 4

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by an interrupt while in interrupt mode 3 or a trap. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC)
and Master Status register (MSR).

c..

The following figure illustrates the format of the program status (PC and MSR) on the
system stack for the Return from Interrupt Long instruction:

I J1..
: \: .

.' ,.," .. ,',' .::,'~ .. :I..'!;~y·.!''t.f'·'" ;'J.- •••. '" :_

1-- ---1 high address
-1 byte-+

SP after-+

", -.. ~"., '.

SP before -+ low address
I-----=-~~L...-.-f

... ~;,····~·l.~··: ... · ..~ .''. .

•

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

RETIL

Example: RETIL

.... .,. Before instruction execution: After instruction execution: ~ .. ,.} ... ~ ..

pc:

SP:

MSR:

8 4 1 0

F F C 6

0 0 0 0

pc:

SP:

MSR:

1 9 7 2

F F C A

4 0 7 F

Data memory: Data memory:

FFC6:

FFC7:

FFC8:

FFC9:

7 F

4 0

7 2

1 •

FFC6:

FFC7:

FFC8:

FFC9:

7 F

4 0

7 2

1 •
,

5-117

RETN
Return from Nonmaskable Interrupt

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by a nonmaskable interrupt while in interrupt mode 0, 1, or 2. The con­
tents of the location addressed by the Stack Pointer (SP) are popped into the Program
Counter (PC). The previous setting of the interrupt masks in the Master Status register
are restored.

The following figure illustrates the format of the PC on the stack for the Return from Non­
maskable Interrupt instruction:

RETN

. ,

7 2

1 9

1 9 7 2

F F C.8

4 0 7 F

pc:

SP:

MSR:

Data memory:

After instruction execution:

FFC6:
t-------I

FFC7:
.'

t---~----I high address
- 1 byte-+

Instruction Format

11111011101110110001101 I

SP after-+

7 2

1 9

8 4 1 •
F F C 6

4 0 0 0

1 7 F I

pc:

SP:

MSR:

Data memory:

Shadow Interrupt register:

No flags affected

RETN

PriVileged Instruction

Before instruction execution:

Syntax

SP before -+ PC (low) low address
I-----::=---,l--=-~~

PC (high)

FFC6:

FFC7:

PC - (SP)
SP - SP + 2
MSR(0-7) - IFF(0-7)

Addressing
Mode

5-118

.. ,

Flags:

Exceptions:

Example: RETN

Operation:

..

RL dst d~[- R. IR. SX

RL
Rotate Left

,,

Operation: tmp -- dst
dst(O) - C
C -- dst(7)
dst(n + 1) -- tmp(n) for n - 0 to 6

C 7-0 -
dst

'.'.

'.
•,
·,
·

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated left one bit position. Bit 7 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 0 of the destination.

-- ._-------------------_._-----------------_._-----
Flags: 5: Set if the most significant bit of the result is set; cleared otherwise

Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

-------------_._-----------------

Exceptions: None

..

Addressing
Mode

R:
IR:

SX:

Field Encoding:

Syntax

RL R

RL (HL)

RL (XY + d)

4> : 0 for IX. 1 for IV

Instruction Format

1111 0011 011 " 00I010I r I
1111 0011 011 II 00I010 1110 I
11114>111101 11111 001 I011 II:----d-:-----.,II 00 1010 1110 I

.

.J). - ,- ...' - .. '

.' ,

Example: RL 0

Before instruction execution: After instruction execution:

" F:
0:

szxhxpnO
10001111

F:
0:

00xOx101
00011110

5-11Y

RLA
Rotate Left Accumulator \

RLA

• • ',I,' • ,

Operation:

Flags:

Exceptions:

tmp-A
A(O) - C
C - A(7)
A(n + 1) - tmp(n) for n = 0 to 6

c - 7-0 --
A

The contents of the 'accumulator are concatenated with the Carry flag and together they
are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 0 of the destination.

s: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

None

Addressing
Mode

R:

Syntax

ALA

.

Instruction Format

100101011111

Example: RLA

. . :" .~: . ~'
" . Before instruction execution: " "., After instruction execution:

.~ '.- .' .. .; ~. - . .: .:.,. . .,.(, .. ,..~. .

5-120

AF: I 01110110 I szxhxpn1 I AF: f 11101101 I szxOxpOO I

•

•

~' ".

, '~

"~

".,.
;

"

RLC
Rotate Left Circular

RLC dst dst = R, IR, SX

Operation: tmp ~ dst
C ~ dst(7)
dst(O) ~ tmp(7)
dst(n + 1) ~ tmp(n) for n = 0 to 6

c - 7-0 -- -
dst

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

Exceptions: None

5: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise·' " ..
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Instruction Format

1111 001 011 II 00I000I r I
1111001 011 I 0@0001 110 I

11114111 101 ILiiJ 001 1011 11r-~d-II 00 1000 1110 I

RLC R

RLC (HL)

RlC (XY + d)

Syntax

R:
IR:

SX:

Addressing
Mode

r . .'; .

Flags:

Field Encoding: 41 : 0 for IX, 1 for IY

<" Example: .. i..'" RLe B , ; : .' .;:.:~.,.....: :' .. , .. ~ .. ;,,,,' : --, .~, -. - ... - .. , .

Before instruction execution: After instruction execution:

F:
B:

szxhxpnc
10001000

F:
B:

00xOx101
00010001

, ".
' ..,

5-121

.
I.
I

,
,I

.----------------...-

RLCA
Rotate Left Circular (Accumulator)

RLCA

Operation:

Flags:

Exceptions:

tmp-A
C - A(7)
A(O) - tmp(7)
A(n + 1) - tmp(n) for n = 0 to 6

c - 7-0 --
A

The contents of the accumulator are rotated left one bit position. Bit 7 of the
accumulator is moved to the bit 0 position and also replaces the Carry flag.

s: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

None

, .

(

Addressing
Mode Syntax

RLCA

Instruction Format

100100011111

Example: RLCA

';"- .o"'., ,:.- .;~"".•••....• Before instruction execution: "''''': . " After instruction execution: " .- ••. \.' .. ,v"'.,

•

5-122

AF: I 10001000 I szxhxpnc I AF: f 00010001 I szxOxp01 I

• • •
•

•

.. RLD
Rotate Left Digit

RLD

Operation: tmp(O:3) .- A(O:3)
A(O:3) .- dst(4:7)
dst(4:7) .- dst(O:3)
dst(O:3) .- tmp(O:3)

•

. If

7 4 3 0 7 4 3 0

j I' ~ ,

A dst

Example: RLD

s: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

After instruction execution:

Instruction Format

RLD

Before instruction execution:

None

Syntax

The low digit of the accumulator is logically concatenated to the destination byte whose mem­
ory address is in the HL register. The resulting three-digit quantity is rotated to the left by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of

" , .: the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RL instruction.

- - .

Addressing .
Mode

Exceptions:

Flags:

" .• " . ;,,#<, '~) .. " •• ,:

Data memory:

5000: 1041

Data memory:

3 0 00xOx10c

5 0 0 0

AF:

HL:

5000: I 4 7 I

3 7 szxhxpnc

5 0 0 0

AF:

HL:

5-123

- --

RR
Rotate Right

RR dst dst = R, IR, SX

Operation: tmp - dst
dst(7) - C
C - dst(O)
dst(n) - tmp(n + 1) for n = 0 to 6

~17-0~Cr--'

dst

>': 0" ..•' •.•. "".,", _,. ;'.':: •.•..':' votr':t"~. t",.

Flags:

Exceptions:

" , The contents of the destination operand are concatenated with the Carry flag and
together they are rotated right one bit position. Bit 0 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 7 of the destination.

s: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

None

Addressing
Mode Syntax Instruction Format

R: RR R

IR: RR (HL)
• ,·.'.·.•,lj ",.; I: ""'.' SX:·'!,;.·: ..,·,···,~;· .. .",· RR (XY + d) '.: " .. ' ,., ..'.',.

1111 001 I011 II 00I011 r I
1111 001 I011 II 00I011 110 I
1111 ~11 1101 11111 001 011 11r--'-d-=---1 [00] 011 1110I '. ,,< ~i ' .

Field Encoding: ~ : 0 for IX, 1 for IY

Example: RR B

Before instruction execution: After instruction execution: ,

"

,

5-124

F:
B:

szxhxpnO
11011101

.'

F:
B:

00xOx001
01101110

..

.

RRA
Rotate Right (Accumulator) _

•

RRA

.­
",
,',

::
"
",

Operation: tmp .- dst
A(7)'- C
C .- A(O)
A(n) .- tmp(n + 1) for n = 0 to 6

:- ",

-, ,

-
j

,

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 7 of the accumulator.

•- ,

" :,', Flags: : .."~._~.1':':.: .. :1.; •. 5: Unaffected, ;....,;\.::, ..,.f" '·.j,;.. · ..·.~8·. ~~.f...;~!:'.·· .. ·. ·· ..~·.A···;····~· ~~.~ , .~~ ..J •• ~,.. \,..~ •• \ ~.;: •.;.">"i.!"~:"': ...:"...., r:::~.~''';'.:·i'· .., . .,. .-

Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

AF: -I 11100001 I szxhxpnO I H'.

Example: RRA

Before instruction execution:

5-125

•

AF: 'I 01110000 I szxOxp01 I
After instruction execution:

Instruction Format

I00 I011 1111 IRRA

Syntax
Addressing

Mode

-,,'. "

l
J

I
RRC
Rotate Right Circular

I

RRC dst dst = R, IR, SX

Operation: tmp - dst
C - dst(O)
dst(7) - tmp(O)
dst(n) - tmp(n + 1) for n = 0 to 6

7-0 •
~

dst

....... _... ".~ ',' The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags:

Exceptions:
I

s: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

None

Addressing
Mode

R:
IR:

SX:

Syntax

RRC R

RRC (HL)

RRC (XY + d)

Instruction Format

1111 001 1011 II 00I001 I r I
1111 001 1011 II 00I001 1110 I
1111 «1>11 1101 11111001 I011 II--d-II 00I0011110 I

Field Encoding:

Example:

«I> : a for IX, 1 for IY

RRC A

Before instruction execution:

•

After instruction execution:

,.
L,.

5-126

AF: I 00110001 I szxhxpnc

..

AF: l 10011000 I 10xOx001
"

'i
, ,

/

,

,

RRCA
Rotate Right Circular (Accumulator)

,
"

"" RRCA
;:

,

,
Operation: tmp +- A

C +- A(O)
A(7) +- temp(O)
A(n) +- tmp(n + 1) for n = 0 to 6

• 7-0 -
dst

,.-
~I

The contents of the accumulator are rotated right one bit position. Bit 0 of the
accumulator is moved to the bit 7 position and also replaces the Carry flag.

.szxOxp01 II 10001000 I

" • >., , 'j.' .,........ ,•.. ~ ~""'···J"'<;I·-··.Io.:'·''''···'''f·''·''· \ ... " , .. ~~ ,.,"': .. '.. /_'. '. . - .t~ " . ~ .~.. •

AF:

After instruction execution:

Instruction Format

I00 10011111 I

,,' I 00010001 I szxhxpnc I·,AF:

None

Before instruction execution:

RReA

Syntax

RRCA

s: Unaffected
Z: Unaffected ' " ".'" .,,-.. ". ','.",' -'
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

'., .
~_ ... 4 ".'"

Addressing
Mode

,

Example:

Exceptions:

Flags:
• ' - • "' " •• j~..)... ~., j:,•.

.. ". " • .'r'" .'

... .' ~ ., .'
....
•

'.

•

')-127

.....-----------------'----

p

RRD
Rotate Right Digit

RRD

Operation: tmp(O:3) .- A(O:3)
A(O:3) .- dst(O:3)
dst(O:3) .- dst(4:7)
dst(4:7) .- tmp(O:3)

,~ If

7 4 3 0 7 4 3 0

l "

. .

.~,

A dst

"-}'-

_~ •• o. '.~, ,'" ••••••••••••••••• " ~ ."~ ;"""t ",',' " •• -.
" '. . '.

i
f

•

Flags:

,The low digit of the accumulator is logically concatenated to the destination byte whose mem­
ory address is in the HL register. The resulting three-digit quantity is rotated to the right by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is

.' .
~'..

unaffected. In mUltiple-digit BCD arithmetic, this instruction can be used to shift to the right a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer.
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RR instruction.

s: Set if the accumulator is negative; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: , . None .',,, . ,,,. ,', • .'f", .. · ••~. A .' .,.

Addressing
Mode

Example:

Syntax

RRD

RRD
~'I

Instruction Format

•

Before instruction execution: After instruction execution:

AF:

H:
0 i szxhxpnc

6 0 0 0

AF:

H:

0 2 OOxOxOOc

S 0 0 0

I

5-128

Data memory:

. 5000: 1'---_3_2_1
Dat9- memory:

5000: 11..-_6_3_'

,

-

-

"n_ '~T

M~

Restart

RST address

._ ...,. ,

,
, ,
I •.,..',,

operation: SP -- SP - 2
(SP) -- PC
PC -- address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table
below. The table also indicates the encoding of the address used in the instruction en­
coding. (The address is in hexadecimal, the encoding in binary.)

l·

.
, IS

1

" .. , . '., . .' ' .' ." . ':'." /', \ ...

Address

OOH
08H ,"
10H
18H
20H
28H
30H
38H

t encoding

000
.' l. 001 ,.... "" '-"., ...,..:.\~ ~ . ".".

010
011
100
101
110
111

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

- RST address

- Field Encoding: t : See table above

. "., ~.. '. _.- . ..' . ,~~..

- Example: RST 18H

Before instruction execution: After instruction execution:

pc:
SP:

4 8 2 0
F F C 4

pc:
SP:

0 0 1 8
F F C 2

Data memory: Data memory:

2 0
4 6

FFC3:
r-------1

FFC4:F F
F FFFC3:

FFC4:

- =

5-12~

--- ---------------------------- ---~------

SBC
Subtract with Carry (Byte)

Operation:

SBC [A,]src

A - A - src - C

src = R, RX, 1M, IR, DA, X, SX, RA, SR, SX

.' . .. _. "

Flags:

. ,-, ~ ., . .' - .

.
The source operand together with the Carry flag' is subtracted from the accumulator and
the difference is stored in the accumulator. The contents of the source are not affected.
Twos-complement subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

and the result is the same sign as the source; cleared otherwiseN:Set·....·: "" --.- ..

C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

.. , .~

R: SBe A,R 1100111 r I
RX: SBe A,RX 111 4111 10111-10~1-01-11 rx I
1M: SBe A,n 11101111011 n t
IR: SBe A,(HL) 10 011 110 I

DA: SBe A,(addr) 11 011 101 11---'1010111111 I[
X: SBe A,(XX + dd) 11 111 1011110 011 [xx II

SX: SBe A,(XY + d) 11 4111 101 110 011 110 II
RA: . . SBe A,<addr> 11 111 101 110 011 000 II

.~" ..;_ ,.. -.... ..' '. ,.. ' .:.~. ====~ ======
SR: SBe A,(SP + dd) 11 011 101 110 011 000 II
BX: SBe A,(XXA + XXB) 11 011 101 110 011 bx I

addr(low) II addr(high) I
d(low) II d(high) I

d I
disP(low) II-d-iS-P(-h-lg-h)-1

d(low) II d(hlgh) I '. ,.". " \.

'..

Field Encodings: 41 : 0 for IX, 1 for IY

rx : 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)
•

Example: SSC A,(HL)

Before instruction execution: After instruction execution:

AF:
HL:

4 8 szxhxvn1
2 4 5 4

AF:
HL:

2 F OOx1x010

2 4 5 4

5-130

Data memory:

2454: 1L--_1 _8_1
Data memory:

2454: 1__1 _8__1

SBC
Subtract with Carry (Word)

The source operand together with the Carry flag is subtracted from the destination and
the result is stored in the destination. The contents of the source are not affected. Twos­
complement subtraction is performed.

.. ,

OOxOx010
0 0 1 1
8 0 E E

F:
DE:
HL:

After instruction execution:

"J.. '

dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Instruction Format

1111101 b01 II 011 rr I010 I
@jCSl1111011\111101110111c--01IITI0101

szxhxvn1
0 0 1 1
0 1 0 0

F:
DE:
HL:

CSl : 0 for IX, 1 for IY

rr: 000 for BC. 010 for DE, 100 for subtract register from itself. 110 for SP

Before instruction execution:

SSC HL,DE

SBe HL,RR

SBe XY,RR

Syntax

dst +- dst - src - C

S: Set if the result is negative, cleared otherwise.. . ,
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

SSC dst,src

,

Addressing
Mode

Example:

Field Encodings:

.'.4'

Exceptions: None

Flags:

Operation:

, " .

,

,

5-131

--_._- ---.-_._------------------------------

I,
I SC

System Call

SC nn

...

. . . ~ .~. -

Operation:

. . ~ ..

SP - SP- 4
(SP) - PS
SP - SP - 2
(SP) - nn
PS - System Call Program Status

This instruction is used for controlled access to operating system software in a manner
similar to a trap or interrupt. The current program status is pushed onto the system
stack followed by a 16-bit constant embedded in the instruction. The program status con­
sists of the Master Status register (MSR) and the updated Program Counter (PC), which
points to the first instruction byte following the SC instruction. Next the 16-bit constant in
the System Call instruction is pushed onto the system stack. The system Stack Pointer is
always used regardless of whether system or user mode is in effect. The new program
status is loaded from the Interrupt/Trap Vector Table entry associated with the SC in­
struction. CPU control is passed to the procedure whose address is the PC value con-
tained in the new program status. .

The following figure illustrates the format of the saved program status on the system
stack: .

" ,.. :,. :.' . .' '.~/ '. \,,',.,. " .. : ,:-"~::1", • :.'. :,",i 1""

SP after-
•

SP before-

. .' . " .. ~. ,. .

-1 byte-

low address

high address

. '
p. ~ .' .', ',~ ... '. ," t ","

Flags:

Exceptions:

No flags affected

System Call Trap, System Stack Overflow Warning

Addressing
Mode Syntax

,.'
Instruction Format •

5-132

SC nn

..

-

" Example: SC 0155H

Before instruction execution:

.'

After instruction execution:

pc:

SP:

MSR:

4 6 2 0

F F C 9

4 0 7 F

pc:

SP:

MSR:

9 0 8 8

F F C 3

0 0 2 3

Interrupt/Trap Vector Table Pointer: Data memory:

Physical memory:

(_3_6---'1'----6_2_~

365250:
365251:
365252:
365253:

2 3
0 0
8 8
9 0

. . .., :.
• •• A' • •• ~. , •.' , . ..

FFC3:
FFC4:
FFC5:
FFC6:
FFC7:
FFC8:

5 5
0 1
7 F
4 0
2 0
4 6

'T: t,

Note: The physical memory addresses are 24·bit addresses emitted by the MMU. The data memory addresses are the
16·bit addresses from the CPU.

-

-

-

\
I
•
I
I

\

,,,
I
I

•

\.
I

~ T ••~, ,.,

. ,..' ' . ' .

5 -1 33

..

Before instruction execution:

•

..",

•

. "'.".

F: 1 szxOxv01 I

After instruction execution:

Instruction Format

, • f. "

SCF

Syntax

The Carry flag is set to 1.

S: Unaffected
Z: Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set

SCF

F: I szxhxvnc I

Addressing
Mode

5-134

Example: SCF

Exceptions: None

Flags:

Operation:

SCF
Set Carry Flag

,

SET
Set Bit

SET b,dst dst = R, IR, SX

Operation: dst(b) +- 1

The specified bit b within the destination operand is set to 1. The other bits in the
destination are unaffected. The bit to be set is specified by a 3·bit field in the instruction;
this field contains the binary encoding for the bit number to be set. The bit number must
be between 0 and 7. '

None

No flags affected

Exceptions:

Flags:

Addressing
Instruction FormatMode Syntax -..... _. "-~......""""......._.. ., -

. . .

R: SET b,A 111 001 01111111 b r I
IR: SET b,(HL) 111 001 011 11111 b 110 I

SX: SET b,(XY + d) 111 ca.11 101] 111] 001 011 II d 1111l b 1110 1

Field Encoding: ca. : 0 for IX, 1 for IY

Example: SET 1,A

Before instruction execution: After instruction execution:

A: I 00010100 I A: I 00010110 I

. ,,"' " <0 .,. • •• •
~. • • • .' I

. ~. ~', . ..
,. . ..

5-135

•

. t
~ ,
I,

I
, ~ , 'I. :
f :

I

I

SLA
Shift Left Arithmetic

SLA dst dst = R, IR, SX

. " . "

Operation:

Flags:

tmp +- dst
C +- dst(7)
dst(O) +- 0
dst(n + 1) +- tmp(n) for n = 0 to 6

047-01~o
dst

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the
destination.

5: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise

Exceptions: None

... -" ,.~~ '" .,;~-' .

Addressing
Mode

R:
IR:

SX:

Field Encoding:

Example:

Syntax

SLA R

SLA (HL)

SLA (XY + d)

ell : 0 for IX, 1 for IY

SLA L

Before instruction execution:

Instruction Format

1111 0011 011 II 001 100 1 r I
1111 001 I011 I[001100 1110 I
111Ie1l11 110111111001101111--d-11 0011001110 I

, ~ . '. ,.... .

.
After instruction execution:

!'.

'.

·<

-.... F:
L:

szxhxpnc
10110001

F:
L:

OOxOx001
01100010

·•·•

·,

..
"

5-136

- --==-=='==..="------..--r in

..
.-

SRA
Shift Right Arithmetic

SRA dst dst = R, IR, SX

The contents of the destination operand are shifted right one bit position. Bit aof the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

..

Operation:

Flags:
. '- , . ~.

tmp - dst
C - dst(O)
dst(7) - tmp(7)
dst(n) - tmp(n + 1) for n = 0 to 6

- 7-0 - C~

dst

S: Set if the result is negative; cleared otherwise, .'.-
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1; cleared otherwise

,. -0', _ ,,_ •

Exceptions: None
•

Addressing
Mode

R:
IR:

SX:

Field Encoding:

Example:

Syntax

SRA R

SRA (HL)

SRA (XY + d)

cI» : 0 for IX, 1 for IY

SRA (IX + 3)

Before instruction execution:

Instruction Format

111100110111 [001101 [r]
111100110111 @!ij1011110 I
I 11 IIP11 I 101 I liil 001 101111--d -\100\1011110 I

After instruction execution:

F:
IX:

szxhxpnc
1 0 o •

F:
IX:

10xOxOOO
1 0 0 0

Data memory: Data memory:

1003:

Address calculation:

1000
+ 3

1003

1__10_1_1_10_00_----" 1003:
•

1'----_11_01_11_00__1

5-137

SRL
Shift Right Logical

SRL dst dst = R, IR, SX

Operation: tmp'- dst
C .- dst(O)
dst(7) .- 0
dst(n) .- tmp(n + 1) for n = 0 to 6

0-.1 7 - oH cI
dst

. .

.. ." ~...,. , ' .'. ~ .; ~ "~,,,,,.,""~ ~:.".~ 4·.··

Flags:

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the
destinatior:t.

S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1; cleared otherwise

-. ~.'

Exceptions: None

. ". " "~"''''''''~'':''' ,,:;of" r:I/.' ,' .. ".' ,' •. ,. ~ "

Addressing
Mode

R:
IR:

SX:

Field Encoding:

Example:
,

Syntax

SAL A

SAL (HL)

SAL (XY + d)

~ : a for IX, 1 for IY

SRL B

Before instruction execution:

Instruction Format

WJ0011011 II 00/1111 r I
[ill001 1011 I[0011111110 I
@I~111101 111110011 011/1r---d--11 00 1111 1110 I

After instruction execution:

. ,',...., .

5-138

F:
B:

.~".

szxhxpnc
10001111

.'

F:
B:

ooxOx101
01000111

•

•

..._-------------

..

SUB
Subtract

SUB [A,]src src = R, RX, 1M, IR, DA, X, SX, RA, SR, BX

Operation: A ~ A - src

The source operand is subtracted from the accumulator and the difference is stored in
the accumulator. The contents of the source are unaffected. Twos-complement subtrac­
tion is performed.

--f~

. .

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

and the result is the same sign as the source; cleared otherwise
N: Set

. C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Field Encodings: 4> : 0 for IX. 1 for IY

rx : 100 for high byte. 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example:

Addressing
Mode

5-139

• J.' •
.. •• • _. • • w

addr(low) II addr(high) I
d(low) II d(high) I

4 t
disP(low) Ir-d-iS-P(-h-ig-h)-1

d(low) II d(high) I

S 8 OOxOx010
2 4 5 4

AF:

HL:

2454: 1,--_1_8_I
Data memory:

After instruction execution:
• •

Instruction Format

~0101 r I
@I4>111101 I@I 010 I rx I
IT!] 0101110 II n I
11010101101

IT!] 011 101 I@I 010 1111 I

[jj]111 101 [to] 010 xx I
11114>11 101 ~ 010 110 I
@]111 101 ~010 000 I
[TIJ011 101 ~010 1000 I

... 1111011 101 ~010 Ibx I

4 8 szxhxvnc
2 4 5 4

AF:

HL:

2454: 1,--_1_8__1

Data memory:

Before instruction execution:

SUB A,(HL)

Syntax

SUB A,R

SUB A,RX

SUB A,n

SUB A,(HL)

SUB A,(addr)

SUB A,(XX + dd)

SUB A,(XY + d)

SUB A,<addr>

SUB A,(SP + dd)

.... SUB A,(XXA + XXB)

R:
RX:

1M:

IR:

DA:

X:
SX:

RA:

SR:

ex:
• "t • • ... -

.. ,,, '.----.__._-- .~---~._------------------------------------....-

SUBW
Subtract (Word)

SUBW [HL,]src src = R, 1M, DA, X, RA

Operation: HL +- HL - src
•

, ,

The source operand is subtracted from the HL register and the difference is stored in
the HL register. The contents of the source are unaffected. Twos-complement subtrac­
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

..... '. "':,.",._." .. ~,;'~"., and the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

n(low) II n(high) I
addr(low) II addr(high) I

d(low) II d(high) I
disp(low) II disp(high) I

:' ~.- .
-

1111101 101 1111 rr 110 I
1111 «1111 101 1111101 101 I[!!] 101 110 I
1111111 101 1111101 101 I[ill 111 110JI--~

1111 011 101 1111101 101 I[!!] 011 110 II
[iiJ 111 101 11111011101 I@I xy 110 II
11110111101 11111101 1101 I @]111 1110 II
111 I011 1 101 1111 1101 1101 IQTI001 1 110 I

SUBW HL,RR

SUBW HL,XY

SUBW HL,nn

SUBW HL,(addr)

SUBW HL,(XY + dd)

SUBW HL,<addr>

SUBW HL,(HL)

R:

1M:

DA:

X:
RA:

IR:
: •. ' •••..•• -:'•. r' '.. ."'1 ,I•• ': ~, ••. " .: :: " .~ ' '_",.,... _ ".' "- t.··,;,,:: ,'.,:: ... ,.'~: .. '. ,

Field Encodings: «II : 0 for IX, 1 for IY

rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP

xy: 001 for (IX + dd), 011 for (IY + dd)

Example: SUBW HL,DE
•

Before instruction execution: After instruction execution: •

F:
DE:

HL:

sz.xhxvnc

0 0 1 0

A 1 2 3

F:
DE:

HL:

1OxOx01 0

0 0 1 0

A 1 1 3

•

•

.'

5-140

,
•

"

TSET
Test and Set

TSET dst dst = R, IR, SX

Operation: S +- dst(7)
dst +- FFH

Bit 7 within the destination operand is tested, and the Sign flag is set to 1 if the specified
bit is 1, otherwise the Sign flag is cleared to O. The contents of the destination are then
set to all 1s. For memory operands, the operand is always fetched from the external
memory; on the Z-BUS interface, the status lines indicate a Test and Set operation dur~

ing the memory read transaction.

Between the data read and subsequent write transactions, bus request is not granted.
The data is read from memory, even if it is also present in the cache.

Exceptions: None

S: Set if bit 7 is 1; cleared otherwise
Z: Unaffected . ,.'.. ,., '. ,';", ' ", .
H: Unaffected
P: Unaffected
N: Unaffected
C: Unaffected

- ,

. ." " ~ r

.' ,- ".. ~

• 'y' " " ,', ' ..", ~
", ', ... ' """~.... :,

Instruction Format

lliI 0011 011 I~ 110I r I
lliIo01 10111 @!I1101110 I

[ITI ca.11 1101 IIT!] 0011011 II--d---'II 0011101110 I

.. '" "."

ca. : 0 for IX, 1 for IY

TSET (HL)

TSET R

TSET (HL)

TSET (XY + d)

Syntax

R:
IR:

SX:

Addressing
Mode

, ' ..~. :, . - '. '.

Example:.",

Field Encoding:

Flags:
'" ~ ,

Before instruction execution: After instruction execution:

F: .
HL: o 3

szxhxpnc
8 2

F:
HL:

Ozxhxpnc
0 3 8 2

Data memory: Data memory:

0382: I 00010111 I, , . 0382: I 11111111 I

5-141
....

t
I

TSTI
Test Input

TSTI (C)

;

Operation: F -- test (C)
•

Privileged Instruction (if the Inhibit User 110 bit in the Trap Control register is set to 1)

During the 1/0 transaction, the peripheral address from the C register is placed on the
low byte of the address bus, the contents of the 8 register are placed on address lines
As-A15, and the contents of the 110 Page register are placed on address lines A16-A23·
The byte of data from the selected peripheral is tested and the CPU flags set according­
ly. No CPU register or memory location is modified.

•
:

..., - ", '~'.''-.. ," .. ,'; ,... .~..... . .

'1.....__1O_x_O_X_1o_c__l
• I • .."

~.._ .~ : "_".; .~,'" ~.t,··

F:

After instruction execution:

.. ' '. ,". .!.•.......

..

Instruction Format

@I1011 101 11 011110 I000 I

szxhxpnc

6 0 4 6

1_1_ 2_1

F:

Be:

,-'

Byte 93H available at I/O port 125046H.

Before instruction execution:

Syntax

TSTI, (C)

TSTI (C)

110 Page register:

S: Set if the tested byte is negative; cleared otherwise
Z: Set if the tested byte is zero; cleared otherwise
H: Cleared ...

, .P: Set if the parity of the tested byte is'even; 'deared 'oiher~ise""
N: Cleared
C: Unaffected

,. . ; ..,,' .

"." :...... ", ," .

Addressing
Mode

5-142

Example:

Exceptions:

Flags:

I

",.

".,. -

. ." I _: ',.' ,'. ",. , 1 - . . '.

XOR
Exclusive OR

XOR [A,]src src = R, RX, 1M, IR, DA, X, SX, RA, SR, BX

Operation: A - A XOR src

•

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit
is stored wherever the corresponding bits in the two operands are different; otherwise a
obit is stored. The contents of the source are unaffected.

Flags:

'"

s: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared

• '.""~~', q , , '. '" .': " • ':". • '., ,. ". '. : .': :.,\ •• ~c..".~., - \"""!'}"

Exceptions: None

Addressing
Mode Syntax Instruction Format

Field Encodings: 4> : 0 for IX, 1 for IY

rx: 100 for high byte, 101 for low byte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Before instruction execution: '.

1101101 r I
11114>11 101 11-101 1011rx I
1111101 110 II n I

10 101 110 I
11 011 101 I"--1""'0 1011111 II addr(low) II addr(high) I
11 1111101 I 10 101 xx II d(low) I[d(high) I
11 4>11 1011 10 101 110 II d I
11 111 101 I 10 101 000 II disP(low) II-d-iS-P(-h-ig-h)-\

11 011 101 I 10 101 000 II d(low) II d(high) I
.;,' 11011101110101 bx I ., H" •••.•..•. "L... · ., , ..,

5 0 OOxOx100
2 4 5 4

AF:
HL:

After instruction execution:

4 8 szx:hxpnc
2 4 5 4

AF:
HL:

XOR A,(HL)

XOR A,R

XOR A,RX

XOR A,n

XORA,(HL)

XOR A,(addr)

XOR A,(XX + dd)

XOR A,(XY + d)

XOR A,<addr>

XOR A,(SP + dd)

.. " " XOR A,(XXA + XXB)

R:
RX:

1M:

IR:

DA:

X:
SX:

RA:

SR:

BX:

Example:

Data memory: Data memory:

2454: 1l-.-_1_8_I 2454: 1__1_8__t

• •

5-143

--~---~------------------

high address

low address

-1 byte-

10001110
****0110

Instruction Format

L!il1011101111olo111111 II template 1 II template 2 II template 3 I
I template 4 I

new SP - template address (low) low address
template address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

previous SP -

'~.:", ,", ' .. ' . " '.;~. "','.. " .. ,)'.... . ", ;.,... ,.' ..-:. " .. , ," "{" .'

EPU Internal

Operation

No flags affected

Operation

Extended Instruction

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned.

****0000 high address
- 1 byte-

The format for the EPU template for this instruction is indicated in the following figure:

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in­
dicated by the following figure:

EPU - template

,.,. ,., ',"'"

The template is a 4-byte field.

Addres'sing
Mode

5-144

Flags:

Exceptions:

Operation:

EXTENDED INSTRUCTION
EPU Internal Operation

•
:,; " ,."..-" ,'-., ! •• ',' ~l.·' .'., -,: where ID is the two bit 10 number specifying the EPU to process this instruction

and * indicates bits that encode the operation to be performed.

..•. -.....", ".," .. ~

Operation:

-, .

..'EXTENDED INSTRUCTION
Load Accumulator from EPU

EPU - template
A-EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
data from the EPU is loaded into the accumulator.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in­
dicated by the following figure:

..
I .

. ., ,. '. . ". ,. ~.. ' '. '.,' .••. :.' ••' •.',.__ .,.,~ .••...\.~.••. '•..-. .•. ,".f· .f'.' ,. ~'''':.,' :-'.•.: ',: . ""'~'. '.'"
~ ' ..• ' '.. .. '_r,:•. ·'"ll'._ ., ••••:,. (. ~ "" " ...• ~ •• - ":. •." ':"."1'" .',"'." \0,.... " ••.• ~.~ ••:.,' ", "." ~

new SP template address (low) low address
template address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

previous SP
-1 byte

high address

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address
****OOID
****0000
* * * *0000 high address
- 1 byte

.

Flags:

Exceptions:

where ID is the 2-bit 10 number specifying the EPU to process this instruction and * in­
dicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned. The CPU
places the data on ADa -AD15 into the accumulator.

s: Set if the byte loaded into the accumulator has a 1 in bit 7; cleared otherwise
Z: Set if the byte loaded into the accumulator is zero; cleared otherwise
H: Cleared .
P: Set if the parity of the byte loaded into the accumulator is even; cleared otherwise
N: Cleared
C: Unaffected

Extended Instruction

5-145

..

!
t
•

Addressing
Mode

I•
I

1

Operation

A - EPU

The template is a 4-byte field .

•

Instruction Format

[1111011101 1110 1010]111 II template 1 II template 2 " template 3 I
I template 4 I

. .

. ~ .. ", - . ~.~.
..). .' . I ~ , .•

I
. ... ,' " . , ~', .

.
>.

',' ,... ". ,_.", J' '.

~..

. 'r' " •' '. • •• _'l' '- • J •' \ •. ¥.~' I' : .. . " .'.: ." ''!. • ,"' :.. " '. '.J. " ~
" ..

~ "','., "." '.::: . ~" ,...• ," - ..

..
•

, , ..

5-146

~-------_.~ _!I!I.---- •1
•

EXTENDED INSTRUCTION
Load E,PU from Memory

-- -

.,
src = JR, OA, X, RA, SR, BX

Operation: EPU ~ template
EPU ~ src

. , ~ ,.' . " " ~

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed on
the input operand. Next the data starting at the memory location determined by the
source calculation is fetched from memory and loaded into the EPU; successive trans­
fers are performed until the entire operand has been fetched. The number of bytes in the
source operand is encoded in the fourth byte of the template. For PC Relative
addressing mode, the address of the template is used instead of the address of the next
instruction. '

• ,.... '. • I ,

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the following instruction, Master Status
register (MSR), operand logical address, and template logical address. The format of the
system stack after the trap is indicated by the following figure:

new SP -- template address (low) low address
template address (high)
operand address (low)
operand address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

previous SP --
~ 1 byte--

high address

• :'. r:

, The format for the EPU template for this instruction is indicated in the following figure:

n - 1 high address
~ 1 byte--

where p encodes whether the data resides in program memory (p = 1; Relative ad­
dressing mode) or data memory; 10 is the 2-bit 10 number specifying the EPU to process
this instruction, * indicates bits that encode the operation to be performed, and n
specifies the number of bytes of data to be transferred to the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers to the EPU.

low address

Op001110
****0110

". ...

Flags: No flags affected

5-147

11
!

"' .

OA:

X:

RA:

SR:

BX:
., " .

EPU - (addr)

EPU - (XX + dd)

EPU -<addr>

EPU - (SP + dd)

EPU - (XXA + XXB)
.' ,

Instruction Fonnat

(1111011101111011001110 II template 1] I template 2 I(template 3 I
I template 4:1
111 11011101 1Ir--~01100 1111 II addr(low) II addr(high) II template 1 I
[template 2 II template 3 II template 4]

11111011101 11101 xx 1100] I d(low) 11r---d-(hi-gh-)-II template 1 I
I template 2 II template 3 II template 4 I
1111101 [1:01 11101100 1100 11 disP(low) II'-~-is-p(h-ig-h)-Il template 1 I

I template 2 II template 3 II template 4 I
11111011101 I[10I0001100 II d(l~w) II"---d-(hi-gh-)-I {template 1 I
I template 2 II template 3 II template 4 I

, 11111011101 11101 bx 1100 II template 1 II~t-em-p-la-te-2--'1 (template 3 I
I template 4 I

Field Encodings: xx: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

All templates are 4-byte fields.

'.•

5-148

.... '. : ;.~, . , . " . ~. .

, .

, . , .- . '" .. ." .

I

:

• '. ,I
• • ,.of 6

\ l • '.. • ~

..•

•

.. EXTENDED INSTRUCTION
Load Memory from EPU

dst = IR,OA,X,RA,SR,BX

Operation: EPU - template
dst - EPU

....

, .' :.

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
the data from the EPU is stored into memory starting at the location specified by the
destination address; successive transfers are performed until the entire operand has
been stored. The number of bytes in the source operand is encoded in the fourth byte of
the template. For PC Relative addressing mode, the address of the template is used
instead of the address of the next instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
.. initiated. The trap causes the following information to be pushed onto the system stack ",

(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), operand address, and template address. The format of the system stack
after the trap is indicated by the following figure:

new SP -+ template address (low) low address
template address (high)
operand address (low)
operand address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

previous SP -+
-1 byte-+

high address

, , ... ~. ,

The format for the EPU template for this instruction is indicated in the following figure:
" .; . '.', .. , ,

Op001110 low address
00001110

.... ';' " .'. '

n - 1 high address
-1 byte-+

where p encodes whether the data resides in program space (p = 1; Relative address­
ing mode) or data memory; 10 is the 2-bit 10 number specifying the EPU to process this
instruction, * indicates bits that encode the operation to be performed, and n specifies
the number of bytes of data to be transferred from the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers from the EPU.

5-14Y

Exceptions:

Addressing
Mode

Flags:

IR:

DA:

X:

RA:

SR:

BX:

·.."":'i~ :••:

No flags affected

Extended Instruction

Operation

(HL) - EPU
•

(addr) - EPU

(XX + dd) - EPU

<addr> - EPU

(SP -f dd) - EPU

(XXA + XXB) - EPU

i

Instruction Fonnat

111101 \101 11011011110 II template 1 II template 2 1\ template 3 I
template 4 . .

11/1011101 10 '-10-1""-11-11""'" [addr(low) II addr(hi9!iJ I template 1 I
template 2 template 3 II template 4 I

[t1] 1011101 I 10 Ixx 1101 II d(low) Il-d-(h-lg-h)----,II template 1 I
I template 2 I template 3 template 4 I
1111 101 1101 I 10 1100 1101 disP(low) IIr-d-iS-P(-h-lg-h)--;11 template 1 I
I template 2 II template 3 template 4 I
liiJ 1011101 11101000 1101 d(low) I\-d(-hl-gh-)-II template 1 I

I template 2 II template 3 template 4 I
liiJ 1011101 1110 Ibx 1101 template 1 II-t-em-p-la-te-2-11 template 3 I
I template 4 I

Field Encodings: xx: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY). 011 for (IX + IY)

All templates are 4-byte fields.

i

,·::1 ,'.1::". !~.,.:j~~.....r.-.·,· '.- ~,:",:.:,:, .•,,,:~(,, " '-,It~ ~ ... :.~ •.. , '.'~.

5-150

.,') ., :. ", \ .;

! "

. ,~. "';, ',I '.:'1': ;- .:' .', ~"f.·l"'l " " •..•.. \.\! '. ','

..

Chapter 6.
Interrupts and Traps

Table 6-1. Grouping of Maskable Interrupt Requests

Members of Interrupt Group

Maskable Interrupt A line

Counter ITimer 0, DMA Channel °
Maskable Interrupt B line
Counter ITimer 1, UART Receiver, DMA Channel 1

Maskable Interrupt Cline

UART Transmitter, DMA Channel 2
Counter ITimer 2, DMA Channel 3

, .~

6-1

o
1

2
3
4

5
6

Enable bit in MSR

There are sevell maskahle interrupts In the Z280
MPU architecture. Three of these interrupts are
external inputs to the device (Interrupts A, S,

and C); the other four maskable interrupts are
asserted by the on-chip peripherals. The seven
Interrupt Request Enable bits in the Master Status
register contrlll w~ich of the requested interrupts
are accepted. Interrupt requests are grouped as
listed in Tahle 6-1, with each grOIJp controlled by
a separate Interrupt Request EnabLe bit. The list
is presented if) order of decreasing priority, witl)
sources within a gruup listed in order of
decreaBing priority."1" ',. .' ,

•

Interrupts are always accepted between instruc­
tions. The block move, block search, and block
I/O instructions can be interrupted after any
iteration.

The Enable Interrupt (EI) instruction is used to
selectively enable the maskable interrupts (by
setting the appropriate bits in the MSR to 1) and
the Disable Interrupt (01) instruction is used to
selactively disable interrupts (by clearing the
appropriate bits in the MSR to 0). When an
interrupt source has been disabled, the CPU
ignores any requests from that source. Because
maskab le interrupt requests are not retained by
the CPU, the request signal on a maskable
interrupt line must be asserted until the CPU
acknowledges the request.

When enabling interrupts with the EI instruction,
all maskable interrupts are automatically disabled
(whether previously enabled or not) for the
duration 0 f the execut ion of the EI instruct ion
and the immediately following instruction.

the
CPU

interrupts,

can alter
The Z280

Exceptions are conditions that
normal flow of program execution.
supports three kinds uf exceptions:
traps, and resets.

6.2 INTERRUPTS

A hardware reset overrides all other conditions,
including interrupts and traps. It occurs when
the RESET line is activated, and it causes certain
CPU control registers to be initialized. Resets
are discussed in detail in Chapter 11.

6.1 INTRODUCTION

Two kinds of interrupts are activated by four dif­
ferent pins on the Z280 MPU. The nonmaskable
interrupt (NMl) is an interrupt that cannot be
disabled (masked) by software. Typically, NMI is
reserved for high-priority external events that
need immediate attention, such as an imminent
power failure. Maskable interrupts are interrupts
that can be disabled (masked) via software by
clearing the appropriate bits in the Interrupt
Request Enable field of the Master Status regis­
ter.

,

Interrupts are asynchronous events generated by a
device external to the CPU; peripheral devices use
interrupts to request service from the CPU. Traps
are synchronous events generated internally in the
CPU by particular conditions that can occur during

,:', the attempted executiun of an instruct ion. Thus, " '.
the difference between traps and interrupts is
their origin. A trap condition is always repro­
ducible by re-execut ing the program that created
the trap, whereas an interrupt is generally inde­
pendent of the currently executing task.

. ,

I

i

fhe Z280 CPU has four modes fur h:mdl inq exter­

~lall)" gene,aled interrupts, selectable UB\~lq the

IM instruct lone The fin;t three mudes extend ttle
lSO CPU interrupt m-.Jdes tu accom~lll!dab~ the Z280

MPU's additiunal .\nterrupt inputs ill a c..Jmpatible

fashi·Jn. The fourth mude allows mure flexibility
in interrupt handling, providing support for

rmsted i'lterrupts and a ~3uphisticated vectoring

scheme. The on-chip peripherals al\~ays use t'lis

fourth interrupt mude, 'regard I ess of flhi·~;h mode is

selected fuf the external intenupts. The cut'rent
interrupt mude i~l ef teet can be read frum the

Interrupt Status register.

Request [nable bits in the ~~aster St.atus t·I~,}ist.er

to be cleared tu 0, which puts the CPU in B)·stem

morle wi.th sinqle-stepp_inq di:'abled. fhe preliioJs

cunditi·JIi uf the ~"SR is not saved. The r::urrent

value in the PrlJgram Cuunter is pushed ontu the

system-mude stack. r or nonmaskable irtterrupts,

the constant 0066H is then loaded into the Pru­

gram Cuunter; thus, 0066H is the starting

address of the nonma3kable irtterrupt service rou-

ti.1e. ror maskable interrupts, the constant

0038H is loaded into the Program Counter;

OOJ8H wi 11 be the start ing address of the mask­
able int.errupt service ruut.ine. These logical

addresses can be cunverted to physical addresses

by the MMU.

6.2.1 Interrupt Mode 0

For nonmaskable interrupts, the current value in

the Program Counter is saved on the system stack,

using the System Stack Pointer, and the constant

0066H is loaded i!"lto the Program Counter. Loca­

tion 0066H in system program memory is, then,
the starting logical address of the nonmaskable

interrupt service routine; this logical address

can, of course, be translated into a physical mem-
l~'0I:'Y . address by the MMU. ,'........,...... ." .··'i~!"~·: ,'....J. '.

Interrupt mode 2 is a vectored interrupt response

mode for maskable interrupts, wherein the inter­
rupting device identifies the starting location uf

the service routine using an 8-bit vector read by

the CPU during the interrupt acknowledge cycle.

An externally generated interrupt (maskable or

nonmaskable) causes the User/System bit, the Sin­
gle-Step hit, and the Interrupt Enable Request

bits in the Master Status register to be cleared

to 0, which puts the CPU in system mode with
~i'lgle-stepping di;::;ab led. The prev iuus condit ion

of the MSR is not saved. The current value in the
Program Counter is pushed onto the system mode

stack.

ror nonmaskable i~terrupts, the constant 0066H
is then loaded into the Program Counter; thus,

0066H is the starting address of the nonmaskable
interrupt service routine. r or maskab le inter­
rupts, the prugrammer r.lust maintain a table in

memory of the 16-bit starting addresses for every

maskable interrupt service routine. This table

can be located anywhere in the system mode data

memory address space, starting on a 256-byte mem­

ury boundary. When a maskable interrupt is

accepted, a 16-bit pointer into this table is gen­

erated ill order to select the starting adljress of

the appropriate service routine from the table

entr ies. The peripheral generating the interrupt

places an 8-bit vectur on the data bus in response

tQ the interrupt acknowledge. This vector becomes

the lvwer ~ight bits of the pointer into the

tab leo The upper ei':Jht hits of the pointer are
the cuntents of the I register. This point.er is

treated as an address in the system data rnemoq

space that can be translated to a physical addre~s

by the r~MU. The actual logical address of the

service routine is found by referencing the word

located at the address formed by concat.enating the

I reg ister' s cuntents with the vector. r igure 6-1

. ,.-, ' ". " .. ":',' ,

6.2.J Interrupt Mode 2

_ •• ':' _•••" ." .._. ,.. .' •••••• '_~.'.' w·"

For maskab Ie interrupts, the interrupt ing device

must place a Call or Rest.art instruction opcode on

the data bus during the interrupt acknuwledge bus

transact ion. The l280 CPU reads t'lis opcode and

executes it; thus, the interrupt ing device,

instead of memury, provides the first instruction

of the serVl.ce routine. Typic:ally, a Restart

instructiun is used, since the Restart opcode is

only one byte long, meaning that the interrupting

peripheral needs to supply only one byte of infor­

mation. Alternatively, a 3-byte call to any loca­

tion can be executed.

In illterrupt mude 1, the 1280 CPU automatically

executes a Restart to a fixed locat ion when an

interrupt occurs. An externally generated inter­

rupt (maskable or nonm3skable) causes the User/

System bit, the Single-Step bit, and all Interrupt

6.2.2 Interrupt Mode 1

Interrupt mode 0 1S similar to the B080 CPU

interrupt response mude. For mode 0, an exter­

nally generated interrupt (maskable or nonmask­

able) causes the User/System bit and the 5ingle­

Step bit in the Master Status register to be

cleared to 0, thereby placing the CPU in system

mode with single-steppi'lg disabled. All the

Interrupt Request Enable bits in the MSR are also

cleared to zero, which disables the maskable

interrupts. The previous condition of the MSR is

'lot saved.

1··'\-'·;_,I".i· .•.•• : ,"

.. , " -'. ",. ' .

6-2

NOTES:
1. Interrupt vector generated by peripheral is read by CPU during interrupt"" """ . ('" '."'

acknowledge cycle.
2. Vector combined with I register contents form 16-bit memory address

pointing to vector table.
3. lWo bytes are read sequentially from vector table. These two bytes are

read into the PC.
4. Processor control is transferred to interrupt service routine and

execution continues.

In interrupt mudes 0, 1, and 2, a nonmaskable
interrupt automatically disables all maskable
interrupts (as ill the Z80 CPU). All of the Inter­
rupt Request Enable bits (bits 0 through 6 in the
HSR) are copi.~d to a :>pecial regi:~ter in the CPU
called the Interrupt Shadow r8':]ister. The Inter­
rupt Request [nab 1e bits are then cl enred t.o all
zeros. A Return fr'Jm Nunmaskable Interrupt
instruction restores the previous settings lIf the
Interrupt Request Enable bits by copyir:g the con­
tents of the lntp-rrupt Shaduw register into bits 0

uneonly1he nesting i.s

the l80 CPU).

Interrupt mude 3 ~s always used for prCJcessi',g
interrupts from the Z280 MPU' '3 un-chip periph­
erals, regardless uf which mude is selected for
the exter.nal interrupt ~equests.

•

lable 6-2 sum~arizes i~terrupt prucesslflg for all
four- mudes.

Interrupt mode 3 is the intended mude of operation
when using the advanced features of the Z280 MPU
architecture, such as system and user modes and
Ri~gle'-stepping, si~ce the Master Status register
of the interrupted task is automatically saved and
another loaded for the service routine. Thl,s
allows each service routine tu be executed in the
appropriat.e mude without. affecting the status of
the interrupted task. !Uso, vector tables can be
provided for both maskable and nunmaskable inter­
rupts when in !nude 3.

Interrupt mode 3 exploits the advanced features uf
the Z280 MPU architecture. When an interrupt
request is accepted (maskable ur nonma~kable), the
Master Status register, Program Counter, and a
16-bit "reason code" are automatically stored .:.In
the system-mode stack. Next, new val ues for the
MSR and PC are retched frum a tab le in memor)
called the Interrupt/frap Vector Table, thereb)'
determining the operating mudes and starting
address of the service routine (see section 6.5).

The reason code for external I y generated inter­
rupts is the contents of the data bus during the
interrupt acknowledge, ~ld is usually supplied by
the interrupting device. r'Jr a-bit data bus con­
figuratiuns of the Z280 MPU, the upper byte of the
reason code is all zeros. for interrupts from the
on-chip peripherals, the reasun code is identical
to the vectur address in the Interrupt/Trap Vector
Table, thereby identifying the interrupting
device. The lnterrupt/Trap Vector Ta':lle P'Jinter
('egister in the CPU ~s used to reference the
Interrupt/Trap Vector Table durillg mode 3
interrupt processi~g.

6.2.4 Interrupt Mode J

through 6 0 f th~ MSR.
level deep (agai.ri, a~i in

For a zao Bus configuratiun of the Z200 MPlJ, orrly
;lOe interrupt l i'1e (ej the!' Interrupt A, 1nterrupt
S, or Interrupt C) san be used if interrupt ~odes

0, 1, or 2 and the ZSO family peripherals ar-e
used; LBO peripher31s b!ing ser~iced on multiple
interrupt lines wuuld all be affected by a Return
fro~ Jnterrupt (REf 1) instruction.

VECTOR
TABLE

MEMORY

e'. ents fur prucess ing
A reset clears the I

Mode 2 Interrupt ProcessingFigure 6·1.

The Master Status register is not saved when proc­
essing interrupts under interrupt modes 0, 1, and
2. I f the Z280 CPU is running in the user mode
when an interrupt occurs, the MSR is automatically
changed to system mude when the interrupt is
acknowledged, without recording the previous user
mode of uperat ion. Simi 1ar 1y, the sing l e-step
mode and the maskable interrupts are automatically
disabled during interrupt processing, with no sav­
ing of the previous status. Thus, tu resume proc­
~sslng of an i.rlterrupted user-mode progr8m after
the execution of an interrupt service routine, the
operat ing system must change the Master Status
register in order to switch back tu user mode; the
Return from Interrupt Long instructi~n can be used
for this purpose.

CPU

illustrates the ~equence uf
m~de 2 maskabte interrtlpts.
register to all zer~s.

,

CD
LOW ORDER

HIGH ORDER

PC

15-8 7-0 0
CDI

INTERRUPT
SERVICE ROUTINE

,
.

CD
PERIPHERAL

INTERRUPT VECTOR

•

"

,
,

"'\ ~ ,',

6-3

START
The Single-Step trap facilitates the debugging of 2280
CPU code. The following text explains four methods
for entering single-step operations.

SINGLE-STEP TRAP

YES

CLEAR
SINGLE-STEP
PENDING BIT

NO

COpy SINGLE­
STEP BIT INTO
SINGLE-STEP·
PENDING BIT

a.

•

b.

PUSH a PC value for the instruction you wish to
jump to.

PUSH an MSR value with the desired combination of
the Single-Step (SS) and Single-Step Pending
(SSP) bits.

Execute and RETIL instruction.

Execute a LDCTL instruction with the desired
combination of the SS and SSP bits.

EXCEPTION
PROCESSED

YES

EXECUTE
INSTRUCTION

NO

c. Execute a System Call (SC) with an identifier that
you reserve for a single-step entry.

POP the identHier and branch to the remaining
single-step code routine.

POP the MSR.
" :: ' , ...

Set the desired combinations of SS and SSP.
PUSH the new MSR.
Execute the RETIL instruction.

Figure 6-2. Instruction Execution Sequence

Instructions that cause a trap but will be re-executed

Th is method can be used on1yin the User Mode of
operation.

Both interrupt and trap routines can be single-stepped
by setting the appropriate SS and SSP combination in
the MSR entry in the Interrupt/Trap Vector Table.

page fault) automatically
PUSHed MSR. Th is ensures
trap wi II occur for these

POP the MSR.
Set the des ired combi nat ions of SS and SSP.
PUSH the MSR.
Restore the instruction byte that the HALT opcode

replaced.
Execute the RETIL instruction.

(ie: privileged, divide,
clear the SSP bit in the
that only one single-step
instructions.

d. Use the "Breakpoint-on-Halt" trap by substituting
a HALT opcode for the first byte of an instruction
where single-stepping is to start. The trap service
routine should look something like this:

When executing a Return From Interrupt Long
(REIIL) instruction to return from an interrupt or
trap service routine, the Single-Step Pending bit
in the MSR for the interrupted program is the OR
of the Sing 1e-Step Pending bit in the MSR of the
service routine and the Single-Step Pending bit in
the MSR value that was saved during trap proces­
sing. Thus, if the service routine was being exe­
cuted in single-step mode, a Single-Step trap
occurs after execution of the RElIL instruction,
before resumption of the interrupted program.

actual trapping instruction is saved on the stack
(as opposed to the address of the next
instruction). The trapping instruction can be
re-executed upon returning from the trap service
routine, in which case another Single-Step trap is
not desired before instruction execution.
Similarly, the Single-Step Pending bit is
automatit:::ally deared by a Single-Step trap, to
ensure that only Olle Sirlgle-Step trap occurs per
instruction.

'"!'. .',".:."' ,,\ •••,:.... ; '~" ;...;t' ..~

The following informat. ion is saved on the system
stack when processing a Single-Step trap: the
address of the next instructiun and the t~SR (in
that order).

.'

, .
, l 6-6

Table 6·3. Trap Types

Can be
Trap Type Disabled Status Saved

.'

Extended Instruction Yes Address of next instruction•

MSRvalue

Address of operand in memory (if applicable)

Address of EPU template

Privileged Instruction No Address of instruction causing trap .

MSR value

System Call No Address of next instruction

MSR value
16-bit reason code from SC instruction

Access Violation No Address of instruction causing traptt.
l

MSRvalue

System Stack Overflow Yes Address of next instruction
MSRvalue

Single-Step

. ,

Address of next instruction
MSRvalue

Address of instruction causing trap
MSRvalue

No

Yes
~ .. ' . .

Division Exception

(> .' ~. "~,. ... , •• ~ ".-:'" '.. • ' ••• ,

Breakpoint-on-Halt Yes Address of Halt instruction
MSR value

The Breakpoint-on-Halt trap occurs if a Halt
instruction is encountered whi Ie the Breakpoint­
on-Halt Enable bit in the MSR is set to 1. The
following information is saved on the system stack
when processing a Breakpoint-on-Halt trap: the
address of the Halt instruction and the MSR (in

that order).

6.3.8 Breakpoint-on-Halt Trap

6.4.1 Interrupt Ackno.tedge

The ZZ80 CPU response to an interrupt request or
trap condition consists of up to five steps:
acknowledging the external request (externally­
generated interrupts only), saving current program
status, loading new program status, executing the
service routine, and returning to the interrupted
program. Interrupts are accepted and processed
between instructions, with the exception of the
block move, search, and I/O instructions, which
can be interrupted bet'ween any iteration. Traps
are detected during instruction execution, with
the exception of the Single-Step trap, as
described previously. Thus, a trap condition is
processed before handling any pending interrupts.

6.4 INTERRUPT AND TRAP HANDlING

.,. ..

Interrupt A

Nonmaskable Interrupt

Interrupt B

Interrupt C

Interrupt Being Acknowledged

. . .'.

o
1

o
1

Table 6·4. Interrupt Acknowledge Encoding

for Z80 Bus Configuration

o
o
1
1

1

The Breakpoint-on-Halt trap provides a breakpoint
facility that is useful in debugging environments
in which breakpoints on instruction boundaries are
desired.

An interrupt acknowledge bus transaction is
required only for externally-generated inter­
rupts. The main effect of the interrupt acknowl­
edge is to establish communication between the
requestor and the ZZBO CPU.

The trap types and the status saved during the
processing of each trap are summarized in Table
6-3.

For Z80 Bus configurations of the Z280 MPU, the
type of interrupt being acknowledged is indicated
on bus lines AD1 and ADZ while the Address Strobe
is being asserted during the interrupt acknowledge
cycle, as per Table 6-4.

6-7

•

For the zao Bus configurations of the Z200 MPU, no
external acknotlledge cycle is generated for
nonmaskable interrupts in interrupt modes 0, 1,

and 2, or for maskable interrupts in interrupt
mode 1. For maskable interrupts in interrupt
modes 0, 2, and 3, and for nonmaskable interrupts
in mode 3, 8-bit data is read from the ADO-AD7 bus
lines during the acknowledge cycle; this data is
used as dictated by the interrupt mode in effect,
as described in section 6.2. For maskable

•

interrupts in interrupt mode 0, successive bytes
are read on ADO-AD7 until a complete instruction
has been fetched, via repetition of the
acknowledge cycle.

saved when processing maskable interrupts. For
interrupts in interrupt mode 1 or 2, the Program
Counter is automatically saved. For interrupts in
interrupt mode 3, the Program Counter and MSR of
the interrupted task are saved, followed by the
"reason code" (Figure 6-3). For external inter­
rupt requests, the reason code is the value read
from the data bus during the interrupt acknowledge
cycle; the upper byte of the reason code is all
zeros for a-bit data bus (zaO Bus) configurations
of the Z280 MPU. For interrupts from the on-chip
peripherals, the reason code is the offset address
in the Interrupt/Trap Vector Table that
corresponds to the MSR value entry for that
interrupt type.

, .
MSR

PC

t--------I LOW ADDRESS

REASON CODE

t--------I HIGH ADDRESS

"'--1WORD-_~

SYSTEM STACK
POINTER AFTER-~

INTERRUPT

SYSTEM STACK
POINTER BEFORE - ...

INTERRUPT

For Z-BU5 configurations of the Z2aO MPU, any
interrupt from an external source is
acknowledged. The type of interrupt being
acknowledged is indicated by the STO-ST3 status
lines during the acknowledge cycle. A word of . ': ' ,
data is read from the address/data bus during the
acknowledge cycle and used as dictated by the
interrupt mode in effect. For interrupt modes 2
and 3, the lower byte of this data is used as the
interrupt vector. For maskable interrupts in
interrupt mode 0, successive bytes are read on
ADO-AD7 until a complete instruction has been
fetched, via repetition of the acknowledge cycle.

"; \ .~,.,' i' "1"<' "

Acknowledge cycles are always executed in system
mode, regardless 0 f the mode of the interrupted
program. The MSR of the interrupted program is
not affected by this change in mode. The CPU
stays in system mode until the start of execution
of the service routine. In interrupt modes 0, 1,
and 2, the service routine starts in system mode;
in interrupt mode 3, the MSR of the service rou­
tine is determined by the contents of the Inter-

.;. I. _ .••• ,~." •• ',"'w.-,'-,-,.·~ ,.",'"

rupt/Trap Vector Table.

Figure 6·3. Format of Saved Status on
System Stack Due to a Mode 3 Interrupt

The Program Counter value saved during interrupt
processing is the address of the next instruction

•
in the interrupted routine, except for interrupts
dur ing block move, block search, and block I/O
instructions. The block instructions can be
interrupted between anyone iteration of their
operation, in which case the PC value saved is the
address of the block instruction itself.

Interrupt requests from the on-Chip peripherals
never generate an acknowledge cycle and are always
processed using interrupt mode 3. Similarly,
traps do not generate acknowledges.

The status saved as a result of a trap depends on
the type of trap being executed, as noted in
Figure 6-3. The .PC and MSR values are always
saved during trap processing, along with other
trap-dependent information.

6.4.2 status Saving

During exception processing, the status of the
interrupted program is saved on the system stack.
In interrupt mode 0, the Program Counter is auto­
matically saved when processing nonmaskable inter­
rupts; the instruction returned by the peripheral
dev ice will determine what status information is

If any memory write operation involved in saving
status information during interrupt or trap proc­
essing causes a memory access violation, a special
"fatal condition" is entered, as described in sec­
tion 6.6.

•

,

6-8

_.

t,

I

I

I

" . '" " "

,.

6.4.3 loading New Program Status

After saving the status of the interrupted pro­

gram, new program status values (i.e., new values
'for the PC and MSR) are automatically loaded, in

accordance with the interrupt mode arId any data

read during the acknowledge cycle. This new pro­

gram status determines the operat ing modes and

starting address of the service routine.

For externally generated interrupts in interrupt

modes 0, 1, and 2, the Master Status register is

automatically modified to specify system mode with
the Single-Step trap and all maskab Ie interrupts

disable~. For externally generated interrupts in

interrupt mode 3, all internally generated inter­
rupts, and all traps, the new MSR value is loaded

from the Interrupt/Trap Vector Table.

For externally generated maskable interrupts proc­
essed using interrupt mode 0, the first instruc­
tion of the service routine is supplied by the
interrupting device. This must be a Call or

Restart instruction that loads the PC with the
starting address of the service routine. For non­
maskable interrupts in interrupt mode 0, the PC is
set to 0066H, and all maskable interrupts are
automatically disabled.

In interrupt mode 1, the PC is set to 0038H for

externall y generated maskab Ie interrupts and to

0066H for nonmaskable interrupts.

For externa11 y qenerated mCiskab Ie interrupts in

interrupt mode 2, the PC is fetched from an Inter­
r\Jpt Vector table in system data memury; the logi­
cal address of the fetched PC value is formed by
concatenating the contellts of the I register with
the 8-bit vector returned by the interrupting
device during the acknowledge cycle. For nonmask­
able interrupts, the PC is set to 0066H•.. ,

For externa11 y generated interrupts in interrupt
mode 3, all internally Qenerated interrupts, and
all traps, the PC and MSR values for the service

routine are fetched from the Interrupt/Trap Vector
Table (see section 6.5). The new value fur the
MSR is at a fixed location ill this table. Exter­
nally generated interrupts can be vect()red or
norlvectored in interrupt mode 3, as determirled by
the contents of the Interrupt Status register.

For nonvectored interrupts and all traps, the new
PC value is at a fixed location in the Inter­
rupt/Trap Vector Table; for vectored interrupts,

the locatiorl of the Ilew PC in the table is deperl­

dent on the 8-bit vector read durinq the acknowl­
edge cycle.

The value loaded int.o the ProqrClm Counter during
exception processing is a logical address that can

.,- . " .

be translated to a physica 1 address by the Mt~U

when the CPU fetches the first instruction of the

service routine.

6.4.4 Executing the Service Routine

In interrupt mode 0, the illterrupting device pro­

vides the Restart or Call instruction that begills

the service routine; this instruction saves the

Program Coullter vallJe of the interrupted routine

and provides the address of the service routine.

In the other interrupt modes and for traps, the

startillg address of the service routine is deter­

mined automatica 11 y during interrupt processing,

as described in the preceding section. This pro­

gram is now executed.

For externally generated interrupts in inter fupt

modes 0, 1, and 2, all maskable interrupts are

automatically disabled; therefore the service rou­
tine is protected from additional interrupts ulltil
the MSR is altered via a Load Control, I='nable

Interrupt, Return from Nonmaskab 1e I nterrupt, or

Return from Interrupt Long instruction. Inter­

rupts in mode 3 and all traps caU!3e a new MSR to

he loaded from the Interrupt/Trap Vector Table;

the value of this MSR determines which interrupts
are enabled during the service routine. Service
routines that ellable interrupts before exiting
permit interrupts to be handled in a nested fash-
•l.on.

6.4.5 Returning from a Service Routine

Three differellt instructions are available for
returning from an interrupt or trap serv ice rou­
tine: Return from Nonmaskab Ie Interrupt, Return

from Interrupt, and Return from Interrupt Long.
All three are privileged instructions, since they
must retrieve values from the system stack.

The Returrl from Nonmaskahle Interrupt (REfN)

instruction is used to return from nonmaskab Ie
interrupts in interrupt mudes 0, 1, and 2. This

instruction pops the word on the top of the stack
into the Program Counter, restoring the Program
Counter value present before the interrupt, and

loads the Interrupt Request Enable bits in the MSR
with the contents of the Interrupt Shadow regis­
t.er.

•

The Return from Interruot (RETI) instruction is,

used to return from externally generated maskable
interrupts in interrupt modes 0, 1, and 2. This
instruction pops the word on the top of the stack

into the Prugram Counter, which restores the Pro­

qram Counter value present be fore the interrupt.
The RETl instruction also causes a sper.ial bus

6-9

._._. __ . ..__ . __~ ._5. ;= & 2 2_

•

If an irlterrupt request is received from an
external source on interrupt line A under
interrupt mode 3 and that interrupt request is
enabled (bit 0 in the t-1SR is set to 1), then
interrupt proce!)sinq proceeds as follows:

reque:,t is enabled (bit 1 in theMSR is set to 1),
thp- interrupt is processed as fa llows: the r:urrent
PC and MSR values are saved un the system stack;
an ir:lent if leI' '1wrd wi th the value 14H is saved
on the system stack; a new value for the MSR is
fetched from location 14H in the Interrupt/hap
Vector Table; a new value for the PC is fetched
from location 16H in the Interrupt/Trap Vector
Table; execution of the service routine is begun.

whir.h

during the
system stack

from t.he bus
is saved un the
word.

and MSR values are saved on the

The data read
acknowledge cycle
as the identifier

The current PC
system stack

An acknowledge cycle is executed, during
data is read from the external data bus.

•

•

transact: ion that fetches thi:; instruct ion from
external memory (reqardless of whether it is con­
tained in the on-chip cache), with the appropriate
hus control and status signals to indicate that an
instruction fetch is occurring; this is used to
reset the interrupt logic of the l80 family
peripherals.

The Return frum Interrupt lonq (REfIl) instruction
is used to return from interrupts in interrupt
mode 3 and all traps, since it causes both the MSR
and PC va lues to be popped from the stack. If
this instruction is used to return from an inter­
rupt processed with another interrupt mode (e.g.,
if REflL is used to return from a mode 2, instead
of a mode 3, interrupt), an MSH value must be
pushed onto the stack in the service routine ;lrior
to execution of the RET lL. f or inter rupts in
interrupt mode 3 and all traps, the service

' ••~~; ",•••••.. -,. _N' routine must pop the reason code or other ., - •.
trap-dependent information off the stack before
executing REflL. Unlike RETI, RETIL causes no
special bus activity and, therefore, cannot be
used to automatically reset Z80 family periph­
erals.

INTERRUPT/TRAP VECTOR fABLE
• A new value

location OSH

Table

for
.
1.n

the
the

MSR is fetched
Interrupt/Trap

from
Vector

~< ' ... ' " '. ~ ',' " .

During interrupt processing under interrupt mode 3
and all trap proce!)sing, the PC and MSR values
that determine the starting location and operating
modes of the appropriate service routine are
fetched from a table in memory ca lIed the Inter­
rupt/Trap Veet/Jr fable. This table holds an MSR
and PC value for the service routine for every
possible type of interrupt and trap. The particu­
lar values fetched from the table during exception
processing are a function of the type of exception"
that occurred and, for vectored external inter­
rupts, the vector returned by the peripheral dur­
ing the acknowledge cycle. The format of the
Interrupt/Trap Vectur Table is given in Table
6-5. Each entry in the Interrupt/Trap Vector
Table cOllsists of two words--an MSR value followed
by a PC value. If an external interrupt is vec­
tored, as determined by the contents of the Inter­
rupt Status register, the 8-bit vector retlJrfled by
the peripheral is used as an index into a list of
up to 128 possible PC valuen for the service
routine; only even-valued vectors are supported by
the Z280 CPU architecture. Thus, for a vectored
interrupt, there is only one start:lnq MSR value
for all the possihle service routines, but up to
128 potential PC values. The NMI and Interrupt A
requests share the same vectors.

• A new value for the PC is fetched either from
location OA in the Interrupt/Trap Vector Table
(if bit 13 of the Interrupt Status reQist~r is
0, indicating that Interrupt A is not vectored)
or from the location in the Interrupt/Trap
Vector Table found by adding the lower byte of
the data read frum the bus dur1ng the
acknowledge cycle (the interrupt vector) to
70H (if bit 13 of the Interrupt Status
register is 1, indicat ing that Interrupt A is
vectored) •

• Execution of the service ruutine is begun.

For vectored i/lterrupts 1 the interrupt vector
returned during the acknowledge' cycle must be
even-valued in order to reference a valid PC value
in the Interrupt/Trap Vector Table.

The Interrupt/T rap Vector Tab le Pointer register
must be inEialized to huld the mont siqnificant.
12 bits of the start:i.nQ physical addrens of the
[nterrupt./lrap Vector Table. The Interrupt/Trap
Vector Table must start on a 4K byte boundary in
physical memury (that is, a memury address whuse
12 least siqnificant bits are all zeros).

,
,.

For example, suppose an interrupt is requested by
the on-chip counter/timer O. I f that interrupt

6-10

.-

____________• n_- ._• • _

Table 6·5. InterruptfTrap Vector Table Format

Address in Table
(Hexadecimal) Contents

~ . ", .. '... '-"1 " ... ,.:.... .'t,'}" ~; .. _ .,~ , ..

Reserved

NMI vector

Interrupt line A vector

Interrupt line B vector

Interrupt line C vector

CounterlTimer 0 vector

CounterlTimer 1 vector

Reserved

CounterlTimer 2 vector

DMA channel 0 vector

DMA channel 1 vector

DMA channel 2 vector

DMA channel 3 vector

UART receiver vector

UART transmitter vector

Single-Step trap vector
Breakpoint-on-Halt trap vector ': .' . - '" ". '

Division Exception trap vector

Stack Overflow Warning trap vector

Access Violation trap vector

System Call trap vector

Privileged Instruction trap vector

EPU +- Memory Extended Instruction trap vector

Memory +- EPU Extended Instruction trap vector

A +- EPU Extended Instruction trap vector

EPU Internal Operation Extended Instruction trap vector

Reserved

128 Program Counter values for NMI and interrupt line A vectors (MSR values from position 04 and

08 in this table, respectively)

128 Program Counter values for interrupt line B (MSR value from position OC in this table)

128 Program counter values for interrupt line C (MSR value from position 10 in this table)

170-26E

270-36E

00

04

08

OC

10

14

18

1C

20

24.

28

2C

30

34

38

3C
',: "" ." .' 40'·'· :','

44

48

4C

50
54

58

5C

60

64

68-6C

70-16E

.' ,., ..

During interrupt and trap processing, the CPU

automatically attempts to save BtatlJS infurmation

about the interrupted program on the system
stack. If the MMU is enabled, an access violatiorl
can occur during the status saving process if a
write is attempted to an invalidated page or to a

page that is wr He-protected. Det ection 0 f an
access violation durinq the status savinq process
causes the Z280 CPU tu enter a special fatal con-

....'. • • _ '.10 • _. ~ • 6.6 THE fATAL cOlin lION . ',' , '.. ... ~~ .' . dition; the following steps are taken automati­
cally when tile fatal condition occurs: the currellt
PC contents are we itten tu the Hl req ister, the
current MSR contents are written to the DE regis­

ter, atl the Interrupt Request Enable bits in the
r-1SR are cleared to 0, and the CPU enters a Hal t

state. This Halt state is identical to the Halt
state caused by the execution of a Halt instruc­

tion, with une exception: a Halt state induced by
a fatal condition can be exited ollly by a reset.

..~ .

•

•

6-11

, " . ---, _.. ' - _.'_.. -.' ...- .._.. ,- --.- --- ,-- --- ----- --

,
I,
.',.

j

"

~ -, - ,. ~ ' .. '

•. t., ..

:Ji..'

,'.

•

."• ;:. ',' '" ~." ... ,"

.. .'

.'

-,'

• . '. .. , , .. '..

•. ~ 'f

:\

,

..

Chapter 7.
Memory Management Unit

7.1 INTROOUCrlON 1.2 HHU ARCHIrECTUR£

The Z280 MPUs include an on-chip paqed Memory Man­

aqement Unit (MMU) , which allows the MPUs to

address mure than 64K bytes uf physir.a 1 memory.

Memury manag~ment with the MMU involves two
issues: memory al Location and melTlury prutection.

The a LIucation of memory is contra lled by a 1100'iinq
the MMU to translate the 16-bit logical addresses
from the Z280 CPU into the 24-bit physical

addresses uutput by the MPU. Thus, a giverl

programming task can be relocated to any area of
physical memory, reqardless of the loqkal

addresses used by that task. D'JrinQ this
translation process, the MMU also munitars the

When translation is enabled fur a particular mode
(system or us·a.), as determined by the contents of
the MMU Master Control reqister, the MMU trans­
lates Illemury addresses whenever the CPU is operat­

ing in that mode, usinq the set uf page descriptor

registers dedicated to that mude. However, there
~re two exceptions to that rule:

The Z280 Mt1U cunsists of two sets of 16 page

descriptur registers, used to translate addresses
and assign memory attribute~, on a page-by-page

basis, and a Master Control register that governs

MMU uperation. There is une page descriptor req­

ister assor.iated with each logiral p3ge uf mem­

Ilry. One !,et of 16 paqe descriptor registers is

dedicated to system mude opera~iorl and the other
set to user mude uperatiorl. The MMU registers are
accessed using 1/0 instructiuns.

" .

".' .. " ..' '~'"

memary access beinQ made; the I+1U can
accesses or write-prutect memury areas,

allowing memury to be protected from
ur unintended mudes uf use.

type of
inhibit

thereby
unwanted

The MMU partitions the 64K logica L address space

of the Z280 CPU illto fixed-sized memory pages ~nd

maps those pages into the physical address space.
Separate mapping facilities are available for the

system and user modes uf operation; trans I (it: ion

can be performed in either one or in buth mudes.
Optionally, the MMU provides for separating
inst ruct ion fetches frum data re ferenees, \'ihir.h

a llows the user tu define up to four di fferent
logical address spaces: system mude proqram, sys­
tem mode data, user mode pru1]ram, and user mude
data. If the proqram and data address spaces are
separated, the MMU IJ:;eo a page size of 8192 (8K)
bytes; if not, the page size is 4096 (4K) bytes.

•

...

When the CPU is fetching prugram status infor­
mation from the Interrupt/Trap Vector Table in

response to an interrupt under interrupt mode 3

ur a t~ap, the Interrupt frap Vector Table
Pointer register is used tu det~rmine the phys­

ical address uf the proqram status information.

The Luad in USrlr Prugram (LDUP) and Load in
User Data (LOUD) inst ruct ions are executed 1Il

system mode but use the usef mode page desc,ip­
tor registers to translate the data operano's
address.

;

"

The MMU is pru']rammed via I/O references to its
control registers. The MMU records which pages

have been mudified and can inhibit the cache mech­
anism to prevent the writing uf data to the
on-chip cache. Access Violation traps are gener­

ated when an error condition is detected (such as
an attempted write to a read-only page). Access
vio lations cause the current I y executing inst ruc­

tion to be aburted, and allow that instruction to
he restarted in a manner compat ible with vi.tua I
memor y requ i rements. Upon rel;et:, the MMlJ is dis­

abled, allowing loqical addresses to pass throuqh

to physical memury without trarlslation.

Memory addresses generated by the on-chip DMA

channels are 24-bit physical addresses that are
not translated by the Mt1U. Only memory addresses,
and not 1/0 addresses, are translated by the t1MU.

While an address is beillg translated, any attri­
butes assor.iated with the lnqica I paqe cont8ining
that address are checked. The attributes for a
page are determilled by the cuntents of that page's
page de~;criptur register. Page:, can be WI' i te­

protected and/ Of made non-cacheab Ie using these
at tr ibuten. A nun-cacheab Ie paqe is one whuse

contents cannot be copied into the on-chip cache
durillg proqram exel:utioll; thus, accesses tu loca-

,.
"

.

7-1

.'

7-2

. .," .. " .

,..

Page Descriptor Register

" " ." .. , .

Figure 7-1.

1S 0

I~:-...&.0:....: _p~....GE......f_RA....L.~E_A...~D_RE.....;SS.....:I......oL:-....L.:_I v IwpIc [M]

Write-Protect Bit (wp). When 'set to 1, write
operations to addresses in the page generate an
Access Violation trap and tIle write is inhil1ited.
When this bit is cleared to 0, all valid accesses
to the page are allowed.

The leaat significant four bits of each page
descriptor register are attribute and status hits
for that page, as described below:

Valid Bit (V). This bit is set to 1 to indicate
that the page descriptor register contains va lio
informat ion about the page. When cleared to 0,
all accesses to addresses in the page are
inhibited and generate Access Violation traps.

The page frame CJddress field contains the most
significant 12 bits (if prugram/data separation is
not in effect) or most signi ficant 11 bits (if
prugram/data neparatiun is in effect) of the
starting physir.al addrens for that page. The low­
order hits of the page's hase physical address are
assumed to be all zeros; thus, pages always start
on 4K byte boundaries in physical memory without
program/data separation, or BK byte boundaries
with program/d<Jta separation.

Cacheable Bit (C). When this bit is set to 1,
information from the page can be stored in the
on-chip cache memory. When this bit is cleared to
0, the cache control mechanism is i'lhibited from
retaining a copy of information from the page.

fhere are two sets of 16 page descriptor reqisters
in the MMU, one set for system mode opera!: ion and
one set for user mode operation. Each page
descriptor register is 16 bits long, corlsisti'lg of
fA 12-bit page frame address field and a 4-bit
attribute field (Figure 7-1) •.

7.3 PAGE O£SCRIPTOR REGISTERS

When trarlslation is disabled for a particular mode
(system or user), the MMU does not translate mem­
ory addresses or perfurm attribute checking ~hile

the CPU is operating in that mode. For a memor y
access when the MMU is disabled, the logical mem­
ory address passes through the MMU without tra'ls­
latio!l to physicaL address outputs AO-A15 and
physical address outputs A16-!\23 are all zeros.
When the MMU is disabled all lOemory is ansumed to
be both writeable and cacheable.

For system mode operation, user mode operation, or
both, the MMU can be configured to separate
instruction fetches frum data fetches, tllerefore
separatinq the proqram address space from the data
address space. This allows a Z280 MPU proQram to
contain up to 64K bytes of code and operate on up
to 64K bytes of data. With the proQram/data sep-
aration mode in effect, the 16 page descriptor Modified Bit (M). This status bit is automat i-
registers for that mode are partitioned into two cally set to 1 whenever a write is successfully
sets of eight descriptors: une set for instruction perfurmed to a logical address in the page; it can
fetches and one set for data fetches. An instruc- be cleared to 0 only by writing to the page
tirJll fetch or data reference using the PC relative descriptor register via a software command. If
addressing mode is translated using the page the Valid bit is 0, the contents of this bit are
descriptor registers associated with the program undefined.

. " " • • J »" ...' ~ ,'.

address space; data accesses using other addres-
sing modes and CJccesses to the interrupt vector
table under interrupt mode 2 use the page desc:ip­
tor registers associated with the data address
space. In this mode, pages are 8K bytes long.
Two control bits in the MMU Master Control regis­
ter specify independently whether prugraln/data
separation is in effect for system mode and
whether program/data separat:ion is in effect for
user mode.

Each page descriptor register c'ontains a Valid
hit, which indicates if that descriptor contains
valid information. Attempts to access an address
contai'led in a page with an invalid descriptor arld
attempts to write to an address in a page that is
write-protected generate Access Violation traps.
Arl Accesa Violation trap causea the currently exe­
cuting instruction to be aborted, facilitating the
development of virtual memory systems. A special
lid . port: in the MMLJ (I nv a lidation I/O port) is
available for resetting the valid bita in a whole
group of page descriptor registers with a single'
I/O instruction.

\

tions in non-cacheable pages always use the exter­
na1 hus. This attribute is useful in mul tiproces­
sor systems with shared memory areas, where each
processor must be able to access the most curre'lt
version of the information in the shared memory
area, or in systems with memory-mapped I/O
dev ices. The MMU also maintains a status hit for
each page, which indicates if that page has beerl
modifled.

"

, ...

p

"..... -- '('~~-..

=

7.4 ADDRESS TRANSLATION

If address translatiun is enabled, loqical
addresses are translated to physical addresses il)
une of two ways, depending un the program/data
separation mude, as speci fied in the MMU Master
Control register. The format of the page descrip­
tor registers is irldependent of which mode is in
effect •

7.4.1 Address Translation Without Program/Data
Separation

When program/data separation is not in effect, the
16-bit 100Jical address from the CPU is divided
into two fields, a 4-bit index field used to
select one of the 16 page descriptor reqisters,

ilnd 0 12-bit offset field that forms the lower 12
bits of the resul~ing physical address. The upper
12 bits of the physical address are provided by
the puge frame address field of the selected paqe
rlescriptor r~gister. The page:; are 4K bytes
long. This trans 1abon mechanism is illustrated
in Figure 7-2. Page descriptor reqister 0 is the
descriptur fur logi~al addresses OOOOH to
OFFFH, page des~riptur register 1 is the
descriptor fur logical addresses 1000H to
1FFFH, and so 01). Ihus, the index portion of
the lugica I address 5e leds the page de:,criptur
register. The pClge frame address field of that
page descriptor register the,) determi,)es the
actual startillg address for that page in physical
memory; the low-order 12 bits of the loqical
::Iddress specify the offset within that 4K byte
page.

\.~ ...

, .(.'" .

"AGE DESCRIPTOR
REGISTERS

}
LOGICAL
ADDRESS

o121115

I I J}
PHYSICAL ..

____P_AG_E_F_RA_M_E_A_D_D_RE_S_S .I-. O_F_FS_E_T . ADDRESS. "

INDEX OFFSET
. , . ,

11 4 3 0

15 0
I-

PAGE FRAME
ATTRIBUTEADDRESS /USER

.., ,/

,At'

/ SYS1l"iEll.;J

0

o I I

23 1211 0
•.t-... •_." ..,

~'"'' .. 1 •

Figure 7·2. Address Translation without ProgramlData Separation

•

7-3

. .,.'" ,'1••.•.•••• : .,•••• :> , ...' ~.

address space, P~g~ descriptor register 1 is the
descriptur for logical addre~;5e:; ZOOOH-3FFFH
in the data address space, and so on through page
descriptor register 7; page descriptor reqist~r 8
is the descriptor for logical addresses
OOOOH-1FFFH in the proqram address space, paqe
descriptor reqister 9 is the descriptor for loqi­
cal addresses 2000H-3FFFH in the proqram
address space, and so on. ThUG, each page is 8K
bytes long, where the starting address of the pClge
in physkal memury is determined by the page frame
address field in the selected pClqe descriptor req­
ister, and the 13 least significant bits of the
logical ~ddress specify the offset within that 8K
byte page. In this mude, the least significant
bit of the paqe frame address fie ld in each pClg~

descriptor register is not used; this bit is mudi­
fied by translation, and values read from it Clre
.Jnpredidable.

1.4.2 Address Translation With ProgramlData
Separation

When progr~m/data separation is in effect, the
16-hit IOIJica 1 address from the CPU is rliv ided
into a 3-bit index and a '13-bit offset. A Pro­
.]ram/Data address contra 1 signal frum the CPU

becomes the must silJnificant hit of the 4-bit
index th~t selects the appropriate page descriptur
reqister; the three must signific,ant bits of the
logical address furm the least significallt bits of
this index. The upper 11 bits of the page frame
address field in the selected page descriptor reg­
ister pruvide the upper 11 bits of the resulting
physical address. The least significant 13 bits
of the logical address furm the low urder 13 hits
of the physical address, as illustrated in Figure
7-3. Page descriptor register 0 is the descriptor
for logical addresses OOOOH-1FFFH in the data ,

, .' , . . .

•

PROGRAMI
DATA BIT

. "

PROGRAM PAGE
DESCRIPTOR REGISTi.::RS

DATA PAGE
DESCRIPTOR REGISTERS

16·BIT LOGICAL PROGRAM
OR DATA ADDRESS

I I }
24·BIT PHYSICAL PROGRAM

L.-__PA_G,;.,E_F_R_A_M_E_A_D_D_R_E_S_S '- O_F_F...:S_E...:T . OR DATA ADDRESS

I 15 13 12 0

I INDEX I OFFSET

I ,

3 0

INDEX

15 5 4 3 0

15 0 0

. 0

0
PROGRAM 0

PAGE FRAME ATTRIBUTE
ADDRESS 0

I 0

I
0

6 0

L~
0

0

I 0 /USER
DATA

PAGE FRAME 0 ATTRIBUTE V'-. "· ..··1..,, .. .' : :.:: .. ' ADDRESS I¥ V SYSTEM. ,.. ..,. ~' 0 ..
L 0 1$,

0

0 0

0 01

23 13 12 0

, .• • • ••.. <' • 0',I

Figure 7-3. Address Translation with Program/Data Separation

,

- - - =

7-4

I,

The 16-bit ~MU Master Contr:Jl register is nhown in

Fiqure 7-4. This register cunsists of fuur con­
trol bits and a 5-bit status field; the fields in

this register 4re described below:

Besides the twu sets of 16 page descriptur regis­

ters, the MMU contain1, a ~1aster Control register

ana a Page Descriptur Register Puinter. The

16-hlt Master Control register controls the opera­

tion of the MMU; the B-bit Paqe Descriptor Regis­

ter Pointer is u1,ed to select a particular paqe

descriptor register during I/O accesses to the

descriptors.

;

. . • . } * .

The MMU Master Control register is proqrammed via

a word output instruc~ion to I/O port address

FFxxFOH (where "x" indicates a "dun't care") and
is read via a word input instruction tIl that same

port. A reset clears this reg lster to a 11 zeros,
thereby disabling address translation and aUr i­

bute checkin'] in the MMU. 8its 5 through 9, 1Z,
and 13 in this register are not used.

Paqe fault Identifier (Pr I) field. This 5-bit

status field latches an identification number that

inl1icates which Page Descriptor register was beinq

acces~3ed when an access violation was detected.

The encoding uHed is qiven in Table 7-1.

through 15, and data references using other

addre!,sing mudes use ::;ystem-mude Page De:.cr iptor

registers 0 through 7; the page size is BK bytes.

'llhen this bit is cleared to 0, both instruction

and data fetches use system-mude PClqe Descriptor

reg isters 0 through 15 and the page size is 4K

bytes.

o

•

"

, '. .', "

Figure 7·4. MMU Master Control Register

15

IUTEIupol1 11 ISTEIspol1 11 11 11 1 1 I

7.5 HMU CONTROL REGISTERS

... ... \. .

•

'.

User Mode lr.nslate Enable (UlE). When this bit

is set to 1, logical memory addresses generated

during user-mude operation dre translated to phys­
ical addresses with attribute checkinq. When this

bit is cleared to 0, the loqica I addresses are

passed through the MMU to the address outputs with

zerus in the most significant bits and nu attri­

bute checking or modifled bit setting is per­

formed.

Ihe Page Descriptor registers in the MMU are
acce:,1,ed Ilsing the Page Descriptor Register

Pointer (POR Pointer). The 8-bit POR Pointer con­

tains the address of one of the Page Descriptor

registers; the encoding is given in lab Ie 7-".

The permissib Ie contents of the PDR Pointer are

OOH through 1FH' rhe POR Pointer is accessed
via byte I/O instructions to port address

FFxxF1 H•

Table 7-1. Page Descriptor Register Addresses

•

•

, ,

•
•

•

•

Selected Page
Descriptor Register

System Page Descriptor 14

System Page Descriptor 15

User Page Descriptor 14

User Page Descriptor 15

System Page Descriptor 0

System Page Descriptor 1

User Page Descriptor 0

User Page Descriptor 1

•
•

•

•
•
•

1E

1F

OE
OF
10

11

00

01

PDR Pointer or
PFI Field

Syst.. "boo Translate Enable (STE). When this bit
is set to 1, logica I memory addresses generated

during system-mude operation are translated tu
physica I addresses with attribute checking. When
this bit is cleared tu 0, the IlJgica 1 addres1,es

are passed through the MMU to the address outputs

with zeros in the most significant bits and no
attribute checking ur mudified bit setting is per­

formed.

User Mode Program/Data Separation Enab le (um) •

When this bit is set to 1, instruction fetches and

data accesses usinq the PC Re lati ve addressing
mode use user-mode Page Descriptor registers 8

throuqh 15, and dat.a references using other
addressinq mudes use user-mode Page Descriptor

reg isters 0 through 7; the page size is 81< bytes."

',.,hen this bit is cleared to 0, both instruction

and data fetches w,e u:.er-mode Page Descriptor

registers 0 through 15 and the paqe size is 41<

bytes.

.
,

System Mode Programtoata Separation Enable (SPO).

Whel) this bit is set to 1, instruction fetches und

data accesses using the PC Re lat ive addre:.sinq

mude use, system-mode Page Descriptor registers 8

7-5

"

7.6 AOOESSING PAGE OESCRIPfOR REGISfERS

Data is read or written to the Page De~;criptlJr

registers via I/O instructions. Three diff;~rent

types of accesses are allowed, each of which is
implemented with its own unique I/O port address.

tu that port, a~ de l ineated

WI' it ing to the inva 1irl~~ ion

sil]ni fir-ant fuUl' bits are

four bi t5 a re not used.

returns lJnpredictabl,~ data.

in Table7-Z. When

purt only the 1ea~; t

:,amp1ed; t~e uppe I'

Reading port FFxxF2H

Table 7-2. MMU Invalidation Port

7.6.1 Oescriptor Select Port

1-1oves of one word of d<lta to' or from a Page

Descriptur register are accomj:>lished through I/O

port address HxxFSH, the Descriptor Select

Port. The Paqe Descriptor reqister accessed is

the one addressed by the PDR Pointer; the PDR

Pointer Use 1f is unaffected. Any word I/O
instructiun can be used.

Data Written to
Port FFxxF2

(Hexadecimal)

01
02

03
04

08

OC

Page Descriptor Registers
Invalidated

System Page Descriptor Registers 0-7

System Page Descriptor Registers 8-15

System Page Descriptor Registers 0-15

User Page Descriptor Registers 0-7

User Page Descriptor Registers 8-15

User Page Descriptor Registers 0-15

results.

7.6.3 Invalidatiml Port

For accesses to the Page Descriptor registers

using the Descriptor Select purt ur the Block Move

\. purt, the permissible contents of the PDR Pointer

<:Ire the addre~,ses for the PClge Descriptors given

in Table 7-1: DOH to 1FH. Execution of an I/O
instruction to ports FFxxF4H ur FFxxFSH when

the contents of the PDR Pointer <:Ire outside of

this permitted range wi 11 have unprerJietable

The Val irJ bits in the Paqe Descriptor registers

can be cledred to 0 v ia byte writes to 1/0 port

address FFxxF2H, thereby i~validati~q the I~on­

tents of the Page Descriptor regbters. Individ­
ual Valid bits can subsequently be set by writing

to individual Page Descriptor registers using the

Descriptor Select port ur the Block Move port.
rhe Page Descriptor registers invalidated by a

write tu port FFxxF2H depend on the da!:a written

I
I

Register

Master Control Register

Page Descriptor Register Pointer

Descriptor Select Port

Block Move Port

Invalidation Port

"~"" .. ,.' ...

FFxxFOH

FFxxF1H

FFxxF5H

FFxxF4H

FFxxF2H

Table 7-3. 110 Port Addresses for MMU Control Registers

Port
Address

Changing an MMU control reqister or Page

Descriptor register dues not cause a f1 ush uf the

CPU instruct-. ion pipeline. Whi Ie an instruction

that changes an t-1MU regiGter is executing, up tu

two subsequent instructions can be pre-fetched

.into the CPU pipe line; execution of these

subsequent:. illstrue:.ions must have benign results.

In uther words, '''!hen changing an MMU register, up

to two sub~;equeqt instructions can be fetched

hefure the changl~ to the ~1MU regbter is

guaranteed to take effect. . (Howeve:r, no data

accesses are pre-fetched.) Therefure, when

initially enabling the ~1MU for address

trallslation, the instruction that enables the MMU

and the next two instruct-. ions must be in a paqe

whose logical addresses are identical to physical

addre~)ses (SI) that it is immateria 1 exactl y when

the MMU begins the trans 1atiun pruees:, for those

instru[~tion fetches). When alterir19 <1 page

descriptor regi:,ter while tr<lnslation is enabled,

lleitller of the next two instructions should reside

in the page associated with the Page Descriptor

regi:>ter being changed.

The I/O port addresses fur the MHU registers are
listed in Table 7-3.

"-

: - :-'7.6.2 Block Move Port

Block moves of data into and out of Page Descrip­

tor registers are accomp lished by word accesses to

I/O port address FFxxF4H• rhe Page Descriptur

r~gister accessed is the one addressed by the PDR

Pointer. Any word I/O instruction can be used.

After the access, the contents uf the PDR Pointer

are automatically incremented by one; thus, a sin­

gle block I/O instr.uction can be used to access

several successive Page Descriptor registers. For

example, if the PDR Pointer is initialized tu 00,
the execution of an INIRW instruc~ion to I/O purt

FFxxF4H causes data from successive Page
Descriptor registers starting with user Page

Descriptor register 0 to be loaded into memory.

.'

---------------_._----------------------,-------_._-----------------
7-6

--------_._--- . -,-= ---- - __a _= '-_=

7.7 INSTRUCIION A~ORiS

) .. ;.. .. '.

Detection uf a page fault (due t:u an attempted
access tu an inva 1idated p<Jge) l) r a 14 i' i t.e-protec t

violation (due to an attempted write to a write­

protected page) causes the currentl y executing

inst ruction to be immediate 1y aborted <Jnd

qenerates an Access Violation trap. The startinq

address of the instruction that caused the

violation and the current MSR value <:Ire

automatically saved un the system stack when

processinq an Access Violation trap. Furthermore,

the MHU latches the address of the referenced P<:Ige

Descriptor reI] ister in the PFl field of the t~MU

Master Corltrol register whenever a violation
occurs.

ror most instructions, the CPU registers are not

modi fied dJring the execution of aborted instruc­

tions; i.e., their conterlts are the same as before
the aborted instruction began. The exceptiuns are

the block move, block search, and block I/O

instructions; when aborted, the CPU registers are

the same as just befor~ the iteration of the
instruction in which the violation occurred. In
either case, nu mudification of CPU reqisters is

necessary befure restarting the aburted instruc­
tion.

•

The instruct ion abort: mechanism of the Z280 MPU

facilitat.es the implementation of virtual memory

in 1280-based systems. In a virtual memory sys­

tem, a cleared Val VI bit in the Page Descriptor

register can be used to indicate when a memory

page is not currently mapped into main memory. If

an access is attempted to such a page, the

instruction is aborted and the Access Vio latton

trap service routine is irlvoked. The service rou­

tine can determine whir.h Page Descr iptor register

is involved by reading the PFI field of the MHU
Master Control register, swap the appropriate page

from the secondary storage device into main mem­
ory, adjust the appropriate Page Descriptor regis­

ters, and then restart the aborted instruction.
The aborted instruction is automatically restarted
by using the Return from Interrupt Long instruc­
tion to retr ieve the or iginal PC and MSR values

from the system stack. No adjustments to other
CPU registers are required. Dur ing the swapping
process, the modified status bit in the page
descriptor register can be used to determine if a

page has been modified since the last time it was
copied to a secondary storage device.

.~ .~..

, .

•

7-1

"2

•
•

"

••",..'

. .
"'I"

.- I..:. -.... • ") . " , . ,',', "

•

',' '. ~

•

-~

